首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper presents a new CCD Bessell VRcIc light curves and photometric analysis of the newly discovered RS CVn type eclipsing binary star V1034 Her. The light curves were obtained at the Çanakkale Onsekiz Mart University Observatory in 2006. Variations of the orbital period of the system were firstly studied. The (O − C) diagram with a low range of observing time of about 20 years shows an upward parabola, which indicates a secular increase in the orbital period of the system. The light curves are generally those of detached eclipsing binaries; however, there are large asymmetries between maxima. The VRcIc light curves were analysed with two different fitting procedures: Wilson–Devinney method supplemented with a Monte Carlo type algorithm and Information Limit Optimization Technique (ILOT). Our general results find V1034 Her. as a well detached system, in which the components are filling 65% of their Roche lobes. Light curve asymmetries of the system are explained in terms of large dark starspots on the primary component. The primary star shows a long-lived spot distribution with active longitudes in the same hemisphere.  相似文献   

2.
Photometric BV light curves of BO CVn obtained in 1992 and new times of minima are presented. The primary minimum shows a transit, whereas the secondary minimum, shows an occultation. The system may be classified as an A‐type W UMa system. A complete study of minima allows one to detect a possibly increasing period by about 0.037 s/yr. This indicates that the conservative mass transfer rate from the less massive component to the more massive one is 1.57 10—10M /yr. Because of the variable period, the new ephemeris is determined for future observations. Using the Wilson‐Devinney code a simultaneous solution of the B and V light curves is also performed. The analysis shows that the system is in a contact configuration with q = 0.205 ± 0.001 and fillout factor (f) = 0.18, T1 = 7240 K (fixed), T2 = 7150± 10 K. The high orbital inclination i = 87°.54 ± 0.26 was con firmed by photometric observations of the secondary minimum.  相似文献   

3.
We present multi-colour CCD observations of the low-temperature contact binaries, V453 Mon and V523 Cas. Their light curves are modelled to determine a new set of stellar and orbital parameters. Analysis of mid-eclipse times yields a new linear ephemeris for both systems. A period decrease (dP/dt=2.3×10−7 days/yr) in V453 Mon is discovered. V523 Cas, however, is detected to show a period increase (dP/dt=9.8×10−8 days/yr) because of the mass transfer of a rate of 1.1×10−7 M yr−1, from a less massive donor. Using these findings we can determine the physical parameters of the components of V523 Cas to be M 1=0.76 (3)M , M 2=0.39 (2)M , R 1=0.74 (2)R , R 2=0.55 (2)R , L 1=0.19 (3)L , L 2=0.14 (3)L , and the distance of system as 46(9) pc.  相似文献   

4.
Summary From the early discovery in 1948 of X-rays from the Solar corona, X-ray spectroscopy has proven to be an invaluable tool in studying hot astrophysical and laboratory plasmas. Because the emission line spectra and continua from optically thin plasmas are fairly well known, high-resolution X-ray spectroscopy has its most obvious application in the measurement of optically thin sources such as the coronae of stars. In particular X-ray observations with theEINSTEIN observatory have demonstrated that soft X-ray emitting coronae are a common feature among stars on the cool side of the Hertzsprung-Russell diagram, with the probable exception of single very cool giant and supergiant stars and A-type dwarfs. Observations with the spectrometers aboardEINSTEIN andEXOSAT have shown that data of even modest spectral resolution (/ = 10–100) permit the identification of coronal material at different temperatures whose existence may relate to a range of possible magnetic loop structures in the hot outer atmospheres of these stars. The higher spectral resolution of the next generation of spectrometers aboard NASA'sAXAF and ESA'sXMM will allow to fully resolve the coronal temperature structure and to enable velocity diagnostics and the determination of coronal densities, from which the loop geometry (i.e. surface filling factors and loop lengths) can be derived. In this paper various diagnostic techniques are reviewed and the spectral results fromEINSTEIN andEXOSAT are discussed. A number of spectral simulations forAXAF andXMM, especially high-resolution iron K-shell, L-shell, and2s-2p spectra in the wavelength regions around 1.9 Å, 10 Å, and 100 Å, respectively, are shown to demonstrate the capabilities for temperature, density, and velocity diagnostics. Finally, iron K-shell spectra are simulated for various types of detectors such as microcalorimeter, Nb-junction, and CCD.  相似文献   

5.
The combination of dispersion measures of pulsars, distances from the model of Cordes & Lazio (2002) and emission measures from the WHAM survey enabled a statistical study of electron densities and filling factors of the diffuse ionized gas (DIG) in the Milky Way. The emission measures were corrected for absorption and contributions from beyond the pulsar distance. For a sample of 157 pulsars at |b | > 5. and 60° < ℓ < 360°, located in mainly interarm regions within about 3 kpc from the Sun, we find that: (1) The average volume filling factor along the line of sight and the mean density in ionized clouds are inversely correlated: ( ) = (0.0184 ± 0.0011) –1.07 ± 0.03 for the ranges 0.03 < < 2 cm–3 and 0.8 > > 0.01. This relationship is very tight. The inverse correlation of and causes the well‐known constancy of the average electron density along the line of sight. As (z ) increases with distance from the Galactic plane |z |, the average size of the ionized clouds increases with |z |. (2) For |z| < 0.9 kpc the local density in clouds n c(z ) and local filling factor f (z ) are inversely correlated because the local electron density n e(z ) = f (z )n c(z ) is constant. We suggest that f (z ) reaches a maximum value of >0.3 near |z | = 0.9 kpc, whereas n c(z ) continues to decrease to higher |z |, thus causing the observed flattening in the distribution of dispersion measures perpendicular to the Galactic plane above this height. (3) For |z | < 0.9 kpc the local distributions n c(z ), f (z ) and (z ) have the same scale height which is in the range 250 < h ≲ 500 pc. (4) The average degree of ionization of the warm atomic gas (z ) increases towards higher |z | similarly to (z ). Towards |z | = 1 kpc, (z ) = 0.24 ± 0.05 and (z ) = 0.24 ± 0.02. Near |z | = 1 kpc most of the warm, atomic hydrogen is ionized. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Two CCD epochs of light minimum and a complete R light curve of SS Ari are presented. The light curve obtained in 2007 was analyzed with the 2003 version of the W-D code. It is shown that SS Ari is a shallow contact binary system with a mass ratio q=3.25 and a degree of contact factor f=9.4%(±0.8%). A period investigation based on all available data shows that there may exist two distinct solutions about the assumed third body. One, assuming eccentric orbit of the third body and constant orbital period of the eclipsing pair, results in a massive third body with M 3=1.73M and P 3=87.0 yr. On the contrary, assuming continuous period changes of the eclipsing pair the orbital period of tertiary is 37.75 yr and its mass is about 0.278M . Both of the cases suggest the presence of an unseen third component in the system.  相似文献   

7.
We re‐discuss the evolutionary state of upper main sequence magnetic stars using a sample of Ap and Bp stars with accurate Hipparcos parallaxes and definitely determined longitudinal magnetic fields. We confirm our previous results obtained from the study of Ap and Bp stars with accurate measurements of the mean magnetic field modulus and mean quadratic magnetic fields that magnetic stars of mass M < 3 M are concentrated towards the centre of the main‐sequence band. In contrast, stars with masses M > 3 M seem to be concentrated closer to the ZAMS. The study of a few known members of nearby open clusters with accurate Hipparcos parallaxes confirms these conclusions. Stronger magnetic fields tend to be found in hotter, younger and more massive stars, as well as in stars with shorter rotation periods. The longest rotation periods are found only in stars which spent already more than 40% of their main sequence life, in the mass domain between 1.8 and 3 M and with log g values ranging from 3.80 to 4.13. No evidence is found for any loss of angular momentum during the main‐sequence life. The magnetic flux remains constant over the stellar life time on the main sequence. An excess of stars with large obliquities β is detected in both higher and lower mass stars. It is quite possible that the angle β becomes close to 0. in slower rotating stars of mass M > 3 M too, analog to the behaviour of angles β in slowly rotating stars of M < 3 M. The obliquity angle distribution as inferred from the distribution of r ‐values appears random at the time magnetic stars become observable on the H‐R diagram. After quite a short time spent on the main sequence, the obliquity angle β tends to reach values close to either 90. or 0. for M < 3 M. The evolution of the obliquity angle β seems to be somewhat different for low and high mass stars. While we find a strong hint for an increase of β with the elapsed time on the main sequence for stars with M > 3 M, no similar trend is found for stars with M < 3 M. However, the predominance of high values of β at advanced ages in these stars is notable. As the physics governing the processes taking place in magnetised atmospheres remains poorly understood, magnetic field properties have to be considered in the framework of dynamo or fossil field theories. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
This paper corrects and completes a previous study of the shape of the extinction curve in the visible and the value of RV. A continuous visible/infrared extinction law proportional to 1/λp with p close to 1 (± 0.4) is indistinguishable from a perfectly linear law (p = 1) in the visible within observational precision, but the shape of the curve in the infrared can be substantially modified. Values of p slightly larger than 1 would account for the increase of extinction (compared to the p = 1 law) reported for λ > 1 μ m and deeply affect the value of RV. In the absence of gray extinction RV must be 4.04 if p = 1. It becomes 3.14 for p = 1.25, 3.00 for p = 1.30, and 2.76 for p = 1.40. Values of p near 1.3 are also attributed to extinction by atmospheric aerosols, which indicates that both phenomena may be governed by similar particle size distributions. A power extinction law may harmonize visible and infrared data into a single, continuous, and universal interstellar extinction law (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The recent VIIth Catalogue of Galactic Wolf-Rayet Stars lists 227 Population I WR stars, comprising 127 WN, 87 WC, 10 WN/WC and 3 WO stars. Additional discoveries bring the census to 234 WR stars. A re-determination of the optical photometric distances and the galactic distribution of WR stars shows in the solar neighbourhood a projected surface density of 2.7 WR stars per kpc2, a N WC/N WN number ratio of 1.3, and a WR binary frequency of 40 %.The galactocentric distance (R WR) distribution per subtype showsR WN and R WC decreasing with WN and WC subtypes. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

10.
We study the relationship between the brightness (I) and magnetic field (B) distributions of sunspots using 272 samples observed at the San Fernando Observatory and the National Solar Observatory, Kitt Peak, whose characteristics varied widely. We find that the I – B relationship has a quadratic form for the spots with magnetic field less than about 2000 G. The slope of the linear part of the I – B curve varies by about a factor of three for different types of spots. In general the slope increases as the spot approaches disk center. The I – B slope does not have a clear dependency on the spot size but the lower limit appears to increase as a function of the ratio of umbra and penumbra area. The I – B slope changes as a function of age of the sunspots. We discuss various sunspot models using these results.  相似文献   

11.
A study of the evolution of 377 rich ACO clusters with redshift z < 0.2 is presented. The data concerning galaxies in the investigated clusters were obtained using FOCAS packages applied to Digital Sky Survey I. The 377 galaxy clusters constitute a statistically uniform sample to which visual galaxy/star reclassifications were applied. Cluster shape within 2.0 h–1 Mpc from the adopted cluster centre (the mean and the median of all galaxy coordinates, the position of the brightest and of the third brightest galaxy in the cluster) was determined through its ellipticity calculated using two methods: the covariance ellipse method (hereafter CEM) and the method based on Minkowski functionals (hereafter MFM). We investigated ellipticity dependence on the radius of circular annuli, in which ellipticity was calculated. This was realized by varying the radius from 0.5 to 2 Mpc in steps of 0.25 Mpc. By performing Monte Carlo simulations, we generated clusters to which the two ellipticity methods were applied. We found that the covariance ellipse method works better than the method based on Minkowski functionals. We also found that ellipticity distributions are different for different methods used. Using the ellipticity‐redshift relation, we investigated the possibility of cluster evolution in the low‐redshift Universe. The correlation of cluster ellipticities with redshifts is undoubtly an indicator of structural evolution. Using the t‐Student statistics, we found a statistically significant correlation between ellipticity and redshift at the significance level of α = 0.95. In one of the two shape determination methods we found that ellipticity grew with redshift, while the other method gave opposite results. Monte Carlo simulations showed that only ellipticities calculated at the distance of 1.5 Mpc from cluster centre in the Minkowski functional method are robust enough to be taken into account, but for that radius we did not find any relation between e and z. Since CEM pointed towards the existence of the e (z) relation, we conclude that such an effect is real though rather weak. A detailed study of the e (z) relation showed that the observed relation is nonlinear, and the number of elongated structures grows rapidly for z > 0.14 (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Summary Binary stars are the main source of fundamental data on stellar masses and radii (M, R). Considerable progress has been made in recent years in the quality and quantity of such data, and stellar masses and radii of high accuracy have led to a number of qualitatively new and interesting results on the properties and evolution of normal stars. This paper reviews the current status of fundamentalM andR determinations which (i) have errors 2%, the limit for non-trivial results in many applications, and (ii) can be presumed valid for single stars. These two conditions limit the discussion to data fromdetached, doublelined eclipsing binary systems.After a brief discussion (Sect. 2) of the main tests for accuracy and consistency which must be met for observational data to be included in the sample, data for 45 binary systems (90 single stars) are presented in Sect. 3 (Table 1 and Figs. 2–5). Spectral types are O8-M1 on the main sequence, with only two stars clearly in the red-giant region. From the review by Popper (1980), data for only 6 systems survive unchanged in the present list, while improved data are given for 18 systems; 21 systems are new additions. Broadband colours, effective temperatures, and luminosities are also given, but are scale-dependent and considerably less reliably determined thanM andR.The observed ranges inM andR for a given colour far exceed the observational errors, primarily due to evolutionary effects within the main sequence. For this reason, single-parameter relations used to predictM andR for single stars are limited to an accuracy of some ±15% inM and ±50% inR, basically independent of the number and accuracy of the data used to establish the relations. Two-parameter calibrations are discussed (Sect. 4) which can eventually reduce these errors to & 5% in bothM andR. At this level, abundance effects become significant and presumably account for the residual scatter.Comparison of the data with stellar evolution models is the topic of Sect. 5. Characteristic features of the data which are crucial in such work are emphasized, rather than attempts to prove the validity of any particular set of models. Already fromM andR alone, some significant constraints can be derived (Fig. 4). When bothM, R, andT e are known, the initial helium abundanceY can be estimated if the metal-abundance parameter Z is assumed or determined. Studies in which binaries with accurate values ofM, R, and Z are fit by models calculated for the precise observed masses, and withY and mixing length constrained to solar values, provide the most stringent tests of the models. Probing further model refinements such as convective overshooting requires full use of the potential of the data. For example, models may yield general main-sequence limits which are consistent with the observations, but still be unable to fit any single system to the precision of the data. Conditions for critical, informative tests are discussed. Tidal effects in binaries are briefly discussed in Sect. 6. As tidal forces are extremely sensitive to the dimensions and internal structure of the stars, the present sample is well suited for such studies. Recent success in matching computed and observed apsidal-motion parameters for early-type binaries is mentioned. Finally, main priorities for future work are outlined.  相似文献   

13.
A simple, semi-analytic method is developed for obtaining the orbits of galaxies undergoing fast collisions in which the galaxies are represented by Plummer models. The results are found to agree fairly well with those of N-body simulations.A simple formula for obtaining the angle of deflection is deduced. The maximum angle of deflection is 180° forV p/V esc(p)=1.00, about 36° forV p/V esc(p)=1.50, and about 18° forV p/V esc(p)=2.00, whereV p is the velocity at closest approachp, andV esc(p) is the parabolic velocity of escape atp. The angle of deflection of a pair of colliding elliptical galaxies without halos is about twice that for a pair of galaxies with halos for the same relative velocity at infinite separation.  相似文献   

14.
This paper presents charge-couple device (CCD) photometric observations for the eclipsing binary AW UMa. The V-band light curve in 2007 was analyzed using the 2003 version of the Wilson–Devinney code. It is confirmed that AW UMa is a total eclipsing binary with a higher degree of contact f=80.2% and a lower mass ratio of q=0.076. From the (OC) curve, the orbital period shows a continuous period decrease at a rate of dP/dt=−2.05×10−7 d yr−1. The long-term period decrease suggested that AW UMa is undergoing the mass transfer from the primary component to the secondary one, accompanied by angular momentum loss due to mass outflow L 2. Weak evidence indicates that there exists a cyclic variation with a period of 17.6 yr and a small amplitude of A=0. d 0019, which may be attributed to the light-time effect via the third body. If the existence of an additional body is true, it may remove a great amount of angular momentum from the central system. For this kind of contact binary, as the orbital period decreases, the shrinking of the inner and outer critical Roche lobes will cause the contact degree f to increase. Finally, this kind of binary will merge into a single rapid-rotation star.  相似文献   

15.
The temporal evolution of temperature in a dissolving granule and in an adjacent intergranular space is presented. The semi‐empirical evolutionary models have been calculated using an inversion method applied to 4‐min time series of Stokes I spectral line profiles. The models are presented in the form of the functional dependence of temperature T(log τ5, t) on optical depth τ5 at 500 nm and time t. The observed disappearance of the granule is accompanied with overall cooling of the granular photosphere. Temperature changes greater than 100 K have been found in deeper (log τ5 ≥ 0) and upper layers (log τ5 ≤ –2) whereas the intermediate layers are thermally stable. The intergranular space, which is 2 arcsec off the granule, keeps the temperature structure of the layers from log τ5 = 0.5 to log τ5 = –2 without global evolutionary changes except short‐term and spatially confined heating. Finally, the significant temperature changes in the upper layers (log τ5 ≤ 2.5) observed during the time interval of 4 min are found to be typical for the granular and intergranular photosphere.  相似文献   

16.
The spectral energy distributions between λ 3700 Å and λ 8100 Å of the binary systems COU1289 and COU1291 have been measured with the Carl‐Zeiss‐Jena 1 m telescope of the Special Astrophysical Observatory. Their B, V, R magnitudes and BV colour indices were computed and compared with earlier investigations. Model atmospheres of both systems were constructed using a grid of Kurucz blanketed models, their spectral energy distributions in the continuous spectrum were computed and compared with the observational ones. The model atmosphere parameters for the components of COU1289 were derived as: T aeff = 7100 K, T beff = 6300 K, log g a = 4.22, log g b = 4.22, R a = 1.50 R, R b = 1.40 R, and for the components of COU1291 as: T aeff = 6400 K, T beff = 6100 K, log g a = 4.20, log g b = 4.35, R a = 1.47 R, R b = 1.12 R. The spectral types of both components of the system COU1289 were concluded as F1 and F7, and of the system COU1291 as F6 and F9. Finally the formation and evolution of the systems were discussed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We present relative astrometry and differential photometry measurements for a sample of nearby southern orbital binaries making use of the technique of Adaptive Optics. The observations were made in December 2000, with the ADONIS camera mounted at the 3.6‐m ESO telescope from La Silla Observatory, equipped with the broad‐band near‐infrared filters (J ‐, H ‐, K ‐passbands). Our sample contains stars which do not fit very well the empirical mean mass‐luminosity relation (according to our previous study), but for which accurate parallaxes (determined by the Hipparcos satellite) and high‐quality orbits were available thanks to many previous efforts. We derived accurate positions and J, H, K magnitudes of the individual components of those binaries. The individual stellar components have near‐infrared colour indices well grouped in those plots and are comparable to standard single stars. The data reduction procedure used for deriving those results is described in detail. It is based on a least‐squares fit of Moffat‐Lorentz profiles in direct imaging for well‐resolved systems and on Fourier analysis for very close pairs. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We present the first long‐term Johnson UBVR observations and comprehensive photometric analysis of the W UMa‐type eclipsing binary V2612 Oph. Observations in the time interval between 2003 and 2009 enabled us to reveal the seasonal and long‐term variations of the light curve. Hence, we found that the mean brightness level of the light curve shows a variation with a period of 6.7 years. Maximum and minimum brightness levels of the light curve exhibit a variation from year to year which we attribute to a solar‐like activity. The OC variation of eclipse timings of the system shows a decreasing parabolic trend and reveals a period decrease at a rate of P = 6.27×10‐7 day yr‐1 with an additional low‐amplitude sinusoidal variation that has a similar period as the long‐term brightness variations. Our light curve analysis shows that the system is a W‐subtype W UMa eclipsing binary. We calculated masses and radii of the primary and secondary components as M1 = 1.28 M, M2 = 0.37 M and R1 = 1.31 R, R2 = 0.75 R, respectively. The derived absolute photometric parameters allow us to calculate a distance of 140 pc, which confirms that the system is a foreground star in the sky field of the Galactic open cluster NGC 6633. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Interstellar and atmospheric extinctions redden the observational photometric data and they should be handled rigorously. This paper simulates the effect of reddening for the modest case of two main sequence T 1 = 6500 K and T 2 = 5500 K components of a detached eclipsing binary system. It is shown that simply subtracting a constant from measured magnitudes (the approach often used in the field of eclipsing binaries) to account for reddening should be avoided. Simplified treatment of the reddening introduces systematics that reaches ∼0.01 mag for the simulated case, but can be as high as ∼0.2 mag for, e.g., B8 V-K4 III systems. With rigorous treatment, it is possible to uniquely determine the colour excess value E(BV) from multi-colour photometric light curves of eclipsing binaries.  相似文献   

20.
We present the first results of our X‐shooter observations for a sample of dwarf (–17 < MB < –15) galaxies in nearby (0.04 < z < 0.07) galaxy clusters. This luminosity range is fundamental to trace the evolution of higher‐z star‐forming cluster galaxies down to the present day, and to explore the galaxy scaling relations of early‐type galaxies over a broad mass range. Thanks to high resolution and availability of several lines we can derive the velocity dispersion of the galaxies in this range of luminosities and we begin the construction of the fundamental plane of faint early‐type galaxies (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号