首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the results of our optical speckle interferometric observations of the nearby triple system GJ 795 performed with the 6 m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences with diffraction-limited angular resolution. The three components of the system were optically resolved for the first time. Position measurements allowed us to determine the elements of the inner orbit of the triple system. We use the measured magnitude differences to estimate the absolute magnitudes and spectral types of the components of the triple: M V Aa =7.31±0.08, M V Ab =8.66±0.10, M V B =8.42±0.10, Sp Aa≈K5, Sp Ab≈K9, Sp B ≈K8. The total mass of the system is equal to ΣM AB =1.69±0.27M . We show GJ795 to be a hierarchical triple system which satisfies the empirical stability criteria.  相似文献   

2.
We have done a new analysis of the available observations of the GJ581 exoplanetary system. Today this system is controversial due to choices that can be done in the orbital determination. The main ones are the occurrence of aliases and the additional bodies??the planets f and g??announced in Vogt et?al. (Astrophys J 723:954?C965, 2010). Any dynamical study of exoplanets requires the good knowledge of the orbital elements and the investigations involving the planet g are particularly interesting, since this body would lie in the habitable zone (HZ) of the star GJ581. This region, for this system, is very attractive of the dynamical point of view due to several resonances of two and three bodies present there. In this work, we investigate the conditions under which the planet g may exist. We stress the fact that the planet g is intimately related with the orbital elements of the planet d; more precisely, we conclude that it is not possible to disconnect its existence from the determination of the eccentricity of the planet d. Concerning the planet f, we have found one solution with period ??450?days, but we are judicious about any affirmation concerning this body because its signal is in the threshold of detection and the high period is in a spectral region where the occurrence of aliases is very common. Besides, we outline some dynamical features of the HZ with the dynamical map and point out the role played by some resonances laying there.  相似文献   

3.
4.
5.
We consider a model of a young binary with a low-mass secondary component. Mass accretion from the remnants of the protostellar cloud onto the binary components is assumed to take place in accordance with current models; i.e., it proceeds mainly onto the low-mass component. The accretion is accompanied by mass outflow (disk wind), whose low-velocity component can be partially captured by the primary component. As a result, an asymmetric common envelope is formed. Its densest part is involved in the orbital motion of the secondary and can periodically shield the primary component of the binary from the observer. Assuming a standard dust-to-gas ratio for the disk wind (1: 100), we calculated the possible photometric effects from such eclipses and showed that they could be observed even at moderate accretion rates onto the low-mass binary component, ∼10−8–10−9 M per year. In this case, the parameters of the minima depend on the model of the disk wind, on the ratio of its characteristic velocity to the orbital velocity of the secondary, and on its orbital inclination to the line of sight. These results can form the basis for interpreting a wide range of phenomena observed in young stars, such as the activity cycles in UX Ori stars, the unusually broad minima in some young eclipsing systems, etc., and for searching for substellar objects and massive protoplanets. In addition, the peripheral parts of the gas and dust disk around a young binary can fall within the shadow zone produced by the opaque part of the common envelope. In such cases, a shadow from the common envelope must be observed on the disk; this shadow must move over the disk following the orbital motion of the low-mass component. Detection and investigation of such structures in the images of protoplanetary disks may become a method of searching for protoplanets and studying binaries at early stages of their evolution.  相似文献   

6.
The accretion activity of young binaries with low-mass (q = M 2/M 1 ≤ 0.1) secondary components is studied. The source of accreted matter is a common disk surrounding the binary system and coplanar with its orbit. Gas dynamic models of these systems are used to calculate the rates of accretion to the components and their dependence on the phase of the orbital period is studied. It is shown that, despite its low mass, the secondary accretes matter at a relatively higher rate than the primary. This result can be regarded as an extension of the work of Artymowicz and Lubow for young binaries with components that have unequal masses. Possible astrophysical applications of the theory are discussed.  相似文献   

7.
We discuss the formation and evolution of interacting low-mass close binaries with a He-1CO- or ONe-dwarf neutron star or a black hole as a compact component. Mass exchange leads to cataclysmic events in such systems. The rate of semidetached low-mass close binary formation is 5×10–3 yr–1 if the accreting component is a He degenerate dwarf, 5×10–3 yr–1 if it is a CO-dwarf and 3×10–8 yr–1 if it is a neutron star. Systems with compact accretors arise as the result of the common envelope phase of close binary evolution or due to collisions of single neutron stars or dwarfs with low-mass single stars in dense stellar clusters. Evolution of LMCB to the contact phase in semi-detached stages is determined mainly by the angular momentum losses by a magnetic stellar wind and radiation of gravitational waves. Numerical computations of evolution with momentum loss explain observed mass exchange rates in such systems, the absence of cataclysmic variables with orbital periods 2h–3h, the low number and the evolutionary status of systems with orbital periods shorter than 80m. In conclusion we list unsolved problems related to magnetic stellar wind, the distribution of young close binaries over main initial parameters, stability of mass exchange.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986.  相似文献   

8.
We consider a model for the cyclic brightness variations of a young star with a low-mass companion that accretes matter from the remnants of a protostellar cloud. At small inclinations of the binary orbit to the line of sight, the streams of matter and the density waves excited in the circumbinary disk can screen the primary component of the binary from the observer. To study these phenomena, we have computed grids of hydrodynamic models for binary systems by the SPH method based on which we have calculated the phase light curves for the different orientations of the orbit. The model parameters were varied within the following ranges: the component mass ratio q = 0.01–0.1 and the eccentricity e = 0–0.5. We adopted optical grain characteristics typical of circumstellar dust. Our computations have shown that the brightness oscillations with orbital phase can have a complex structure. The amplitudes and shapes of the light curves depend strongly on the inclination of the binary orbit and its orientation relative to the observer and on the accretion rate. The results of our computations are used to analyze the cyclic activity of UX Ori stars.  相似文献   

9.
GJ 3236 is a low-mass red-dwarf eclipsing binary (EB) with two M4V components. In this paper, new photometric light curves (LCs) of GJ 3236 are presented and analyzed by using the 2013 version of the Wilson–Devinney (W–D) code. Our photometric solutions suggest that GJ 3236 is an active detached EB system with strong magnetic field. Since 2009, we have monitored this target more than 10 years and obtained 22 mid-eclipse times with high precision. By using the O–C method, we revised its period as 0.7712562 days. According to Applegate mechanism, the O–C diagram of GJ 3236 should show a quasi-periodic variation, however, it does not now. Based on these, we thought that it is possible evolved through the accretion of circumstellar matter. Besides, both of components of GJ 3236 present a similar radius inflation, which could be explained by the strong magnetic activity.  相似文献   

10.
We consider an equation of state that leads to a first-order phase transition from the nucleon state to the quark state with a transition parameter λ>3/2 (λ=ρQ/(ρN+P0/c2)) in superdense nuclear matter. Our calculations of integrated parameters for superdense stars using this equation of state show that on the stable branch of the dependence of stellar mass on central pressure dM/dPc>0) in the range of low masses, a new local maximum with Mmax=0.082 and R=1251 km appears after the formation of a toothlike kink (M=0.08M, R=205 km) attributable to quark production. For such a star, the mass and radius of the quark core are Mcore=0.005M and Rcore=1.73 km, respectively. In the model under consideration, mass accretion can result in two successive transitions to a quark-core neutron star with energy release similar to a supernova explosion: initially, a low-mass star with a quark core is formed; the subsequent accretion leads to configurations with a radius of ~1000 km; and, finally, the second catastrophic restructuring gives rise to a star with a radius of ~100 km.  相似文献   

11.
In this article, a period analysis of the late-type eclipsing binary VV UMa is presented. This work is based on the periodic variation of eclipse timings of the VV UMa binary. We determined the orbital properties and mass of a third orbiting body in the system by analyzing the light-travel time effect. The O−C diagram constructed for all available minima times of VV UMa exhibits a cyclic character superimposed on a linear variation. This variation includes three maxima and two minima within approximately 28,240 orbital periods of the system, which can be explained as the light-travel time effect (LITE) because of an unseen third body in a triple system that causes variations of the eclipse arrival times. New parameter values of the light-time travel effect because of the third body were computed with a period of 23.22 ± 0.17 years in the system. The cyclic-variation analysis produces a value of 0.0139 day as the semi-amplitude of the light-travel time effect and 0.35 as the orbital eccentricity of the third body. The mass of the third body that orbits the eclipsing binary stars is 0.787 ± 0.02 M, and the semi-major axis of its orbit is 10.75 AU.  相似文献   

12.
13.
14.
We consider a model of cyclic brightness variations in a young star with a low-mass (q = M 2/M 1 ≤ 0.1) companion that accretes matter from the remnants of a protostellar cloud (circumbinary disk). We assume that the orbit of the companion is circular and that its plane does not coincide with the disk plane. We have computed grids of hydrodynamic models for such a binary by the SPH method based on which we have investigated the circumstellar extinction variations produced by the streams of matter and density waves excited in the circumbinary disk by the orbital motion of the companion. We show that, depending on the inclination and orientation of the binary’s line of nodes relative to the observer, the brightness of the primary component can undergo various (in shape and depth) oscillations with a period equal to the orbital one. In contrast to the models with coplanar circular orbits, the accretion rate onto the components of a binary with a noncoplanar orbit depends on the orbital phase. The results of our computations can be used to study the cyclic activity of UX Ori stars and young eclipsing binaries with anomalously long eclipses.  相似文献   

15.
The new photometric systemWBVR was described. It is close toUBVR but is defined by strictly fixed response curves and the secondary standards distributed uniformly in the northern sky was construct. The magnitudes of these standards were coordinated to the self-consistent system. All standards were examined for a possible brightness variability.  相似文献   

16.
High resolution echelle spectroscopic observations taken with the FEROS spectrograph at the 2.2 m telescope ESO confirm the binary nature of the flare M3.5V star LU Vel (GJ 375, RE J0958-462) previously reported by Christian and Mathioudakis (2002). Emission of similar intensity from both components is detected in the Balmer, Na i D1&D2, He i D3, Ca ii H&K, and Ca ii IRT lines. We have determined precise radial velocities by cross correlation with radial velocity standard stars, which have allowed us to obtain for the first time the orbital solution of the system. The binary consists of two near-equal M3.5V components with an orbital period shorter than 2 days. We have analyzed the behaviour of the chromospheric activity indicators (variability and possible flares). In addition, we have determined its rotational velocity and kinematics.  相似文献   

17.
18.
19.
20.
High-resolution MERLIN observations of a newly discovered four-image gravitational lens system, B0128+437, are presented. The system was found after a careful re-analysis of the entire CLASS data set. The MERLIN observations resolve four components in a characteristic quadruple-image configuration; the maximum image separation is 542 mas and the total flux density is 48 mJy at 5 GHz. A best-fitting lens model with a singular isothermal ellipsoid results in large errors in the image positions. A significantly improved fit is obtained after the addition of a shear component, suggesting that the lensing system is more complex and may consist of multiple deflectors. The integrated radio spectrum of the background source indicates that it is a gigahertz peaked spectrum source. It may therefore be possible to resolve structure within the radio images with deep VLBI observations and thus to constrain the lensing mass distribution better.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号