首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The magnetic fabric of rocks and sediments is most commonly characterized in terms of the anisotropy of low-field magnetic susceptibility (AMS). However, alternative methods based on remanent magnetization (measured in the absence of a magnetic field) rather than induced magnetization (measured in the applied field) have distinct advantages for certain geological applications. This is particularly true for; (1) adjunct studies in paleomagnetism, in order to assess the fidelity with which a natural remanence records the paleofield orientation; (2) studies of weakly magnetic or weakly deformed rocks, for which susceptibility anisotropy is very difficult to measure precisely; and (3) quantitative applications such as strain estimation. The fundamental differences between susceptibility and remanence (and their respective anisotropies) are due to several factors: (1) susceptibility arises from all of the minerals present in a sample, whereas remanence is carried exclusively by a relatively small number of ferromagnetic minerals; (2) ferromagnetic minerals are generally more anisotropic than para- and diamagnetic minerals; (3) for ferromagnetic minerals, remanence is inevitably more anisotropic than susceptibility; and (4) a number of common minerals, including single-domain magnetites, possess an inverse anisotropy of susceptibility, i.e., they tend to have minimum susceptibility parallel to the long axis of an individual particle; remanence is immune to this phenomenon. As a consequence of all these factors, remanence anisotropy may generally provide a better quantitative estimate of the actual distribution of particle orientations in a rock sample.Contribution number 9102 of the Institute for Rock Magnetism, University of Minnesota.  相似文献   

2.
Measurements of the anisotropy of magnetic susceptibility (AMS) of natural lavas have shown that AMS varies with depth within a lava flow. We have investigated the reasons for such variation by studying the effects of temperature and strain rate on the AMS of recent lava in the laboratory. Samples of lava from Kilauea were melted and subjected to a range of strain rate and cooling histories. The results show that the degree of anisotropy is a function of both the thermal and shearing history of a sample. High degrees of anisotropy were found only in samples that were deformed at temperatures close to those encountered during eruption and then rapidly quenched. Lavas subjected to similar shear stresses at high temperatures had low degrees of anisotropy if allowed to cool down slowly without further deformation. Additionally, lava subjected to complex shearing yield a lower degree of anisotropy even when high strain rates were imposed on it. These results lead to the conclusion that only the last phase of deformation is detectable using AMS and that high strain rates will not result in high degrees of anisotropy if either deformation ends while lava is still fluid or if the orientation of the maximum shear stress varies with time. The relation between the orientation of the principal susceptibilities and that of shear is less sensitive to variation on shear with time. Consequently, flow directions can be inferred confidently with this type of measurements.  相似文献   

3.
Twenty-eight parameters used to characterize measurements of the anisotropy of magnetic susceptibility are compared theoretically in this work by introducing the concept of the field of susceptibility tensors, which allows the representation of parameters as families of lines in a plane. It is demonstrated that the foliation and lineation parameters are but a special case of the shape parameters, implying that the resolution of these two rock fabric elements using AMS measurements alone is more an artifact of the numerical range of definition of some parameters than a quantification of two physically independent features. Also, it is shown that parameters presumably of the same type do not necessarily yield equivalent interpretation of results in a qualitative sense, and therefore, caution should be strongly exercised when parameters are to be selected. Paramters quantifying the degree of anisotropy are, in general, equivalent to each other because of the very small departure observed in natural rocks from the isotropic case. However, a final consideration of the possible ability to differentiate rock types and a convenient range of values allowing expression of the degree of anisotropy in a well-defined percentage are pointed out as the main factors to be considered before selecting one parameter within this class.  相似文献   

4.
Abstract   Magnetic susceptibility and the anisotropy of magnetic susceptibility were measured on an 800-cm-thick succession of cumulate gabbro in the Sadm area of the Oman ophiolite. The section contained three distinct cumulate units. The susceptibility tends to decrease upward in each from a melanocratic layer (several tens of centimeters thick) to a leucocratic layer (a few meters thick). The susceptibility decreases in accordance with the decreasing number of magnetite grains, which are the alteration product mainly of olivine minerals. This suggests the cyclic downward accumulation of olivine in the cumulate gabbro. The apparent strain deduced from the patterns of magnetic and grain fabrics was the result mostly of simple shear, so that the layering of gabbro is understood to be formed primarily by a crystal cumulus process followed by simple shear deformation.  相似文献   

5.

风成黄土是陆地上分布最广泛的沉积物之一,记载了各种古气候演化信息.目前巴基斯坦的黄土研究甚少,磁化率与气候对应的变化机制研究尚未开展.本文对位于巴基斯坦印度河平原Bahawalpur地区新发现的黄土-古土壤剖面进行系统的岩石磁学研究,结合粒度和漫反射光谱(DRS)数据,讨论巴基斯坦黄土的磁化率变化机制.实验结果显示:Bahawalpur (BH)剖面黄土层主要的载磁矿物为磁铁矿,同时含有少量磁赤铁矿和针铁矿,磁性颗粒以原生的MD和PSD颗粒为主.相对于黄土层,古土壤层则是以针铁矿为主,含有顺磁性矿物和少量磁铁矿.BH剖面磁化率与成土作用关系和中国黄土高原典型剖面相反,磁化率的变化可能存在一个阈值12.8×10-8m3·kg-1,在阈值之上,强磁性矿物(磁铁矿、磁赤铁矿)占主导;阈值之下,以弱磁性矿物(主要是针铁矿)为主,这种磁性矿物的转变可能导致磁化率降低.本文可为今后利用磁化率解读该地区地层蕴含的古气候信息提供新线索.

  相似文献   

6.
Strain analyses for the Shuanghe pluton show that the main strain planes suffered distinct deformation. The main strain value (XZ) is up to 1.59-2.18, and the value of Flinn index (K) ranges from 0.11 to 0.82. Anisotropy of magnetic susceptibility (AMS) measurements reveal that the orientations of the magnetic foliation and lineation gently dip SE, consistent with the macroscopic foliation of the pluton. The value of anisotropy degree (P) ranges from 1.109 to 1.639, and the shape parameter (7) from 0.079 to 0.534. These studies prove that the pluton was deformed under strong compression. Quartz c-axis textures, defined by monoclinic or triclinic asymmetry, usually developed the high maxima paralleling the b-axis, which is defined by the developed in the high-ultrahigh pressure rocks (UHP) which were captured in the pluton or country rocks. It is concluded that the Shuanghe pluton emplaced under regional compression slightly after the formation of UHP, and it is characterized by synkinematic granitic deformation.  相似文献   

7.
Summary The changes of magnetic anisotropy under pressure were studied on a set of rocks with marked macroscopic stratification, collected from the Rjvíz borehole. The anisotropy parameters are relatively very stable under directional pressure, acting parallel with the rocks' bedding, and, on the contrary, significantly unstable under pressure acting perpendicular to the bedding. Systematically different magnitudes of stress sensitivity coefficients, , for parallel directional susceptibility were observed in both cases in the same types of rocks. The main cause is probably the different capability of transferring external stress to ferrimagnetics via the stratified non-magnetic matrix. With regard to magnetomechanical phenomena, therefore, a singel value of the stress sensitivity coefficient is insufficient to characterize rocks with a markedly anisotropic matrix.  相似文献   

8.
The anisotropy of magnetic susceptibility (AMS) within the Rayleigh Law range was investigated theoretically, using mathematical modelling. It was revealed that the orientations of the principal susceptibilities and the shape parameter vary with field so weakly that these variations can be regarded as negligible from the practical point of view. The degree of AMS increases with field according to the degree of anisotropy of the initial susceptibility used and according to the intensity of susceptibility change with field of the mineral considered. The degree of AMS calculated using linear theory is very near to the degree of AMS following from the analysis of AMS within the Rayleigh Law range. If it is desirable to correct the field-dependent degree of AMS, a simple technique is suggested based on measurement of the AMS in two fields. fhrouda@agico.cz  相似文献   

9.
In a number of AMS studies, the presence and deciphering of composite magnetic fabrics is of major importance for a correct interpretation of the data. On the basis of several examples from intrusive rocks (diorites and dolerites) we show that the use of laboratory heatings can help to extract at least one component of the composite magnetic fabrics usually present. The procedure includes comparison of the fabrics measured after stepwise laboratory heating with the fabrics determined by tensor difference and by linear regression analysis. In the diorite samples, the measured AMS results from the superimposition of different component fabrics and does not correspond exactly to any of these fabrics. In these dykes, isolated magnetic fabric during thermal treatment corresponds to that of the main magnetic mineral (Ti-poor titanomaghemite) and reveals an unknown structure. In volcanic flow or doleritic dykes, a “parasitic” fabric related to late or post-magmatic evolution superimposed to the flow fabric can produce important scattering of the AMS principal directions. Decomposition of magnetic fabric during thermal treatment allows isolation of the flow fabric.  相似文献   

10.
In the absence of eyewitness reports or clear sedimentary structures, it can be difficult to interpret tsunami deposits or reconstruct tsunami inundation patterns. The emplacement dynamics of two historical tsunami deposits were investigated at seven transects in Okains Bay, New Zealand, using a combined geospatial, geomagnetic and sedimentological approach. The tsunami deposits are present as layers of sand and silt intercalated between soils and become finer and thinner with distance inland. The deposits are attributed to the 1960 and possibly the 1868 tsunamis, based on radiometric dating and correlation with historical records. Measurements of Magnetic Fabric (MF: Anisotropy of Magnetic Susceptibility) and particle size were used to reconstruct the evolution of flow dynamics laterally and vertically. A combination of statistical methods, including spatial autocorrelation testing, Spearman's rank order correlation, Principal Component Analysis (PCA) and K‐means cluster analysis, was applied to examine relationships between MF parameters and sediment texture, and infer depositional hydrodynamics. Flow patterns deduced from MF show the estuary channel acted as a conduit for inundation, with flow commonly aligned sub‐perpendicular to the estuary bed. MF and sediment data suggest deposition occurred from settling during laminar flow. Evidence of both uprush and backwash deposition, as well as wave reflection from infrastructure, was found. Statistical analysis of data showed significant relationships between grain size parameters and MF parameters associated with flow speed and magnetic fabric type. PCA and cluster analysis differentiated samples into two primary hydrodynamic groups: (1) samples deposited from laminar flow; and (2) samples deposited close to the limit of inundation, which includes samples deposited further inland, those affected by flow convergence, and those in the upper part of tsunami deposits. This approach has potential as a tool for reconstructing hydrodynamic conditions for palaeotsunamis and by combining spatial and statistical analyses, large‐scale investigations can be more easily performed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Statistical analysis of the magnetic fabric of samples from several successive lava flows emplaced under similar conditions can allow determination of the mean flow direction when magnetic fabric data from individual flows do not lead to reliable results. A difference between the obtained flow direction and the present dip direction indicates that the flows were tilted after emplacement. For 2 successive series of flows on the Jeanne d’Arc Peninsula presently NNW dipping, this method shows lava emplacement along a SSW–NNE direction. This indicates a gentle tilting acquired during a period of weak deformation in the whole archipelago. Additionally, the magnetic fabric data allow the reconstruction of the different conditions of emplacement of these two series of lava flows and of formation of the local thick conglomerate interbedded between these series.  相似文献   

12.
The KLY-4S Kappabridge and KLF-4A Magnetic Susceptibility Meter enable automated measurement of susceptibility variation with field in the ranges of 2–450 A/m and 5–300 A/m (in effective values), respectively. Unfortunately, the measurement accuracy decreases with decreasing field and it is not easy to decide whether the susceptibility variation at the lowest fields is natural phenomenon or results from measuring errors. To overcome this problem, the accuracies of both the above instruments were investigated experimentally using artificial specimens (mixture of pure magnetite and plaster of Paris) with variable susceptibilities ranging from 1 × 10−5 to 5 × 10−2. The complete curve of the field variation of susceptibility of each specimen was measured 10 times and the relative error was calculated for each field. In the KLY-4S Kappabridge, in specimens with susceptibilities higher than 100 × 10−6, the relative errors are lower than 3% in all fields and lower than 1% in the fields stronger than 10 A/m. In the KLF-4A Magnetic Susceptibility Meter, in relatively strongly magnetic specimens with susceptibilities 5 × 10−4 to 5 × 10−2, the relative error is less than 1.5% in the entire field range. While the former instrument is convenient for investigating almost all rock types, the latter instrument is convenient for measuring moderately and strongly magnetic specimens. To facilitate work with field variation of susceptibility curves, showing variable accuracies with field, the programme FieldVar was written. One of its options is plotting the measured data with corresponding field-variable error bars. In this way, a tool is offered for interpreting such susceptibility changes that are sound and reasonable from the point of view of measuring accuracy.  相似文献   

13.
We studied the anisotropy of magnetic susceptibility (AMS) of 22 basaltic flow units, including S-type pahoehoe, P-type pahoehoe, toothpaste lava and 'a' emplaced over different slopes in two Hawaiian islands. Systematic differences occur in several aspects of AMS (mean susceptibility, degree of anisotropy, magnetic fabric and orientation of the principal susceptibilities) among the morphological types that can be related to different modes of lava emplacement. AMS also detects systematic changes in the rate of shear with position in a unit, allowing us to infer local flow direction and some other aspects of the velocity field of each unit. 'A' flows are subject to stronger deformation than pahoehoe, and also their internal parts behave more like a unit. According to AMS, the central part of pahoehoe commonly reveals a different deformation history than the upper and lower extremes, probably resulting from endogenous growth.  相似文献   

14.
Vertical variations in magnetic fabric and paragenesis of the ferrimagnetic minerals for a virtually upright dyke of the Altenberg syenogranite porphyry were investigated using profile data of borehole E-16 to a depth of 922.7 m (Eastern Kru né hory Mts., NW Bohemia). It was revealed that this dyke likely consists of two magma pulses indicated both by magnetic fabric and by opaque mineralogy. In most of the profile, the magnetite grains are oriented parallel to the sub-vertical dyke. Only at the base of the upper magma pulse, in a depth interval of 200–400 m, are these grains oriented sub-horizontally being thus perpendicular to the dyke walls. This pattern can be interpreted as a consequence of a static vertical compaction of the magma of the basal portions of the upper pulse due to the pressure of the ascending lower pulse. The large planes of the ferrimagnetic minerals are oriented perpendicular to the shortening direction.  相似文献   

15.
南海北部陆区岩石磁化率的矿物学研究   总被引:3,自引:3,他引:3       下载免费PDF全文
基于2517套现场测量资料,245块岩石样品的体积磁化率测量和详细的岩矿鉴定及硅酸盐全分析结果,结合单矿物磁化率特征及各岩石之间的对比研究,发现岩石磁化率主要受组成岩石的矿物磁化率控制.即岩石磁化率(κr)与组成岩石各个矿物磁化率(κi)及其体积含量(Ci)成正比.例如侵入岩磁化率,κr= -5.68×102Cq +2.86×102Cf +3.28×102Ca +1.18×104Cb +1.27×104Cam +5.35×105Cm;其中多项式各项的系数是与该矿物磁化率值成正比的常数,C为该矿物在该岩石中的体积含量,依次为石英q(κ=-1.3)、斜长石f(κ=0.01)、碱性长石a(κ=0.01)、黑云母b(κ=100)、角闪石am(κ=80)和磁铁矿m(κ=100000).对区内火山岩、侵入岩、沉积岩和变质岩磁化率研究发现,其他三类岩石磁化率与其组成矿物磁化率的关系和侵入岩的情况相同,矿物对岩石磁化率的贡献顺序为铁磁性矿物>顺磁性矿物>逆磁性矿物.其中,火成岩磁化率变化大,主要取决于岩石中磁铁矿、角闪石和黑云母的含量;沉积岩多为无磁性、弱磁性,其磁化率主要由黑云母、碱性长石及岩屑提供;变质岩的磁性变化较大,从无磁性到极强磁性,主要决定于其原岩的类型,副变质岩(沉积原岩)磁化率类似于沉积岩类,正变质岩(火成原岩)类似于火成岩类;石英岩和碳酸盐岩是所有岩石中磁性最弱的.岩石蚀变会对其磁化率产生显著性影响,通常,黑云母、角闪石等铁镁硅酸盐矿物经蚀变会因形成含铁质氧化物而使岩石的磁化率升高;长石等弱顺磁矿物的粘土矿化、绢云母化会升高磁化率而碳酸盐化、高岭土化作用会使磁化率降低;岩石的绿泥石化会增加磁化率;含铁磁性矿物的岩石风化时会因高磁性组分破碎、流失而致使岩石的磁化率降低.从岩石磁化率与其组成矿物的磁化率之间的关系,推测地质体的总磁化率与构成地质体各个岩石的磁化率-体积含量之间也应存在类似关系.  相似文献   

16.
The craton is a long-lived stable geologic unit on the Earth's surface. However, since the Mesozoic, the North China Craton(NCC) experienced large-scale lithospheric removal, the fundamental change of physical and chemical characteristics of the lithospheric mantle, widely distributed crustal deformation, and extensive magmatism. This complex evolution contrary to other cratons is called the NCC destruction. Widespread magmatism in the eastern NCC is an important response to the lithospheric removal at depth and crustal deformation on the surface. The plutons emplace under a tectonic context and therefore record the information of the tectonics; especially, the anisotropy magnetic susceptibility(AMS) pattern of the pluton was acquired with the influence of regional stress. In the past fifteen years, about 22 plutons intruding during the different periods from the Late Triassic to the late stage of the Early Cretaceous have been studied with AMS. The emplacement mechanisms of plutons and the contemporary tectonic setting were discussed to constrain their relationship with the NCC destruction in different stages of magmatism. As a result, the Late Triassic, Early Jurassic, and Late Jurassic plutons exhibit consistent N(E)-S(W)trending magnetic lineations. The early stage of Early Cretaceous plutons display NW-SE trending magnetic lineations, while the late stage of Early Cretaceous plutons show magnetic lineations with various orientations. Combined with previous studies, it is concluded that the emplacements of the plutons intruding in these three stages were controlled by weak N(E)-S(W) trending extension, regional NW-SE trending extension, and weak extension in the shallow crustal level, respectively. The transformation of regional extension from the N(E)-S(W) to the NW-SE direction was accompanied by a strain-increasing tendency. The extensional tectonics in the eastern NCC was interpreted to represent the interaction between Mongol-Okhotsk belt, PaleoPacific plate, and eastern Eurasian continent.  相似文献   

17.
中国数字地震观测网络"十五"计划期间,在全国布设约40台我国自主研发的YRY-4型分量式钻孔应变仪.现已取得一批固体潮观测数据,计算M2波潮汐因子的结果表明,潮汐因子的相对精度最高达到了0.001.在此基础上,发现各观测点潮汐响应(潮汐因子)与理论模型比较有很大的离散性及有规律的方位各向异性.本文提出断层隔离是造成各台站潮汐因子偏离理论值及方位各向异性的主要原因.有限元断层地块模型应变方位响应与台站实测方位响应的一致,支持了这一观点.潮汐响应各向异性现象有望在地质构造研究、城市断层探测、地块活动微动态、地震烈度区划等研究领域发挥作用.也可为GPS等空间大地测量观测数据改进潮汐位移修正,提供参考.  相似文献   

18.
磁化率对大地电磁响应的影响研究   总被引:5,自引:0,他引:5       下载免费PDF全文
本文推导了物质的磁化率大于自由空间的情况下的二维大地电磁(MT)正演计算公式. 利用有限差分法实现了其正演计算,获得了电磁场的分布. 详细地讨论了磁化率对MT响应的影响,证实了磁化率主要影响磁场信号的同相分量,而对磁场信号的异相分量和电场信号的影响比较弱. 当磁化率κ≥0.01时,在某些低频点的视电阻率值可以增加5Ωm左右,并且随着磁化率增加,这种增加的幅度显著增大;而对阻抗相位的影响则非常小. 新的认识为高磁化率物质存在的地区观测到的MT数据解释提供一种新的研究思路.  相似文献   

19.
各类岩(矿)石的磁性差异是进行航磁资料地质解释的物理基础.为全面、系统了解甘肃敦煌—阿克塞地区岩(矿)石的磁性特征,2015—2017年在该区开展了系统的岩(矿)石的磁化率调查工作,实测物性点320处,获得有效磁化率数据10154个.对实测资料进行了详细的分类统计,分析总结了区内沉积岩、侵入岩、火山岩、变质岩、矿石及围岩等各类岩矿(石)的磁性特征,沉积岩一般呈弱或无磁性;火山岩具有中等-强磁性,可引起一定走向的磁异常;基性-超基性岩多具有强磁性,可以引起一定强度、尖锋状或带状的磁异常;中、酸性侵入岩和变质岩磁化率变化范围较大,弱磁性的一般在磁场上无异常显示,中等-强磁性的一般在磁场上表现为带状或团块状异常区;磁铁矿、磁黄铁矿等磁性矿物含量的增多,不同类型矿石磁化率由中等磁性逐渐变为极强磁性.在此基础上将实测磁化率应用于磁性地层、侵入岩圈定,探讨了磁化率与矿产之间的联系.研究结果为该地区高精度航磁资料解释提供了基础资料和参考依据.  相似文献   

20.
ntroductionTurbiditycurrentsedimentisanoutcomeofdensityflowsedimentation.Theresearchonmodernturbidilitycurentsedimentsfromde...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号