首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Solar active regions are distinguished by their strong magnetic fields. Modern local helioseismology seeks to probe them by observing waves which emerge at the solar surface having passed through their interiors. We address the question of how an acoustic wave from below is partially converted to magnetic waves as it passes through a vertical magnetic field layer where the sound and Alfvén speeds coincide (the equipartition level), and find that (i) there is no associated reflection at this depth, either acoustic or magnetic, only transmission and conversion to an ongoing magnetic wave; and (ii) conversion in active regions is likely to be strong, though not total, at frequencies typically used in local helioseismology, with lower frequencies less strongly converted. A simple analytical formula is presented for the acoustic-to-magnetic conversion coefficient.  相似文献   

2.
On the basis of the catastrophe model developed by Isenberg et al., we have used the NIRVANA code to perform the magnetohydrodynamics (MHD) numerical experiments to look into the various behaviors of the coronal magnetic configuration that includes a current-carrying flux rope for modelling the prominence levitation in the corona. These behaviors include the evolution of the equilibrium height of magnetic flux rope with the background magnetic field, the corresponding interior equilibrium of magnetic flux rope, the dynamic properties of magnetic flux rope after the system loses equilibrium, as well as the impact of the reference radius on the equilibrium height of magnetic flux rope. In our calculations, an empirical model of the coronal density distribution given by Sittler & Guhathakurta is used, and the physical dissipation is included. Our experiments show that a deviation between the simulated equilibrium height of magnetic flux rope and the theoretical result of Isenberg et al. exists, but it is not apparent, and the evolutionary features of the two results are similar. If the magnetic flux rope is initially located at the stable branch of the theoretical equilibrium curve, the magnetic flux rope will quickly reach the equilibrium position after several rounds of oscillations as a result of the self-adjustment of the system; when the system is located at the critical point it will quickly lose equilibrium and evolve to the eruptive state; the impact of the variation of reference radius on the equilibrium height of magnetic flux rope is consistent with the prediction of the theory; in the eruptive state, the kinetic properties of magnetic flux rope are consistent with the results given by the Lin-Forbes model and observation, and the fast-mode shock in front of the magnetic flux rope is observed in our experiments; furthermore, because that the dissipation is included in our numerical experiments, the energy conversion from the magnetic energy to other forms of energy is very apparent in the eruptive process.  相似文献   

3.
We have obtained 40 high-resolution circular spectropolarimetric measurements of 12 slowly pulsating B (SPB) stars, eight β Cephei stars and two Be stars with the Echelle Spectropolarimetric Device for the Observation of Stars at CFHT (ESPaDOnS) and Narval spectropolarimeters. The aim of these observations is to evaluate recent claims of a high incidence of magnetic field detections in stars of these types obtained using low-resolution spectropolarimetry by Hubrig et al. The precision achieved is generally comparable to or superior to that obtained by Hubrig et al., although our new observations are distinguished by their resolution of metallic and He line profiles, and their consequent sensitivity to magnetic fields of zero net longitudinal component. In the SPB stars, we confirm the detection of magnetic field in one star (16 Peg), but find no evidence of the presence of fields in the remaining 11. In the β Cep stars, we detect a field in  ξ1  CMa, but not in any of the remaining seven stars. Finally, neither of the two B-type emission-line stars shows any evidence of magnetic field. Based on our results, we conclude that fields are not common in SPB, β Cep and B-type emission-line stars, consistent with the general rarity of fields in the broader population of main sequence B-type stars. A relatively small, systematic underestimation of the error bars associated with the UV Focal Reducer and Low Dispersion Spectrograph for the Very Large Telescope (FORS1) longitudinal field measurements of Hubrig et al. could in large part explain the discrepancy between their results and those presented here.  相似文献   

4.
Thermal emission from magnetically aligned dust grains produces the observed mid-infrared polarization in the northern arm and east–west bar of SgrA West; recent arcsecond-resolution imaging polarimetry at 12.5 μm of these ionized filaments is presented, which confirms and extends previous studies. A lower limit ∼2 mG is found for the magnetic field in the northern arm and the IRS16 complex appears to be displaced from the northern arm by ∼ 0.15 pc along the line of sight. It is shown that the physical conditions in the ionized filaments of the central parsec lead to a very uniform grain alignment that is directed along the local magnetic field. The position angle of polarized emission will then be at right angles to the projection of the field direction on the plane of the sky and its amplitude a measure of the component of field along the line of sight; this makes possible a partial reconstruction of the field in three dimensions. We present the first application of the use of polarimetry in this way. This partial reconstruction is compared with the H92α observations of Roberts et al. and the implications are that the northern arm and east–west bar do not define either an orbital path or a spiral arm but rather represent a tidally stretched structure in free fall about SgrA with significant deviations from a single plane, and most likely represent the inner ionized rim of a more extended neutral cloud.  相似文献   

5.
We critically review the current null results on a varying fine-structure constant, α, derived from Very Large Telescope (VLT)/Ultraviolet and Visual Echelle Spectrograph (UVES) quasar absorption spectra, focusing primarily on the many-multiplet analysis of 23 absorbers from which Chand et al. reported a weighted mean relative variation of  Δα/α= (−0.06 ± 0.06) × 10−5  . Our analysis of the same reduced data , using the same fits to the absorption profiles , yields very different individual  Δα/α  values with uncertainties typically larger by a factor of ∼3. We attribute the discrepancies to flawed parameter estimation techniques in the original analysis and demonstrate that the original  Δα/α  values were strongly biased towards zero. Were those flaws not present, the input data and spectra should have given a weighted mean of  Δα/α= (−0.44 ± 0.16) × 10−5  . Although this new value does reflect the input spectra and fits (unchanged from the original work – only our analysis is different), we do not claim that it supports previous Keck/High Resolution Echelle Spectrograph (HIRES) evidence for a varying α: there remains significant scatter in the individual  Δα/α  values which may stem from the overly simplistic profile fits in the original work. Allowing for such additional, unknown random errors by increasing the uncertainties on  Δα/α  to match the scatter provides a more conservative weighted mean,  Δα/α= (−0.64 ± 0.36) × 10−5  . We highlight similar problems in other current UVES constraints on varying α and argue that comparison with previous Keck/HIRES results is premature.  相似文献   

6.
The possibility of magnetic flux expulsion from the Galaxy in superbubble (SB) explosions, important for the α –Ω dynamo, is considered. Special emphasis is put on investigation of the downsliding of the matter from the top of the shell formed by the SB explosion, which is able to influence the kinematics of the shell. It is shown that either Galactic gravity or the development of the Rayleigh–Taylor instabilities in the shell limit the SB expansion, thus making magnetic flux expulsion impossible. The effect of cosmic rays in the shell on the sliding is considered, and it is shown that it is negligible compared with Galactic gravity. Thus the question of the possible mechanism of flux expulsion in the α –Ω dynamo remains open.  相似文献   

7.
In this paper we describe a new approach for measuring the mean longitudinal magnetic field and net linear polarization of Ap and Bp stars. As was demonstrated by Wade et al., least-squares deconvolution (LSD; Donati et al.) provides a powerful technique for detecting weak Stokes V , Q and U Zeeman signatures in stellar spectral lines. These signatures have the potential to apply strong new constraints to models of stellar magnetic field structure. Here we point out two important uses of LSD Stokes profiles. First, they can provide very precise determinations of the mean longitudinal magnetic field. In particular, this method allows one frequently to obtain 1 σ error bars better than 50 G, and smaller than 20 G in some cases. This method is applicable to both broad- and sharp-lined stars, with both weak and strong magnetic fields, and effectively redefines the quality standard of longitudinal field determinations. Secondly, LSD profiles can in some cases provide a measure of the net linear polarization, a quantity analogous to the broad-band linear polarization recently used to derive detailed magnetic field models for a few stars (e.g. Leroy et al.). In this paper we report new high-precision measurements of the longitudinal fields of 14 magnetic Ap/Bp stars, as well as net linear polarization measurements for four of these stars, derived from LSD profiles.  相似文献   

8.
We study the structure of a stationary and axisymmetric charge-deficient region (or potential gap) in the outer magnetosphere of a spinning neutron star. Assuming the existence of global current flow patterns in the magnetosphere, the charge depletion causes a large electric field along the magnetic field lines. This longitudinal electric field accelerates migratory electrons and/or positrons to ultrarelativistic energies. These relativistic electrons/positrons radiate γ -ray photons by curvature radiation. These γ -rays, in turn, produce yet more radiating particles by colliding with ambient X-ray photons, leading to a pair production cascade in the gap. The replenished charges partially screen the longitudinal electric field, which is self-consistently solved together with the distribution of e± and γ -ray photons. We find the voltage drop in the gap as a function of the soft photon luminosity. It is demonstrated that the voltage drop is less than 3×1013 V when the background X-ray radiation is as luminous as Vela . However, this value increases with decreasing X-ray luminosity and attains 3×1015 V when the X-ray luminosity is as low as L X=1031 erg s−1.  相似文献   

9.
There are several astrophysical situations where one needs to study the dynamics of magnetic flux in partially ionized turbulent plasmas. In a partially ionized plasma, the magnetic induction is subjected to the ambipolar diffusion and the Hall effect in addition to the usual resistive dissipation. In this paper, we initiate the study of the kinematic dynamo in a partially ionized turbulent plasma. The Hall effect arises from the treatment of the electrons and the ions as two separate fluids and the ambipolar diffusion due to the inclusion of neutrals as the third fluid. It is shown that these non-ideal effects modify the so-called α effect and the turbulent diffusion coefficient β in a rather substantial way. The Hall effect may enhance or quench the dynamo action altogether. The ambipolar diffusion brings in an α which depends on the mean magnetic field. The new correlations embodying the coupling of the charged fluids and the neutral fluid appear in a decisive manner. The turbulence is necessarily magnetohydrodynamic with new spatial and time-scales. The nature of the new correlations is demonstrated by taking the Alfvénic turbulence as an example.  相似文献   

10.
We discuss the possibility of observing ultra high energy cosmic ray sources in high energy gamma rays. Protons propagating away from their accelerators produce secondary electrons during interactions with cosmic microwave background photons. These electrons start an electromagnetic cascade that results in a broad band gamma ray emission. We show that in a magnetized Universe (B≳10−12 G) such emission is likely to be too extended to be detected above the diffuse background. A more promising possibility comes from the detection of synchrotron photons from the extremely energetic secondary electrons. Although this emission is produced in a rather extended region of size ∼10 Mpc, it is expected to be point-like and detectable at GeV energies if the intergalactic magnetic field is at the nanogauss level.   相似文献   

11.
Three-dimensional numerical simulations of the instability of a layer of magnetic field caused by magnetic buoyancy are carried out over a range of parameter values. The layer breaks up into a number of interlocking magnetic flux tubes that become increasingly three-dimensional, although strongly arched flux tubes are not observed. The introduction of background rotation has the principal effect of suppressing the instability. The α -effect, which measures the twist of the flux tubes induced by the rotation, is found to be positive (in the northern hemisphere) but small in magnitude.  相似文献   

12.
Magnetic fields are observed everywhere in the universe. In this review, we concentrate on the observational aspects of the magnetic fields of Galactic and extragalactic objects. Readers can follow the milestones in the observations of cosmic magnetic fields obtained from the most important tracers of magnetic fields, namely, the star-light polarization, the Zeeman effect, the rotation measures (RMs, hereafter) of extragalactic radio sources, the pulsar RMs, radio polarization observations, as well as the newly implemented sub-mm and mm polarization capabilities. The magnetic field of the Galaxy was first discovered in 1949 by optical polarization observations. The local magnetic fields within one or two kpc have been well delineated by starlight polarization data. The polarization observations of diffuse Galactic radio background emission in 1962 confirmed unequivocally the existence of a Galactic magnetic field. The bulk of the present information about the magnetic fields in the Galaxy comes from anal  相似文献   

13.
More and more observations are showing a relatively weak, but persistent, non-axisymmetric magnetic field co-existing with the dominant axisymmetric field on the Sun. Its existence indicates that the non-axisymmetric magnetic field plays an important role in the origin of solar activity. A linear non-axisymmetric  α2– Ω  dynamo model is derived to explore the characteristics of the axisymmetric  ( m = 0)  and the first non-axisymmetric  ( m = 1)  modes and to provide a theoretical basis with which to explain the 'active longitude', 'flip-flop' and other non-axisymmetric phenomena. The model consists of an updated solar internal differential rotation, a turbulent diffusivity varying with depth, and an α-effect working at the tachocline in a rotating spherical system. The difference between the  α2–Ω  and the  α–Ω  models and the conditions that favour the non-axisymmetric modes under solar-like parameters are also presented.  相似文献   

14.
The minimum dissipative rate (MDR) method for deriving a coronal non-force-free magnetic field solution is partially evaluated. These magnetic field solutions employ a combination of three linear (constant-α) force-free-field solutions with one being a potential field (i.e., α=0). The particular case of the solutions where the other two α’s are of equal magnitude but of opposite sign is examined. This is motivated by studying the SOLIS (Synoptic Optical Long-term Investigation of the Sun (SOLIS), a National Solar Observatory facility) vector magnetograms of AR 10987, which show a global α value consistent with an α=0 value as evaluated by (×B) z /B z over the region. Typical of the current state of the observing technology, there is no definitive twist for input into the general MDR method. This suggests that the special α case, of two α’s with equal magnitudes and opposite signs, is appropriate given the data. Only for an extensively twisted active region does a dominant, nonzero α normally emerge from a distribution of local values. For a special set of conditions, is it found that (i) the resulting magnetic field is a vertically inflated magnetic field resulting from the electric currents being parallel to the photosphere, similar to the results of Gary and Alexander (Solar Phys. 186:123, 1999), and (ii) for α≈(α max /2), the Lorentz force per unit volume normalized by the square of the magnetic field is on the order of 1.4×10−10 cm−1. The Lorentz force (F L) is a factor of ten higher than that of the magnetic force d(B 2/8π)/dz, a component of F L. The calculated photospheric electric current densities are an order of magnitude smaller than the maximum observed in all active regions. Hence both the Lorentz force density and the generated electric current density seem to be physically consistent with possible solar dynamics. The results imply that the field could be inflated with an overpressure along the neutral line. However, the implementation of this or any other extrapolation method using the electric current density as a lower boundary condition must be done cautiously, with the current magnetography.  相似文献   

15.
We present a densely sampled map of visual polarimetry of stars in the direction of the Southern Coalsack dark cloud. Our sample consists of new polarimetric observations of 225 stars drawn from the spectrophotometric survey of Seidensticker, and an additional 173 stars, covering the surrounding areas of the cloud, taken from the literature. Because all the target stars have at least spectroscopic parallaxes, we can reliably investigate the spatial origins of the polarization, in three dimensions. We decompose the polarization into three components, due to (i) the wall of the local hot bubble, (ii) the Coalsack cloud and (iii) material in the Carina spiral arm. The polarization due to the Coalsack varies, both in alignment efficiency  ( p / AV )  and in the dispersion in polarization angle, across the cloud. Using a simplified radiative transfer treatment we show that the measured polarization in background gas is significantly affected by foreground polarization, and specifically that the analysis of the Coalsack polarization must take the effects of the local hot bubble wall into consideration. Correcting for this effect as well as for the internal line-of-sight averaging in the Coalsack, we find, based on a Chandrasekhar–Fermi analysis, a plane-of-the-sky magnetic field for the Coalsack cloud of  〈 B 〉= 93 ± 23 μG  . A systematic error, best described by a multiplicative factor between 0.5 and 1.5, additionally arises from radiative transfer effect uncertainties. We propose that this high value for the magnetic field in the cloud envelope is due to the fact that the Coalsack cloud is embedded in the hot interior of the Upper Centaurus–Lupus superbubble.  相似文献   

16.
Many quasars and active galactic nuclei (AGN) appear in radio, optical and X-ray maps as bright nuclear sources from which emerge single or double long, thin jets. When observed with high angular resolution, these jets show evidence of structure, with bright knots separated by relatively dark regions. High percentages of polarization, sometimes more then 50 per cent, indicate the non-thermal nature of the radiation, which is well explained as the synchrotron radiation of the relativistic electrons in an ordered magnetic field.
A strong collimation of jets is probably connected with ordered magnetic fields. The mechanism of magnetic collimation first suggested by Bisnovatyi-Kogan et al. was based on the initial charge separation, which led to the creation of an oscillating electrical current, which in turn produced an azimuthal magnetic field, preventing jet expansion and disappearance. Here we consider magnetic collimation associated with the torsional oscillations of a cylinder with an elongated magnetic field. Instead of initial blobs with charge separation, we consider a cylinder with a periodically distributed initial rotation around the cylinder axis. The stabilizing azimuthal magnetic field is created by torsional oscillations, meaning that charge separation is unnecessary. An approximate simplified model is developed, and an ordinary differential equation is derived and solved numerically, making it possible to estimate quantitatively the range of parameters for which jets may be stabilized by torsional oscillations.  相似文献   

17.
We present two new sets of complete light curves of EQ Tauri (EQ Tau) observed in 2000 October and 2004 December. These were analysed, together with the light curves obtained by Yang & Liu in 2001 December, with the 2003 version of the Wilson–Devinney code. In the three observing seasons, the light curves show a noticeable variation in the time-scale of years. The more massive component of EQ Tau is a solar-type star (G2) with a very deep convective envelope, which rotates about 80 times as fast as the Sun. Therefore, the change can be explained by dark-spot activity on the common convective envelope. The assumed unperturbed part of the light curve and the radial velocities published by Rucinski et al. were used to determine the basic parameters of the system, which were kept fixed for spot modelling in the three sets of light curves. The results reveal that the total spotted area on the more massive component covers 18, 3 and 20 per cent of the photospheric surface in the three observing seasons, respectively. Polar spots and high-latitude spots are found. The analysis of the orbital period has demonstrated that it undergoes cyclical oscillation, which is due to either a tertiary component or periodic magnetic activity in the more massive component.  相似文献   

18.
We study the structure of a stationary and axisymmetric charge-deficient region (or a potential gap) in the outer magnetosphere of a spinning neutron star. A large electric field along the magnetic field lines is created in this potential gap and accelerates migratory electrons (e) and/or positrons (e+) to ultrarelativistic energies. Assuming that the gap is immersed in a dense soft photon field, these relativistic e± radiate γ -ray photons via inverse Compton (IC) scattering. These γ -rays, in turn, produce yet more radiating particles by colliding with ambient soft photons, leading to a pair-production cascade in the gap. The replenished charges partially screen the longitudinal electric field, which is self-consistently solved together with the distribution of e± and γ -ray photons. It is demonstrated that the voltage drop in the gap is not more than 1010 V when the background X-ray radiation is as luminous as 1037 erg s−1. However, this value increases with decreasing X-ray luminosity and attains 1012 V when the X-ray radiation is 1036 erg s−1. In addition, we find useful expressions of the spatial distribution of the particle fluxes and longitudinal electric field, together with the relationship between the voltage drop and the current density. Amazingly, these expressions are valid not only when IC scattering dominates but also when curvature radiation dominates.  相似文献   

19.
20.
The frequencies of solar p-modes are known to change over the solar cycle. There is also recent evidence that the relation between frequency shift of low-degree modes and magnetic flux or other activity indicators differs between the rising and falling phases of the solar cycle, leading to a hysteresis in such diagrams. We consider the influence of the changing large-scale surface distribution of the magnetic flux on low-degree ( l ≤3) p-mode frequencies. To that end, we use time-dependent models of the magnetic flux distribution and study the ensuing frequency shifts of modes with different order and degree as a function of time. The resulting curves are periodic functions (in simple cases just sine curves) shifted in time by different amounts for the different modes. We show how this may easily lead to hysteresis cycles comparable to those observed. Our models suggest that high-latitude fields are necessary to produce a significant difference in hysteresis between odd- and even-degree modes. Only magnetic field distributions within a small parameter range are consistent with the observations by Jiménez-Reyes et al. Observations of p-mode frequency shifts are therefore capable of providing an additional diagnostic of the magnetic field near the solar poles. The magnetic distribution that is consistent with the p-mode observations also appears reasonable compared with direct measurements of the magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号