首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
 The standard analytical approach which is applied for constructing geopotential models OSU86 and earlier ones, is based on reducing the boundary value equation to a sphere enveloping the Earth and then solving it directly with respect to the potential coefficients n,m . In an alternative procedure, developed by Jekeli and used for constructing the models OSU91 and EGM96, at first an ellipsoidal harmonic series is developed for the geopotential and then its coefficients n,m e are transformed to the unknown n,m . The second solution is more exact, but much more complicated. The standard procedure is modified and a new simple integral formula is derived for evaluating the potential coefficients. The efficiency of the standard and new procedures is studied numerically. In these solutions the same input data are used as for constructing high-degree parts of the EGM96 models. From two sets of n,m (n≤360,|m|≤n), derived by the standard and new approaches, different spectral characteristics of the gravity anomaly and the geoid undulation are estimated and then compared with similar characteristics evaluated by Jekeli's approach (`etalon' solution). The new solution appears to be very close to Jekeli's, as opposed to the standard solution. The discrepancies between all the characteristics of the new and `etalon' solutions are smaller than the corresponding discrepancies between two versions of the final geopotential model EGM96, one of them (HDM190) constructed by the block-diagonal least squares (LS) adjustment and the other one (V068) by using Jekeli's approach. On the basis of the derived analytical solution a new simple mathematical model is developed to apply the LS technique for evaluating geopotential coefficients. Received: 12 December 2000 / Accepted: 21 June 2001  相似文献   

2.
A synthetic Earth for use in geodesy   总被引:1,自引:0,他引:1  
 A synthetic Earth and its gravity field that can be represented at different resolutions for testing and comparing existing and new methods used for global gravity-field determination are created. Both the boundary and boundary values of the gravity potential can be generated. The approach chosen also allows observables to be generated at aircraft flight height or at satellite altitude. The generation of the synthetic Earth shape (SES) and gravity-field quantities is based upon spherical harmonic expansions of the isostatically compensated equivalent rock topography and the EGM96 global geopotential model. Spherical harmonic models are developed for both the synthetic Earth topography (SET) and the synthetic Earth potential (SEP) up to degree and order 2160 corresponding to a 5′×5′ resolution. Various sets of SET, SES and SEP with boundary geometry and boundary values at different resolutions can be generated using low-pass filters applied to the expansions. The representation is achieved in point sets based upon refined triangulation of a octahedral geometry projected onto the chosen reference ellipsoid. The filter cut-offs relate to the sampling pattern in order to avoid aliasing effects. Examples of the SET and its gravity field are shown for a resolution with a Nyquist sampling rate of 8.27 degrees. Received: 6 August 1999 / Accepted: 26 April 2000  相似文献   

3.
 The topographic and atmospheric effects of gravimetric geoid determination by the modified Stokes formula, which combines terrestrial gravity and a global geopotential model, are presented. Special emphasis is given to the zero- and first-degree effects. The normal potential is defined in the traditional way, such that the disturbing potential in the exterior of the masses contains no zero- and first-degree harmonics. In contrast, it is shown that, as a result of the topographic masses, the gravimetric geoid includes such harmonics of the order of several centimetres. In addition, the atmosphere contributes with a zero-degree harmonic of magnitude within 1 cm. Received: 5 November 1999 / Accepted: 22 January 2001  相似文献   

4.
 A technique for the analysis of low–low intersatellite range-rate data in a gravity mapping mission is explored. The technique is based on standard tracking data analysis for orbit determination but uses a spherical coordinate representation of the 12 epoch state parameters describing the baseline between the two satellites. This representation of the state parameters is exploited to allow the intersatellite range-rate analysis to benefit from information provided by other tracking data types without large simultaneous multiple-data-type solutions. The technique appears especially valuable for estimating gravity from short arcs (e.g. less than 15 minutes) of data. Gravity recovery simulations which use short arcs are compared with those using arcs a day in length. For a high-inclination orbit, the short-arc analysis recovers low-order gravity coefficients remarkably well, although higher-order terms, especially sectorial terms, are less accurate. Simulations suggest that either long or short arcs of the Gravity Recovery and Climate Experiment (GRACE) data are likely to improve parts of the geopotential spectrum by orders of magnitude. Received: 26 June 2001 / Accepted: 21 January 2002  相似文献   

5.
The passive satellite GFZ-1 has been orbiting the Earth since April 1995. The purpose of this mission is to improve the current knowledge of the Earth's gravity field by analysing gravitational orbit perturbations observed at unique low altitudes, below 400 km. GFZ-1 is one target of the international satellite laser ranging ground network. An evaluation of the first 30 months of GFZ-1 laser tracking data led to a new version of the global GRIM4-S4 satellite-only gravity field model: GRIM4-S4G. Information was obtained from GFZ-1 data for spherical harmonic coefficients up to degree 100, which was not possible in any earlier satellite-only gravity field solution. GFZ-1's contribution to a global 5 × 5° geoid and gravity field representations is moderate but visible with a 1 cm and 0.1 mGal gain in accuracy on a level of 75 cm and 5 mGal, respectively. Received: 10 November 1998 / Accepted: 19 April 1999  相似文献   

6.
 The downward continuation of the harmonic disturbing gravity potential, derived at flight level from discrete observations of airborne gravity by the spherical Hotine integral, to the geoid is discussed. The initial-boundary-value approach, based on both the direct and inverse solution to Dirichlet's problem of potential theory, is used. Evaluation of the discretized Fredholm integral equation of the first kind and its inverse is numerically tested using synthetic airborne gravity data. Characteristics of the synthetic gravity data correspond to typical airborne data used for geoid determination today and in the foreseeable future: discrete gravity observations at a mean flight height of 2 to 6 km above mean sea level with minimum spatial resolution of 2.5 arcmin and a noise level of 1.5 mGal. Numerical results for both approaches are presented and discussed. The direct approach can successfully be used for the downward continuation of airborne potential without any numerical instabilities associated with the inverse approach. In addition to these two-step approaches, a one-step procedure is also discussed. This procedure is based on a direct relationship between gravity disturbances at flight level and the disturbing gravity potential at sea level. This procedure provided the best results in terms of accuracy, stability and numerical efficiency. As a general result, numerically stable downward continuation of airborne gravity data can be seen as another advantage of airborne gravimetry in the field of geoid determination. Received: 6 June 2001 / Accepted: 3 January 2002  相似文献   

7.
The results from 14 satellite orbit analyses, two of which are new objects, are used to determine individual tesseral harmonic coefficients of 30th-order and even degree. Six C, S pairs are evaluated by solving the equations using a modified least-squares technique. The results are compared with comprehensive geopotential models. The recent models GRIM4-C1, GEM-T3 and JGM-2 emerge well from such tests and are generally closest to the resonance values. A tentative solution is found for four pairs of harmonic coefficients of 30th-order and odd degree.  相似文献   

8.
 The AUSGeoid98 gravimetric geoid model of Australia has been computed using data from the EGM96 global geopotential model, the 1996 release of the Australian gravity database, a nationwide digital elevation model, and satellite altimeter-derived marine gravity anomalies. The geoid heights are on a 2 by 2 arc-minute grid with respect to the GRS80 ellipsoid, and residual geoid heights were computed using the 1-D fast Fourier transform technique. This has been adapted to include a deterministically modified kernel over a spherical cap of limited spatial extent in the generalised Stokes scheme. Comparisons of AUSGeoid98 with GPS and Australian Height Datum (AHD) heights across the continent give an RMS agreement of ±0.364 m, although this apparently large value is attributed partly to distortions in the AHD. Received: 10 March 2000 / Accepted: 21 February 2001  相似文献   

9.
 The use of GPS for height control in an area with existing levelling data requires the determination of a local geoid and the bias between the local levelling datum and the one implicitly defined when computing the local geoid. If only scarse gravity data are available, the heights of new data may be collected rapidly by determining the ellipsoidal height by GPS and not using orthometric heights. Hence the geoid determination has to be based on gravity disturbances contingently combined with gravity anomalies. Furthermore, existing GPS/levelling data may also be used in the geoid determination if a suitable general gravity field modelling method (such as least-squares collocation, LSC) is applied. A comparison has been made in the Aswan Dam area between geoids determined using fast Fourier transform (FFT) with gravity disturbances exclusively and LSC using only the gravity disturbances and the disturbances combined with GPS/levelling data. The EGM96 spherical harmonic model was in all cases used in a remove–restore mode. A total of 198 gravity disturbances spaced approximately 3 km apart were used, as well as 35 GPS/levelling points in the vicinity and on the Aswan Dam. No data on the Nasser Lake were available. This gave difficulties when using FFT, which requires the use of gridded data. When using exclusively the gravity disturbances, the agreement between the GPS/levelling data were 0.71 ± 0.17 m for FFT and 0.63 ± 0.15 for LSC. When combining gravity disturbances and GPS/levelling, the LSC error estimate was ±0.10 m. In the latter case two bias parameters had to be introduced to account for a possible levelling datum difference between the levelling on the dam and that on the adjacent roads. Received: 14 August 2000 / Accepted: 28 February 2001  相似文献   

10.
 The single- and dual-satellite crossover (SSC and DSC) residuals between and among Geosat, TOPEX/Poseidon (T/P), and ERS 1 or 2 have been used for various purposes, applied in geodesy for gravity field accuracy assessments and determination as well as in oceanography. The theory is presented and various examples are given of certain combinations of SSC and DSC that test for residual altimetry data errors, mostly of non-gravitational origin, of the order of a few centimeters. There are four types of basic DSCs and 12 independent combinations of them in pairs which have been found useful in the present work. These are defined in terms of the `mean' and `variable' components of a satellite's geopotential orbit error from Rosborough's 1st-order analytical theory. The remaining small errors, after all altimeter data corrections are applied and the relative offset of coordinate frames between altimetry missions removed, are statistically evaluated by means of the Student distribution. The remaining signal of `non-gravitational' origin can in some cases be attributed to the main ocean currents which were not accounted for among the media or sea-surface corrections. In future, they may be resolved by a long-term global circulation model. Experience with two current models, neither of which are found either to cover the most critical missions (Geosat & TOPEX/Poseidon) or to have the accuracy and resolution necessary to account for the strongest anomalies found across them, is described. In other cases, the residual signal is due to errors in tides, altimeter delay corrections or El Ni?o. (Various examples of these are also presented.) Tests of the combinations of the JGM 3-based DSC residuals show that overall the long-term data now available are well suited for a gravity field inversion refining JGM 3 for low- and resonant-order geopotential harmonics whose signatures are clearly seen in the basic DSC and SSC sets. Received: 15 January 1999 / Accepted: 9 September 1999  相似文献   

11.
 Different types of present or future satellite data have to be combined by applying appropriate weighting for the determination of the gravity field of the Earth, for instance GPS observations for CHAMP with satellite to satellite tracking for the coming mission GRACE as well as gradiometer measurements for GOCE. In addition, the estimate of the geopotential has to be smoothed or regularized because of the inversion problem. It is proposed to solve these two tasks by Bayesian inference on variance components. The estimates of the variance components are computed by a stochastic estimator of the traces of matrices connected with the inverse of the matrix of normal equations, thus leading to a new method for determining variance components for large linear systems. The posterior density function for the variance components, weighting factors and regularization parameters are given in order to compute the confidence intervals for these quantities. Test computations with simulated gradiometer observations for GOCE and satellite to satellite tracking for GRACE show the validity of the approach. Received: 5 June 2001 / Accepted: 28 November 2001  相似文献   

12.
 The recovery of a full set of gravity field parameters from satellite gravity gradiometry (SGG) is a huge numerical and computational task. In practice, parallel computing has to be applied to estimate the more than 90 000 harmonic coefficients parameterizing the Earth's gravity field up to a maximum spherical harmonic degree of 300. Three independent solution strategies (preconditioned conjugate gradient method, semi-analytic approach, and distributed non-approximative adjustment), which are based on different concepts, are assessed and compared both theoretically and on the basis of a realistic-as-possible numerical simulation regarding the accuracy of the results, as well as the computational effort. Special concern is given to the correct treatment of the coloured noise characteristics of the gradiometer. The numerical simulations show that the three methods deliver nearly identical results—even in the case of large data gaps in the observation time series. The newly proposed distributed non-approximative adjustment approach, which is the only one of the three methods that solves the inverse problem in a strict sense, also turns out to be a feasible method for practical applications. Received: 17 December 2001 / Accepted: 17 July 2002 Acknowledgments. We would like to thank Prof. W.-D. Schuh, Institute of Theoretical Geodesy, University of Bonn, for providing us with the serial version of the PCGMA algorithm, which forms the basis for the parallel PCGMA package developed at our institute. This study was partially performed in the course of the GOCE project `From E?tv?s to mGal+', funded by the European Space Agency (ESA) under contract No. 14287/00/NL/DC. Correspondence to: R. Pail  相似文献   

13.
 The structure of normal matrices occurring in the problem of weighted least-squares spherical harmonic analysis of measurements scattered on a sphere with random noises is investigated. Efficient algorithms for the formation of the normal matrices are derived using fundamental relations inherent to the products of two surface spherical harmonic functions. The whole elements of a normal matrix complete to spherical harmonic degree L are recursively obtained from its first row or first column extended to degree 2L with only O(L 4) computational operations. Applications of the algorithms to the formation of surface normal matrices from geoid undulations and surface gravity anomalies are discussed in connection with the high-degree geopotential modeling. Received: 22 March 1999 / Accepted: 23 December 1999  相似文献   

14.
Gravitational perturbation theory for intersatellite tracking   总被引:7,自引:0,他引:7  
 An analytical gravitational perturbation theory for the intersatellite tracking range and range-rate measurement between two satellites is developed. The satellite-to-satellite tracking (SST) range data measure the difference between the position perturbations of two satellites along the direction of the intersatellite range. The SST range-rate data measure the difference between the velocity perturbations along the direction of the intersatellite range, and the difference of the position perturbation along the direction perpendicular to the intersatellite range (cross-range). The SST range and range rate depend on different orbital excitations for mapping the gravity field. For the Gravity Recovery and Climate Experiment (GRACE), approximately 97% of the geopotential coefficient pairs produce perturbations with a root-mean-square larger than 1 m on the range and 0.1 m/sec on the range rate based on the EGM96 gravity field truncated at degree and order 140. Results in this study showed that ocean tides produce significant perturbations in the range and range-rate measurements. An ocean tide field with a higher degree and order (>70) is required to model the ocean tide perturbations on the intersatellite range and range-rate measurement. Received: 17 May 2000 / Accepted: 3 September 2001  相似文献   

15.
 It is suggested that a spherical harmonic representation of the geoidal heights using global Earth gravity models (EGM) might be accurate enough for many applications, although we know that some short-wavelength signals are missing in a potential coefficient model. A `direct' method of geoidal height determination from a global Earth gravity model coefficient alone and an `indirect' approach of geoidal height determination through height anomaly computed from a global gravity model are investigated. In both methods, suitable correction terms are applied. The results of computations in two test areas show that the direct and indirect approaches of geoid height determination yield good agreement with the classical gravimetric geoidal heights which are determined from Stokes' formula. Surprisingly, the results of the indirect method of geoidal height determination yield better agreement with the global positioning system (GPS)-levelling derived geoid heights, which are used to demonstrate such improvements, than the results of gravimetric geoid heights at to the same GPS stations. It has been demonstrated that the application of correction terms in both methods improves the agreement of geoidal heights at GPS-levelling stations. It is also found that the correction terms in the direct method of geoidal height determination are mostly similar to the correction terms used for the indirect determination of geoidal heights from height anomalies. Received: 26 July 2001 / Accepted: 21 February 2002  相似文献   

16.
Improvements in height datum transfer expected from the GOCE mission   总被引:1,自引:1,他引:1  
 One of the aims of the Earth Explorer Gravity Field and Steady-State Ocean Circulation (GOCE) mission is to provide global and regional models of the Earth's gravity field and of the geoid with high spatial resolution and accuracy. Using the GOCE error model, simulation studies were performed in order to estimate the accuracy of datum transfer in different areas of the Earth. The results showed that with the GOCE error model, the standard deviation of the height anomaly differences is about one order of magnitude better than the corresponding value with the EGM96 error model. As an example, the accuracy of the vertical datum transfer from the tide gauge of Amsterdam to New York was estimated equal to 57 cm when the EGM96 error model was used, while in the case of GOCE error model this accuracy was increased to 6 cm. The geoid undulation difference between the two places is about 76.5 m. Scaling the GOCE errors to the local gravity variance, the estimated accuracy varied between 3 and 7 cm, depending on the scaling model. Received: 1 March 2000 / Accepted: 21 February 2001  相似文献   

17.
 The traditional remove-restore technique for geoid computation suffers from two main drawbacks. The first is the assumption of an isostatic hypothesis to compute the compensation masses. The second is the double consideration of the effect of the topographic–isostatic masses within the data window through removing the reference field and the terrain reduction process. To overcome the first disadvantage, the seismic Moho depths, representing, more or less, the actual compensating masses, have been used with variable density anomalies computed by employing the topographic–isostatic mass balance principle. In order to avoid the double consideration of the effect of the topographic–isostatic masses within the data window, the effect of these masses for the used fixed data window, in terms of potential coefficients, has been subtracted from the reference field, yielding an adapted reference field. This adapted reference field has been used for the remove–restore technique. The necessary harmonic analysis of the topographic–isostatic potential using seismic Moho depths with variable density anomalies is given. A wide comparison among geoids computed by the adapted reference field with both the Airy–Heiskanen isostatic model and seismic Moho depths with variable density anomaly and a geoid computed by the traditional remove–restore technique is made. The results show that using seismic Moho depths with variable density anomaly along with the adapted reference field gives the best relative geoid accuracy compared to the GPS/levelling geoid. Received: 3 October 2001 / Accepted: 20 September 2002 Correspondence to: H.A. Abd-Elmotaal  相似文献   

18.
Fast spherical collocation: theory and examples   总被引:2,自引:4,他引:2  
 It has long been known that a spherical harmonic analysis of gridded (and noisy) data on a sphere (with uniform error for a fixed latitude) gives rise to simple systems of equations. This idea has been generalized for the method of least-squares collocation, when using an isotropic covariance function or reproducing kernel. The data only need to be at the same altitude and of the same kind for each latitude. This permits, for example, the combination of gravity data at the surface of the Earth and data at satellite altitude, when the orbit is circular. Suppose that data are associated with the points of a grid with N values in latitude and M values in longitude. The latitudes do not need to be spaced uniformly. Also suppose that it is required to determine the spherical harmonic coefficients to a maximal degree and order K. Then the method will require that we solve K systems of equations each having a symmetric positive definite matrix of only N × N. Results of simulation studies using the method are described. Received: 18 October 2001 / Accepted: 4 October 2002 Correspondence to: F. Sansò  相似文献   

19.
Regional geopotential model improvement for the Iranian geoid determination   总被引:1,自引:0,他引:1  
Spherical harmonic expansions of the geopotential are frequently used for modelling the earth’s gravity field. Degree and order of recently available models go up to 360, corresponding to a resolution of about50 km. Thus, the high degree potential coefficients can be verified nowadays even by locally distributed sets of terrestrial gravity anomalies. These verifications are important when combining the short wavelength model impact, e.g. for regional geoid determinations by means of collocation solutions. A method based on integral formulae is presented, enabling the improvement of geopotential models with respect to non-global distributed gravity anomalies. To illustrate the foregoing, geoid computations are carried out for the area of Iran, introducing theGPM2 geopotential model in combination with available regional gravity data. The accuracy of the geoid determination is estimated from a comparison with Doppler and levelling data to ±1.4m.  相似文献   

20.
 Considering a GPS satellite and two terrestrial stations, two types of equations are derived relating the heights of the two stations to the measured data (frequency ratio or clock rate differences) and the coordinates and velocity components of all three participating objects. The potential possibilities of using such relations for the determination of heights (in terms of geopotential numbers or orthometric heights) are discussed. Received: 6 December 2000 / Accepted: 9 July 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号