首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Deep low-permeability clay layers are considered as safe environments for disposal of high-level radioactive waste. In Belgium, the Boom Clay is a candidate host rock for deep geological disposal. In this study, we analyze the effects of fractures and spatially variable hydraulic conductivity on radionuclide migration through the clay. Fracture geometry and properties are simulated with Monte Carlo simulation. The heterogeneity of hydraulic conductivity is simulated by direct sequential co-simulation using measurements of hydraulic conductivity and four types of secondary variables. The hydraulic conductivity and fracture simulations are used as input for a transport model. Radionuclide fluxes computed with this heterogeneous model are compared with fluxes obtained with a homogeneous model. The output fluxes of the heterogeneous model differ at most 8% from the homogeneous model. The main safety function of the Boom Clay is thus not affected by the fractures and the spatial variability of hydraulic conductivity.  相似文献   

2.
Sedimentological processes often result in complex three-dimensional subsurface heterogeneity of hydrogeological parameter values. Variogram-based stochastic approaches are often not able to describe heterogeneity in such complex geological environments. This work shows how multiple-point geostatistics can be applied in a realistic hydrogeological application to determine the impact of complex geological heterogeneity on groundwater flow and transport. The approach is applied to a real aquifer in Belgium that exhibits a complex sedimentary heterogeneity and anisotropy. A training image is constructed based on geological and hydrogeological field data. Multiple-point statistics are borrowed from this training image to simulate hydrofacies occurrence, while intrafacies permeability variability is simulated using conventional variogram-based geostatistical methods. The simulated hydraulic conductivity realizations are used as input to a groundwater flow and transport model to investigate the effect of small-scale sedimentary heterogeneity on contaminant plume migration. Results show that small-scale sedimentary heterogeneity has a significant effect on contaminant transport in the studied aquifer. The uncertainty on the spatial facies distribution and intrafacies hydraulic conductivity distribution results in a significant uncertainty on the calculated concentration distribution. Comparison with standard variogram-based techniques shows that multiple-point geostatistics allow better reproduction of irregularly shaped low-permeability clay drapes that influence solute transport.  相似文献   

3.
Deep low-permeability clay layers are considered as suitable environments for disposal of high-level radioactive waste. In Belgium, the Boom Clay is the reference host formation and the Ypresian Clay an alternative host formation for research and safety and feasibility assessment of deep disposal of nuclear waste. In this study, two hydrogeological models are built to calculate the radionuclide fluxes that would migrate from a potential repository through these two clay formations. Transport parameter heterogeneity is incorporated in the models using geostatistical co-simulations of hydraulic conductivity, diffusion coefficient and diffusion accessible porosity. The calculated radionuclide fluxes in the two clay formations are compared. The results show that in the Ypresian Clay larger differences between the fluxes through the lower and the upper clay boundary occur, larger total output radionuclide amounts are calculated and a larger effect of parameter heterogeneity on the calculated fluxes is observed, compared to the Boom Clay.  相似文献   

4.
5.
多个相关随机参数的空间变异性对溶质运移的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
根据给定渗透系数、孔隙度以及吸附系数的概率分布,采用顺序高斯模拟生成相关的多参数随机场的实现,作为地下水流和溶质运移模型的输入参数,对污染物浓度进行随机分析。研究结果表明,与仅考虑渗透系数空间变异性相比,考虑相关的多参数空间变异性导致污染羽的扩散程度有显著不同。当孔隙度与渗透系数呈正相关关系时,会减少污染羽的扩散程度,反之,当孔隙度与渗透系数为负相关关系时,会加剧污染羽的扩散程度。吸附系数也是如此。在考虑吸附系数的空间变异性之后,污染羽的分布表现出拖尾现象。同时考虑渗透系数、孔隙度以及吸附系数空间变异性时,孔隙度非均质性对溶质运移的影响较吸附系数非均质性的影响更大。  相似文献   

6.
Understanding flow and transport in low-permeability media is very important in the context of nuclear waste disposal, oil and gas reservoirs and long term evolution of groundwater systems. In low-permeability media, transport by diffusion is often the most important mass transport process. This study investigates the effect of the heterogeneity of diffusion parameters on mass transport in low-permeability media. A geostatistical approach for integrating heterogeneity of diffusion parameters in groundwater flow and transport models is proposed and applied to the Toarcian argillites in France which are studied in the framework of feasibility of storing radioactive waste in deep clayey massifs. Stochastic fields of the diffusion parameters of the Toarcian argillites (France) are generated based on 64 measured values of diffusion coefficient and diffusion accessible porosity and used as input for a 3D local-scale groundwater flow and transport model. The chloride concentrations computed by these heterogeneous models are compared to the measured chloride concentrations and to concentrations calculated with a model in which the Toarcian argillites are subdivided into several homogeneous zones. The heterogeneous simulations result in a slightly better correspondence between measured and calculated values and have the additional advantage that the measured diffusion coefficient values in the Toarcian are perfectly honored in the model. This study shows that small-scale variability of diffusion parameters has a significant effect on solute concentrations and omitting this heterogeneity may be a problem in transport calculations in low-permeability media, depending on the specific setting and objectives of the study.  相似文献   

7.
Numerical models that solve the governing equations for subsurface fluid flow and transport require detailed quantitative maps of spatially variable hydraulic properties. Recently, there has been great interest in methods that can map the spatial variability of hydraulic properties such as porosity and hydraulic conductivity (permeability). Presently, only limited data on natural permeability spatial structure are available. These data are often based on extensive discrete sampling in outcrops or boreholes. Then methods are used to interpolate between data values to map aquifer heterogeneity. Interpolation methods often mask critical local or intermediate scale heterogeneities. As sediment texture is directly correlated with many hydraulic properties we developed two new texture segmentation algorithms based on a space-local two-dimensional wavenumber spectral method known as the S-Transform. Existing texture segmentation algorithms could not delineate the subtle and continuous texture variations that exist in natural sediments. The S-Transform algorithms successfully delineated geologic structures and grain size patterns in photographs of outcrops in a glacial fluvial deposit; thus, no interpolation methods were required to produce continuous two-dimensional maps of texture facies. The S-Transform method is robust and is insensitive to changes in light intensity, and moisture variations. This makes the algorithm particularly applicable to natural sedimentary outcrops. The effectiveness of our methods are tested by correlating measured relative grain sizes in the images with actual grain size measurements taken from the sedimentary outcrops.  相似文献   

8.
The spatial variability in porosity, hydraulic conductivity, compressibility, and various grain size fractions is analyzed for several sets of samples from the Quadra Sand. This unit is a well-sorted, medium grained, horizontally stratified sand with relatively few silt or gravel interbeds. Both random and uniformly spaced sample plans are used. The heterogeneity of the flow parameters is characterized by frequency histograms and their estimated moments, by their sample autocorrelation functions, and the estimated power spectra. Emphasis is placed on the nature of the spatial dependence between neighboring values of the flow parameters. A nearest neighbor stochastic process model is fit to the data to consider its adequacy in describing the spatial dependence within the porosity and hydraulic conductivity sequences. Even though the Quadra Sand is relatively uniform, a fairly complex spatial structure is observed. A simple monotonically decaying autocorrelation function may not adequately represent the spatial continuity. Statistical anisotropy is observed in both the extent of the spatial autocorrelation and in its functional form. Results show the importance of scale in constructing a probability model to describe the spatial variability.  相似文献   

9.
Because of their simplicity, assumptions of isotropy and homogeneity are often applied to slug test analyses, determining hydraulic conductivity of heterogeneous and anisotropic formations, in spite of their inherent unfitness. In this study, it was examined how anisotropy and heterogeneity of the formation affect well recovery curves and therefore estimates of hydraulic conductivity in slug tests. Using a finite element method (FEM) slug test model, several hypothetical slug tests in anisotropic and heterogeneous formations with known hydraulic parameters and actual formations of unknown parameters were analyzed. Error factors as a result of the assumptions of isotropy and homogeneity were quantified through sensitivity analyses of well recovery curves. Results of slug tests analyzed in this study indicate that: (1) the well recovery curves in slug tests do not show unique shape or signs reflecting the anisotropy and heterogeneity of the tested formation; (2) the assumption of isotropy does not deviate estimates of hydraulic conductivity significantly when the radial hydraulic conductivity is larger than the vertical one in the formation; (3) the assumption of homogeneity in a layered heterogeneous system has a high potential for errors in hydraulic conductivity estimation, however it can be avoided by placing the screened section apart from the adjacent layers; (4) a low permeability well skin skews the hydraulic conductivity of the original formation, depending on the size and hydraulic conductivity of the skin.  相似文献   

10.
The determination of slope stability for existing slopes is challenging, partly due to the spatial variability of soils. Reliability-based design can incorporate uncertainties and yield probabilities of slope failure. Field measurements can be utilised to constrain probabilistic analyses, thereby reducing uncertainties and generally reducing the calculated probabilities of failure. A method to utilise pore pressure measurements, to first reduce the spatial uncertainty of hydraulic conductivity, by using inverse analysis linked to the Ensemble Kalman Filter, is presented. Subsequently, the hydraulic conductivity has been utilised to constrain uncertainty in strength parameters, usually leading to an increase in the calculated slope reliability.  相似文献   

11.
深入探究孔隙尺度下的流体流动特性和溶质运移规律对石油开采、农田养分管理、地下水污染修复有着重要意义。以人工构建的多孔介质结构和同步辐射X射线显微CT扫描的土壤团聚体(分辨率3.7μm)为研究对象,在空间节点数多达64 000 000的情况下,基于格子Boltzmann模型和GPU并行技术计算得到多孔介质流体运动和溶质运移过程的关键参数,并据此探究多孔介质空间异质性对水力学特性的影响。通过对3组不同结构的多孔介质比较发现,结构复杂程度最高的土壤样品和不规则堆叠的圆球结构的渗透率在100 mD(即10^-13m^2)量级,远低于规则堆叠的圆球结构(>20 000 mD);土壤的迂曲度为1.40~1.60,明显高于规则堆叠的圆球结构。研究结果表明,渗透率大的样品具有较小的迂曲度,这与结构的空间异质性有较强的关系;土壤的渗透率和迂曲度呈现各向异性;在水力梯度一定的前提下,渗透率较大的样品,纵向弥散系数也较大;同时,结构的异质性也会影响溶质的穿透曲线。本研究提出的模拟方法可在土壤结构中进行高效的水流运动和溶质运移模拟,可用于土壤多孔介质在孔隙尺度下的水力学特性研究。  相似文献   

12.
Nitrate concentrations in multi-aquifer systems are heavily affected by the presence of wellbores (active or abandoned) that are screened in several aquifers. The spatial variability of hydraulic conductivity in the confining layers has also an important impact on the concentrations. A synthetic three-dimensional flow and transport exercise was carried in a multi-aquifer system consisting of two aquifers separated by an aquitard in which 100 vertical wellbores had been drilled. To model the wellbores and the flow and transport connection between aquifers that they may induce, we assign a high vertical hydraulic conductivity and a low effective porosity to the cell blocks including the wells. With these parameters, a solute will travel quickly from one aquifer to the other without being stored in the well itself. The wellbores will act as preferential pathways, and the solute will move quickly between aquifers according to the hydrodynamic conditions. Not considering these preferential pathways could induce erroneous interpretations of the solute distribution in an aquifer. We also noted that when there are vertical wellbores that connect aquifers in a multi-aquifer system, low conductivity in the aquitard enhances the flow of solute through the wellbores. Time-varying pumping rates induce important fluctuations in nitrate concentrations; therefore, any estimate of the water quality of the aquifer will depend on the moment when the data has been recorded. Consequently, concentration maps obtained by interpolation of point samples are seldom a good indicator of the chemical status of groundwater bodies; alternatively, we recommend complementing the usual interpolated maps with numerical models to gain a true understanding of the spatial distribution of the solute concentration.  相似文献   

13.
水力传导度是描述孔隙介质物理特性的重要参数,水力传导度的空间变异性直接影响到水分与溶质在介质中的运移状况。由于基于随机理论的方法难于描述具有多重变异尺度的水力传导度的空间变异性,使得基于分形理论的方法得到了较快发展和应用。详细介绍并评述了分形理论和方法的基本特征及研究进展,水力传导度的空间变异分形与弥散尺度效应的关系及其对溶质运移的影响。  相似文献   

14.
衬垫中污染物的运移分析一般采用确定性方法。为了研究渗透系数变异性对污染物运移的影响,基于土层剖面随机场理论,将渗透系数模拟成服从对数正态分布的空间随机场,利用Monte-Carlo和数值积分两种方法进行分析。两种方法得到的结果有很好的一致性。衬垫渗透系数的空间变异性对污染物运移有重要影响。变异系数较大时,衬垫失效概率在前期较大而后期较小,但衬垫底部出现高浓度(相对浓度0.9~1.0)的几率也较高。衬垫的可靠性要综合考虑渗透系数的变异性和渗透系数数值范围的影响。  相似文献   

15.
针对目前渗透系数实测样本假定满足各向同性的局限,以Borden含水层试验场实测数据为例,通过反证法进行相关数据分析,总结了含水介质各向异性对渗透系数空间变异性统计的影响,并指明渗透系数各向同性假设的适用条件以及不合理之处。同时相应地给出了研究尺度下渗透系数场能否采用平稳随机场描述的判定依据。最后为今后进一步开展渗透系数空间变异性研究提出几点建议。  相似文献   

16.
孔隙尺度多孔介质流体流动与溶质运移高性能模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
深入探究孔隙尺度下的流体流动特性和溶质运移规律对石油开采、农田养分管理、地下水污染修复有着重要意义。以人工构建的多孔介质结构和同步辐射X射线显微CT扫描的土壤团聚体(分辨率3.7 μm)为研究对象,在空间节点数多达64 000 000的情况下,基于格子Boltzmann模型和GPU并行技术计算得到多孔介质流体运动和溶质运移过程的关键参数,并据此探究多孔介质空间异质性对水力学特性的影响。通过对3组不同结构的多孔介质比较发现,结构复杂程度最高的土壤样品和不规则堆叠的圆球结构的渗透率在100 mD(即10-13m2)量级,远低于规则堆叠的圆球结构(>20 000 mD);土壤的迂曲度为1.40~1.60,明显高于规则堆叠的圆球结构。研究结果表明,渗透率大的样品具有较小的迂曲度,这与结构的空间异质性有较强的关系;土壤的渗透率和迂曲度呈现各向异性;在水力梯度一定的前提下,渗透率较大的样品,纵向弥散系数也较大;同时,结构的异质性也会影响溶质的穿透曲线。本研究提出的模拟方法可在土壤结构中进行高效的水流运动和溶质运移模拟,可用于土壤多孔介质在孔隙尺度下的水力学特性研究。  相似文献   

17.
18.
Karst systems show high spatial variability of hydraulic parameters over small distances and this makes their modeling a difficult task with several uncertainties. Interconnections of fractures have a major role on the transport of groundwater, but many of the stochastic methods in use do not have the capability to reproduce these complex structures. A methodology is presented for the quantification of tortuosity using the single normal equation simulation (SNESIM) algorithm and a groundwater flow model. A training image was produced based on the statistical parameters of fractures and then used in the simulation process. The SNESIM algorithm was used to generate 75 realizations of the four classes of fractures in a karst aquifer in Iran. The results from six dye tracing tests were used to assign hydraulic conductivity values to each class of fractures. In the next step, the MODFLOW-CFP and MODPATH codes were consecutively implemented to compute the groundwater flow paths. The 9,000 flow paths obtained from the MODPATH code were further analyzed to calculate the tortuosity factor. Finally, the hydraulic conductivity values calculated from the dye tracing experiments were refined using the actual flow paths of groundwater. The key outcomes of this research are: (1) a methodology for the quantification of tortuosity; (2) hydraulic conductivities, that are incorrectly estimated (biased low) with empirical equations that assume Darcian (laminar) flow with parallel rather than tortuous streamlines; and (3) an understanding of the scale-dependence and non-normal distributions of tortuosity.  相似文献   

19.
Fractal models for predicting soil hydraulic properties: a review   总被引:33,自引:0,他引:33  
Modern hydrological models require information on hydraulic conductivity and soil-water retention characteristics. The high cost and large spatial variability of measurements makes the prediction of these properties a viable alternative. Fractal models describe hierarchical systems and are suitable to model soil structure and soil hydraulic properties. Deterministic fractals are often used to model porous media in which scaling of mass, pore space, pore surface and the size-distribution of fragments are all characterized by a single fractal dimension. Experimental evidence shows fractal scaling of these properties between upper and lower limits of scale, but typically there is no coincidence in the values of the fractal dimensions characterizing different properties. This poses a problem in the evaluation of the contrasting approaches used to model soil-water retention and hydraulic conductivity. Fractal models of the soil-water retention curve that use a single fractal dimension often deviate from measurements at saturation and at dryness. More accurate models should consider scaling domains each characterized by a fractal dimension with different morphological interpretations. Models of unsaturated hydraulic conductivity incorporate fractal dimensions characterizing scaling of different properties including parameters representing connectivity. Further research is needed to clarify the morphological properties influencing the different scaling domains in the soil-water retention curve and unsaturated hydraulic conductivity. Methods to functionally characterize a porous medium using fractal approaches are likely to improve the predictability of soil hydraulic properties.  相似文献   

20.
An iterative inverse method, the sequential self-calibration method, is developed for mapping spatial distribution of a hydraulic conductivity field by conditioning on nonreactive tracer breakthrough curves. A streamline-based, semi-analytical simulator is adopted to simulate solute transport in a heterogeneous aquifer. The simulation is used as the forward modeling step. In this study, the hydraulic conductivity is assumed to be a deterministic or random variable. Within the framework of the streamline-based simulator, the efficient semi-analytical method is used to calculate sensitivity coefficients of the solute concentration with respect to the hydraulic conductivity variation. The calculated sensitivities account for spatial correlations between the solute concentration and parameters. The performance of the inverse method is assessed by two synthetic tracer tests conducted in an aquifer with a distinct spatial pattern of heterogeneity. The study results indicate that the developed iterative inverse method is able to identify and reproduce the large-scale heterogeneity pattern of the aquifer given appropriate observation wells in these synthetic cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号