共查询到20条相似文献,搜索用时 11 毫秒
1.
The motion of Adria, the largest lithospheric fragment in the Central Mediterranean region, has played an important role in the tectonic development of the surrounding mountain chains and even of distant areas, like the Eastern Alps or the Pannonian basin. The available paleomagnetic data were insufficient to constrain this motion, except in a general way. In this paper, new paleomagnetic results are presented from one of the stable parts of Adria which emerge from the Adriatic Sea. The results were obtained on weakly magnetic platform carbonates of the mud-supported type, collected from 21 geographically distributed localities.The results, combined with mean paleomagnetic directions from selected localities from a pioneer study in Istria that were chosen using statistical criteria, were divided into three age groups (Tithonian–Aptian, Albian–Cenomanian, Turonian–Coniacian). The paleomagnetic poles calculated for each of them (Tithonian–Aptian): λ(N) = 47°, (E) = 275°, k = 67, α95 = 9.4°, N = 5; Albian-Cenomanian: λ(N) = 58°, (E) = 253°, k = 145, α95 = 4.3°, N = 9; Turonian–Coniacian: λ(N) = 63°, (E) = 261°, k = 50, α95 = 7.3°, N = 9) reveal a moderate shift during the Cretataceous, which is comparable with that calculated from the African reference poles. However, the Istrian apparent polar wander path is slightly displaced from the African curve, as a consequence of about 10° counterclockwise rotation of Istria, with respect to Africa. This rotation angle is more that 10° smaller than the difference measured for the Mid-Late Eocene between the paleomagnetic direction of platform carbonates from Istria and the African reference direction. This difference may be the consequence of a small clockwise rotation of Istria, with respect to Africa, most probably at the end of Cretaceous. 相似文献
2.
AbstractThis study aims at unravel the geotectonic evolution of northern Greece prior to the already established Tertiary clockwise rotation. Therefore, Mesozoie sediments, Early Mesozoie ophiolites and Carboniferous granites were sampled. While the metamorphosed and/or too weakly magnetized limestones had to be rejected, the gabbros and serpentinites of the 80 km long Chalkidiki belt (40.4°N, 23.3”E), and the granites of the northern Pelagonian zone (40.8°N, 21.2°E) have yielded similar results interpretable in terms of geoleetonies. In both areas the demagnetizing process has revealed a poh phased magnetic evolution.The oldest magnetizations, labelled M (D=311°, I=20°, a95, = 15°; VGP: 37°N, 272.5°, for the ophiolites; D=320.5°, I = 26°, a95 =11°; VGP : 46°N, 264.5”E, for the granites) are interpreted as overprints acquired in Late Jurassic-Cretaceous times. The younger magnetizations, called C2 (D = 66°, I = 28°, a95 = 9°; VGP : 28°N, 117°E, in the ophiolites ; D=64°, I = 2° a95, = 11°; VCP : 20°N, I28°E, in the granites) are Tertiary overprints. Northeasterly C’ directions with negative inclinations (and conversely) are considered as overprints empiaceli prior to the Ca magnetizations ; they are interpreted as due to a barkthrusting of the ophiolilic belt of Chalkidiki and of the N. Pelagonian granitic belt, during the Early - Middle Tertiary convergence phase. The large deviation from the M to the C2 directions, also observed by other authors in Mesozoic volcanics and sediments, results from a counterclockwise rotation of the Hellenides, probably in the Late Cretaceous as it is the case for the counterclockwise rotations of the western Mediterranean microplates. The deviation from the C2 to the present field direction is due to a clockwise rotation of all Hellenic zones, probably in several phases. 相似文献
3.
We report a new driving mechanism for vertical-axis rotation in fold belts: during directed folding, there always are layers which are tilted oblique to the regional shortening direction. These layers are geometrically incompatible with fold closure and must become accommodated towards parallelism with the other layers in the course of further shortening. Accommodation is achieved through vertical-axis rotations of the layers towards the shortening direction. A revision of palaeomagnetic data sets from fold belts shows that (1) incompatible layers occur in almost all data sets, reflecting a certain degree of non-cylindrical folding, and (2) a parallelisation of the layers by true vertical-axis rotations occurred when folding became intense. Layer parallelisation is a potential source of disturbance for palaeomagnetic and tectonic interpretation. It can be the explanation for some of the frequent outliers in palaeomagnetic data sets, and a basic model for the rotation pattern of palaeomagnetic directions. 相似文献
4.
通过在红河两侧(大姚、景谷、江城、勐腊剖面)的早第三纪古地磁样品的研究,进一步证实了红河两侧由白垩纪古地磁研究所揭示的印支地块相对于华南地块存在的左旋相对运动。这一结果说明了印度支那地块在印度板块的挤压下,于早第三纪至中新世沿红河大断裂发生向南侧向滑移达1000km左右,它不仅使青藏高原的巨大构造缩短得到调整,而且在北部湾地区形成伸展构造,并引起南中国海的张开。印度支那地块北部各地区的差异性旋转和红河断裂共轭的剪切断裂系的发育,以及红河大断裂早第三纪至中新世左旋剪切作用密切相关。 相似文献
5.
6.
A palaeomagnetic study of the Ronda peridotites (southern Spain) has been carried out on 301 samples from 20 sites, spread along the three main outcrops of the ultrabasic complex: Ronda, Ojén and Carratraca massifs. Different lithologies and outcrops with different degrees of serpentinization have been sampled and analysed. Rock magnetic experiments have been carried out on a representative set of samples. These measurements include: Curie curves, hysteresis cycles, isothermal remanent magnetization (IRM) acquisition curves, thermal demagnetization of IRM imparted along three orthogonal axes and magnetic bulk susceptibility. Results indicate that magnetite is the main magnetic mineral present in the samples. Stepwise thermal and alternating field (AF) demagnetization of the natural remanent magnetization (NRM) reveals the presence of a characteristic remanent magnetization (ChRM) carried by magnetite, and in some sepentinized samples, a northward component with variable unblocking temperatures up to 250–575 °C. The appearance and the relative intensity of this northward component are strongly related to serpentinization degree. Taking into account the geological history of the peridotites, the ChRM has been considered as a thermo-chemical remanent magnetization acquired during the first serpentinization phase associated to the post-metamorphic cooling of this unit. On the basis of radiometric and fission track analysis, the ChRM is proposed to have been acquired between 20 and 17–18 Ma. The inclination of the mean direction of the ChRM statistically coincides with the expected inclination for stable Iberia during the Oligocene–Miocene. The declination of the ChRM differs from the expected declination, indicating clockwise block rotations of 41±12° about vertical axes since the cooling of the peridotites. When applying a compositional layering correction, the ChRM directions fail to pass this kind of fold test, thus, the compositional layering was not a palaeohorizontal during ChRM acquisition time. Normal and reversed polarities of the ChRM are reported, showing that at least one reversal of the Earth's magnetic field took place during ChRM acquisition process. A tentative polarity zonation within the peridotitic outcrops is also suggested. No evidence is found from these data for the previously proposed simultaneity between post-metamorphic cooling and rotation of the peridotites. 相似文献
7.
The Banded Hematite Jasper Formation within the Iron Ore Supergroup of the Singhbhum Craton in eastern India comprises fine alternating layers of jasper and specularite. It was deposited at 3000 Ma and deformed by a mobile episode at 2700 Ma. Hematite pigment (<1 μm) mixed with cryptocrystalline silica and specularite (> 10 μm) is chiefly responsible for red to brown rhythmic bands in the hematite jasper facies although thermomagnetic study also shows that minor amounts (1–2%) of magnetite are present. Palaeomagnetic study identifies a dual polarity remanence resident in hematite (D/I = 283/60°, α95 = 12°) which predates deformation. Studies of the fabric of magnetic susceptibility and rock magnetic results suggest a diagenetic origin for this magnetisation with the hematite formed from oxidation of primary magnetite. The palaeopole (32°E, 24°N, dp/dm = 14/18°) records the earliest post-metamorphic magnetisation event in the Orissa Craton. A minimum apparent polar wander motion of the Orissa-Singhbhum craton of through 80° is identified during Late Archaean times (2900-2600 Ma). 相似文献
8.
第三纪年代地层研究和中国第三纪年代地层表 总被引:6,自引:2,他引:6
主要介绍国际上第三纪年代地层和年代学研究最新简况 ,显示几个重要的年代地层表或年代表 ,并报道全国地层委员会 1999年 12月断代专业组工作会议关于建立中国年代地层表中第三纪年代地层构架讨论的初步方案。 相似文献
9.
John D. A. Piper Halil Gürsoy Orhan Tatar Turgay seven Ali Koyiit 《Geological Journal》2002,37(4):317-336
The Taurides, the southernmost of the three major tectonic domains that constitute present‐day Turkey, were emplaced following consumption of the Tethyan Ocean in Late Mesozoic to mid‐Tertiary times. They are generally assigned an origin at the northern perimeter of Gondwana. To refine palaeogeographic control we have investigated the palaeomagnetism of a range of Jurassic rocks. Forty‐nine samples of Upper Jurassic limestones preserve a dual polarity remanence (D/I=303/−9°, α95=6°) interpreted as a primary magnetization acquired close to the equator and rotated during emplacement of the Taurides. Result from mid‐Jurassic dolerites confirm a low palaeolatitude for the Tauride Platform during Jurassic times at the Afro–Arabian sector of Gondwana. Approximately 4000 km of Tethyan closure subsequently occurred between Late Jurassic and Eocene times. Although related Upper Jurassic limestones and Liassic redbeds preserve a sporadic record of similar remanence, the dominant signature in these latter rocks is an overprint of probable mid‐Miocene age, probably acquired during a single polarity chron and imparted by migration of a fluid front during nappe loading. This is now rotated consistently anticlockwise by c. 30° and conforms to results of previous studies recording bulk Neogene rotation of the Isparta region following Lycian nappe emplacement. The regional distribution of this overprint implies that the Isparta Angle (IA) has been subject to only small additional closure (<10°) since Late Miocene time. A smaller amount (c. 6°) of clockwise rotation within the IA since Early Pliocene times is associated with an ongoing extensional regime and reflects an expanding curvature of the Tauride arc produced by southwestward extrusion of the Anatolian collage as a result of continuing northward motion of Afro–Arabia. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
10.
Magnetostratigraphic studies in the Oligocene to Miocene north Alpine foreland basin of Switzerland suggest a post-middle Miocene (< 13 Ma) clockwise rotation of the Swiss Alps. The angle of rotation is 16–17° with respect to the present-day earth's magnetic field. This rotation can be observed in 12 sections analysed for palaeomagnetic directions which cover a lateral distance of ≈ 250 km (SW–NE extension). The rotation angle shows neither a significant change throughout the examined period of deposition, nor is it dependent on the tectonic position of the individual regions in the basin (autochthonous or allochthonous Molasse). 相似文献
11.
A comparison of late Mesoproterozoic palaeomagnetic poles from the Kalahari craton and its correlative Grunehogna craton in East Antarctica shows that the Kalahari–Grunehogna craton straddled the palaeo-Equator and underwent no azimuthal rotation between ca. 1130 and 1105 Ma. Comparison of the Kalahari palaeopoles with the Laurentia APWP between 1130 and 1000 Ma shows that there was a latitudinal separation of 30±14° between Kalahari and the Llano–West Texas margin of Laurentia at ca. 1105 Ma. The Kalahari craton could have converged with southwestern Laurentia between 1060 and 1030 Ma to become part of Rodinia by 1000 Ma. In Rodinia, the Kalahari craton lay near East Antarctica with the Namaqua–Natal orogenic belt facing outboard and away from the Laurentian craton. 相似文献
12.
Palaeomagnetic and geochronological data from an Early Palaeozoic high grade metamorphic complex (Jorgina Formation) and Jurassic layered basic intrusion (Moreno Complex) are reported from the Mejillones Peninsula of northern Chile (23–23°30'S). 40Ar–39Ar dates from the Lower Palaeozoic Jorgina Formation and the Moreno Complex are between 170 and 158 Ma, coincident with a phase of emplacement of the north Chilean coastal batholith. This suggests that intrusion and magnetization of the Moreno Complex and the metamorphism and remagnetization of the Jorgina Formation were related to batholith emplacement. Extracted stable components of magnetization from all units (17 sites) define site-mean directions with a scattered distribution. The scatter in site-mean directions is interpreted as being due to minor, localized, non-uniform, block-fault related (normal or strike-slip, or both) rotation after 158 Ma. The palaeomagnetic and geochronological data indicate that no significant large-scale latitudinal translation of crustal blocks has taken place in this part of northern Chile since the Late Jurassic. In addition, they indicate that the uniform clockwise rotation after the mid-Cretaceous which affected the adjacent Cordillera de la Costa either did not extend into the Mejillones Peninsula or took the form of localized block-fault rotations. The restriction of palaeomagnetically defined styles of rotation to discrete areas within the north Chilean forearc indicates that forearc wide block-fault rotation models are not applicable to the Pacific margin of northern Chile. 相似文献
13.
Detailed palaeomagnetic and rock magnetic analyses provide improved palaeomagnetic results from 23 sites in the Borgmassivet intrusions in the Ahlmannryggen region of Dronning Maud Land, East Antarctica. These intrusions are of similar age to their host, the ca. 1130 Ma Ritscherflya Supergroup (RSG). A mean direction of D=235.4°, I=−7.6° with k=45.9 and α95=4.5° was obtained from this study. When combined with previously reported results from 11 sites in the same region, including sites from the Ritscherflya Supergroup, it gives an overall mean direction for 34 sites from the igneous suite with D=236.5°, I=−3.6°, k=27.9 and α95=4.8°. Isothermal remanent magnetization (IRM) experiments on several specimens suggest magnetite or titanomagnetite as the primary remanence carrier, while high temperature magnetic susceptibility experiments indicate the presence of single domain particles. These observations, together with field evidence and the high coercivities and unblocking temperatures, support a primary origin for the observed characteristic remanence. The Borgmassivet palaeomagnetic pole lies at 54.5°E, 8.3°N with A95=3.3°. If Antarctica is moved to its Gondwanan position adjacent to southeast Africa, the Borgmassivet pole (BM) coincides with that of the African well-established, well-dated (1100 Ma) Umkondo Large Igneous Province pole, supporting the hypothesis that the Grunehogna craton of Dronning Maud Land was part of the Kalahari craton of southern Africa at ca. 1100 Ma. 相似文献
14.
Secondary magnetic remanences residing in pyrrhotite and anisotropy of magnetic susceptibility (AMS) were studied in low-grade metamorphic carbonates of the Tethyan Himalaya in Nar/Phu valley (central Nepal) and used for interpretation of tectonic deformations. The characteristic remanence (ChRM) is likely of thermomagnetic origin related to post-peak metamorphic cooling occurring after the Eohimalayan phase (35–32 Ma). The ChRM postdates small-scale folding (main Himalayan folding F1 and F2) as shown by a negative fold test of site mean directions at 99% confidence level, and has been probably acquired between 32 and 25 Ma. Late-orogenic long-wavelength folding associated with the Chako antiform (CA) is recorded by the spatial dispersion of ChRM directions and the distribution of the main axes of the AMS tensor. The mean tilting of the ChRM direction since remanence acquisition (≈20–30°) approximately coincides with the tilting of the CA (31°) at the study area indicating that the pyrrhotite remanence predates the CA (CA formed at <18 Ma according to preliminary U/Pb dating). However, comparison of tilt angles of remanence directions and AMS tensor axes suggests that remanence acquisition was not completed before the onset of the CA formation. This could imply a younger age (Early Miocene or even younger) of the ChRM. Using the distribution of remanence directions along a small-circle as well as the distribution of AMS tensor axes, a clockwise mean rotation of 16° is obtained for a remanence age of ≈30 Ma. An Early Miocene remanence age would not change this result substantially. Compilation of rotations in the Tethyan Himalaya deduced from secondary pyrrhotite remanences reveals an increasing clockwise rotation from the Hidden valley in the W to the Shiar valley in the E (≈150 km distance), incompatible with an oroclinal bending model. 相似文献
15.
Recent field campaign in the southern Menderes Massif in southwestern Turkey revealed that the so-called ‘core of the massif’ comprises two distinct types of granitoid rocks: an orthogneiss (traditionally known as augen gneisses) and leucocratic metagranite, where the latter is intrusive into the former and the structurally overlying ‘cover’ schists. These differ from one another in intensity of deformation, degree of metamorphism and kinematics. The orthogneiss display penetrative top-to-the-N–NNE fabrics formed under upper-amphibolite facies conditions during the Eocene main Menderes metamorphism (MMM), whereas foliation and stretching lineation exists in the leucocratic metagranites but are not strongly developed. The leucocratic metagranites show evidence of syn- to post-emplacement deformation in a series of weakly developed top-to-the-S–SSW fabrics formed under lower greenschist-facies (?) conditions. Leucocratic metagranite bodies occur all along the augen gneiss–schist contact in the southern Menderes Massif; they are emplaced as sheet-like bodies into country rocks (previously deformed and metamorphosed during a top-to-the-N–NNE Alpine orogeny) along a ductile extensional shear zone, located between orthogneisses and metasediments, which was possibly active during emplacement. The data presently available indicate that emplacement and associated ductile extensional deformation occurred during Late Oligocene–Early Miocene time. These results confirm previous contentions that there are Tertiary granites in this part of the Menderes Massif. 相似文献
16.
A palaeomagnetic study of Vendian and Early Cambrian sediments from the Angara block of the Siberian platform: Shaman (52.08°N, 108.83°E) and Minya (58.0°N, 110.0°E) Formations, and the Tuva-Mongolian block: Tsagan-Olom and Bayan-Gol Formations (46.76°N, 96.37°E) isolated three different components of magnetization through thermal demagnetization. The stable high-temperature characteristic remanence directions show both normal and reverse polarities. The mean palaeopoles computed after these high-temperature components are: 32.0°S/71.1°E (dp/dm=6.9°/13.8°) for the Vendian Shaman Formation (10 sites, 80 samples), 33.7°S/37.2°E (dp/dm=8.6°/14.7°) for the Vendian Minya Formation (12 samples), 22.8°S/28.4°E (dp/dm=10.8°/21.6°) for the Vendian Tsagan-Olom Formation (4 sites, 25 samples) and 21.4°S/167.1°E (dp/dm=9.6°/19.1°) for the Early Cambrian Bayan-Gol Formation (6 sites, 49 samples). From a compilation of Vendian and Early Cambrian palaeopoles from the Anabar, Angara and Aldan blocks of the Siberian platform and Tuva-Mongolia block, we propose a model where these blocks were situated in an equatorial to low south palaeolatitude position, with their present-day southern boundaries facing the north pole. From the analysis of the scatter of these poles, we conclude that the Siberian platform might not have fully amalgamated by this time, and that significant rotations occurred after the Early Cambrian. Our new palaeopoles for the Tuva-Mongolia block, together with previously published ones, show that this block was already adjacent to Siberia by the Vendian and Early Cambrian. We propose that the large counterclockwise rotation of the Tuva-Mongolia block with respect to Angara block could mark the end of the closure of the part of the Palaeo-Asian ocean separating these two blocks, and could account for the occurrence of Vendian-Early Cambrian ophiolites in the region. 相似文献
17.
18.
渤海湾盆地第三纪的岩浆旋回 总被引:2,自引:0,他引:2
本文提出了岩浆旋回的概念,初步探索了岩浆旋回的划分方法,并以构造演化为基础,结合岩浆活动方式、岩石地球化学指标,对渤海湾盆地岩浆旋回进行了划分。盆地中第三纪岩浆活动划分为两大旋回:早第三纪华北Ⅰ幕旋回和晚第三纪华北Ⅱ幕旋回。第一旋回(华北Ⅰ幕)划分为3期:孔店组(房身泡组)—沙河街组四段期、沙河街组三段—沙河街组二段期及沙河街组一段—东营组期。第二旋回(华北Ⅱ幕)为晚第三纪。旋回内部各期的早、晚岩浆活动形式有所不同。 相似文献
19.
对济阳坳陷第三纪火成岩样品进行了系统的地球化学分析,分析结果表明:这些火成岩的SiO2含量较低(大部分低于50%),属于基性火成岩,岩石类型主要为玄武岩和粗面玄武岩。绝大部分样品的TiO2含量较高,为1.64%~2.09%,不同于TiO2含量较低的岛弧火山岩。碱性样品和亚碱性样品数量相当,Na2O含量都高于K2O含量,Na2O/K2O最高可达2.75。这些样品具有富集大离子亲石元素(LILE)如Rb和Ba,亏损重稀土元素(HREE)如Yb和Lu。具有右倾的球粒陨石标准化稀土元素配分模式和原始地幔标准化不相容元素分布模式。源区分析表明,这些火成岩的源区为富集的受过流体交代的岩石圈地幔。运用不活动元素对这些样品进行了构造环境的判别,结果表明这些样品的主体形成于板块内部环境。 相似文献
20.
遗迹化石研究具有多方面的意义,而对沉积环境的解释是其中重要的方面。在天山南侧的诸多新生界剖面上首次发现了大量遗迹化石,为地层界面的认识和进一步分析当时的生物面貌、沉积环境提供了重要的证据。发现了3个遗迹化石相,即Scoyenia(斯柯茵迹)遗迹相、Skolithos(石针迹)遗迹相和Glossifungites(舌菌迹)遗迹相,共计有10余个遗迹化石属,这在以陆相为主的地层中是不多见的。另外,在一些剖面上还发现了大量哺乳类足迹化石,对确定当时生物群的面貌和生态环境具积极意义。 相似文献