首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At a national scale, the carbon (C) balance of numerous forest ecosystem C pools can be monitored using a stock change approach based on national forest inventory data. Given the potential influence of disturbance events and/or climate change processes, the statistical detection of changes in forest C stocks is paramount to maintaining the net sequestration status of these stocks. To inform the monitoring of forest C balances across large areas, a power analysis of a forest inventory of live/dead standing trees and downed dead wood C stocks (and components thereof) was performed in states of the Great Lakes region, U.S. Using data from the Forest Inventory and Analysis (FIA) program of the U.S. Forest Service, it was found that a decrease in downed wood C stocks (?1.87 Mg/ha) was nearly offset by an increase in standing C stocks (1.77 Mg/ha) across the study region over a 5-year period. Carbon stock change estimates for downed dead wood and standing pools were statistically different from zero (α?=?0.10), while the net change in total woody C (?0.10 Mg/ha) was not statistically different from zero. To obtain a statistical power to detect change of 0.80 (α?=?0.10), standing live C stocks must change by at least 0.7 %. Similarly, standing dead C stocks would need to change by 3.8 %; while downed dead C stocks require a change of 6.9 %. While the U.S.’s current forest inventory design and sample intensity may not be able to statistically detect slight changes (<1 %) in forest woody C stocks at sub-national scales, large disturbance events (>3 % stock change) would almost surely be detected. Understanding these relationships among change detection thresholds, sampling effort, and Type I (α) error rates allows analysts to evaluate the efficacy of forest inventory data for C pool change detection at various spatial scales and levels of risk for drawing erroneous conclusions.  相似文献   

2.
Land cover is a crucial, spatially and temporally varying component of global carbon and climate systems. Therefore accurate estimation and monitoring of land cover changes is important in global change research. Although, land cover has dramatically changed over the last few centuries, until now there has been no consistent way of quantifying the changes globally.In this study we used long-term climate, soils data along with coarse resolution satellite observations to quantify the magnitude and spatial extent of global land cover changes due to anthropogenic processes. Differences between potential leaf area index, derived from climate-soil-leaf area equilibrium and actual leaf area index obtained from satellite data were used to estimate changes in land cover.Forest clearing for agriculture and irrigated farming in arid and semi-arid lands are found to be two major sources of climatically important land cover changes. Satellite derived Spectral Vegetation indices (SV I) and surface temperatures (T s) show strong impact of land cover changes on climatic processes. Irrigated agriculture in dry areas increased energy absorption and evapotranspiration (ET) compared to natural vegetation. On the other hand, forest clearing for crops decreased energy absorption andET. A land cover classification and monitoring system is proposed using satellite derivedSV I andT s that simultaneously characterize energy absorption and exchange processes. This completely remote sensing based approach is useful for monitoring land cover changes as well as their impacts on climate. Monitoring the spatio-temporal dynamics of land cover is possible with current operational satellites, and could be substantially improved with the Earth Observing System (EOS) era satellite sensors.  相似文献   

3.
Forests of the United States and Russia can play a positive role in reducing the extent of global warming caused by greenhouse gases, especially carbon dioxide. To determine the extent of carbon sequestration, physical, ecological, economic, and social issues need to be considered, including different forest management objectives across major forest ownership groups. Private timberlands in the U.S. Pacific Northwest are relatively young, well stocked, and sequestering carbon at relatively high rates. Forests in northwestern Russia are generally less productive than those in the Northwestern U.S. but cover extensive areas. A large increase in carbon storage per hectare in live tree biomass is projected on National Forest timberlands in the U.S. Pacific Northwest for all selected scenarios, with an increase of between 157–175 Mg by 2050 and a near doubling of 1970s levels. On private timberlands in the Pacific Northwest, average carbon in live tree biomass per hectare has been declining historically but began to level off near 65 Mg in 2000; projected levels by 2050 are roughly what they were in 1970 at approximately 80 Mg. In the St. Petersburg region, average carbon stores were similar to those on private lands in the Pacific Northwest: 57 Mg per hectare in 2000 and ranging from 40 to 64 Mg by 2050. Although the projected futures reflect a broad range of policy options, larger differences in projected carbon stores result from the starting conditions determined by ownership, regional environmental conditions, and past changes in forest management. However, an important change of forest management objective, such as the end of all timber harvest on National Forests in the Pacific Northwest or complete elimination of mature timber in the St. Petersburg region, can lead to substantial change in carbon stores over the next 50 years.  相似文献   

4.
Forest transitions: towards a global understanding of land use change   总被引:5,自引:0,他引:5  
Places experience forest transitions when declines in forest cover cease and recoveries in forest cover begin. Forest transitions have occurred in two, sometimes overlapping circumstances. In some places economic development has created enough non-farm jobs to pull farmers off of the land, thereby inducing the spontaneous regeneration of forests in old fields. In other places a scarcity of forest products has prompted governments and landowners to plant trees in some fields. The transitions do little to conserve biodiversity, but they do sequester carbon and conserve soil, so governments should place a high priority on promoting them.  相似文献   

5.
A carbon budget model was developed to examine the effects of forest management practices on carbon storage in U.S. private timberlands. The model explicitly incorporates the demand for wood products and its impact on harvesting and other management decisions. Forest carbon is divided into four components: carbon stored in trees, soils, forest litter, and understory vegetation. Changes in the forest carbon inventory result from tree growth and management activities, in particular harvesting. Harvesting of timber for wood products is determined by demand and supply forces. The model then tracks carbon in timber removals through primary and secondary processing and disposal stages. Harvesting also has effects on carbon in soils, forest litter, and understory vegetation. A base-run scenario projects increases in carbon storage in U.S. private timberlands by 2040; however, this increase is offset by carbon emissions resulting from harvesting.  相似文献   

6.
Using recent land cover maps, we used matching techniques to analyze forest cover and assess effectiveness in avoiding deforestation in three main land tenure regimes in Panama, namely protected areas, indigenous territories and non-protected areas. We found that the tenure status of protected areas and indigenous territories (including comarcas and claimed lands) explains a higher rate of success in avoided deforestation than other land tenure categories, when controlling for covariate variables such us distance to roads, distance to towns, slope, and elevation. In 2008 protected areas and indigenous territories had the highest percentage of forest cover and together they hosted 77% of Panama's total mature forest area. Our study shows the promises of matching techniques as a potential tool for demonstrating and quantifying conservation efforts. We therefore propose that matching could be integrated to methodological approaches allowing compensating forests’ protectors. Because conserving forest carbon stocks in forested areas of developing countries is an essential component of REDD+ and its future success, the discussion of our results is relevant to countries or jurisdictions with high forest cover and low deforestation rates.  相似文献   

7.
The Russian boreal forest contains about 25% of the global terrestrial biomass, and even a higher percentage of the carbon stored in litter and soils. Fire burns large areas annually, much of it in low-severity surface fires – but data on fire area and impacts or extent of varying fire severity are poor. Changes in land use, cover, and disturbance patterns such as those predicted by global climate change models, have the potential to greatly alter current fire regimes in boreal forests and to significantly impact global carbon budgets. The extent and global importance of fires in the boreal zone have often been greatly underestimated. For the 1998 fire season we estimate from remote sensing data that about 13.3 million ha burned in Siberia. This is about 5 times higher than estimates from the Russian Aerial Forest Protection Service (Avialesookhrana) for the same period. We estimate that fires in the Russian boreal forest in 1998 constituted some 14–20% of average annual global carbon emissions from forest fires. Average annual emissions from boreal zone forests may be equivalent to 23–39% of regional fossil fuel emissions in Canada and Russia, respectively. But the lack of accurate data and models introduces large potential errors into these estimates. Improved monitoring and understanding of the landscape extent and severity of fires and effects of fire on carbon storage, air chemistry, vegetation dynamics and structure, and forest health and productivity are essential to provide inputs into global and regional models of carbon cycling and atmospheric chemistry.  相似文献   

8.
Afforestation of marginal agricultural lands represents a promising option for carbon sequestration in terrestrial ecosystems. An ecosystem carbon model was used to generate new national maps of annual net primary production (NPP), one each for continuous land covers of ‘forest’, ‘crop’, and ‘rangeland’ over the entire U. S. continental area. Direct inputs of satellite “greenness” data from the Advanced Very High Resolution Radiometer (AVHRR) sensor into the NASA-CASA carbon model at 8-km spatial resolution were used to estimate spatial variability in monthly NPP and potential biomass accumulation rates in a uniquely detailed manner. The model predictions of regrowth forest production lead to a conservative national projection of 0.3 Pg C as potential carbon stored each year on relatively low-production crop or rangeland areas. On a regional level, the top five states for total crop afforestation potential were: Texas, Minnesota, Iowa, Illinois, and Missouri, whereas the top five states for total rangeland afforestation potential are: Texas, California, Montana, New Mexico, and Colorado. Afforestation at this level of intensity has the capacity to offset at least one-fifth of annual fossil fuel emission of carbon in the United States. These projected afforestation carbon gains also match or exceed recent estimates of the annual sink for atmospheric CO2 in currently forested area of the country.  相似文献   

9.
Sea level rise (SLR) is among the climate-change-related problems of greatest concern, threatening the lives and property of coastal residents and generating far-reaching economic and ecological impacts. We project that SLR will lead to an increase in the rate of new housing construction to replace destroyed structures, impact global wood products supply and demand conditions, and cause changes in global forest sector carbon mitigation potential. Findings indicate that 71 million new units will be built by 2050 to accommodate the SLR-affected global population. More than two-thirds of these new units are projected to be in Asia. The estimated extra wood products needed to build these new residential units is 1,659 million m3, assuming that all these structures would be built mainly with wood, representing a 4 % increase in total wood consumption, compared to projected reference level global wood products consumption. Increased timber removals to meet this higher construction wood demand (alternative scenario) is shown to deplete global forest carbon by 2 % by 2050 compared to the reference scenario. However, all such projected declines in forest biomass carbon could be more than offset by increased carbon sequestration in harvested wood products, avoided emissions due to substitution of wood for non-wood materials in construction, and biomass regrowth on forestland by 2050, with an estimated net emissions reduction benefit of 0.47 tCO2e/tCO2e of extra wood used in SLR-related new houses over 30 years. The global net emissions reduction benefit increased to 2.13 tCO2e/tCO2e of extra wood when price-induced changes in forest land area were included.  相似文献   

10.
The U.K. has extensive databases on soils, land cover and historic land use change which have made it possible to construct a comprehensive inventory of the principal terrestrial sources and sinks of carbon for approximately the year 1990, using methods that are consistent with, and at least as accurate as, the revised 1996 guidelines recommended by IPCC where available – and including categories which are not currently considered under the UN Framework Convention on Climate Change. This country inventory highlights issues concerning methodology, uncertainty, double counting, the importance of soils and the relative magnitude of sources and sinks which are reported to the UNFCCC relative to other sources and sinks. The carbon sinks (negative values in MtC a-1) for categories reported to the UNFCCC, based on the IPCC categories, were estimated to be: forest trees and litter (–2.1), U.K. forest products (–0.5, ignoring imports and exports), non-forest biomass (–0.3), forest soils (–0.1) and soils on set-aside land (–0.4). The carbon sources (positive values) reported under the UNFCCC were estimated to be: losses of soil organic carbon resulting from cultivation of semi-natural land (6.2) and from urbanization (1.6), drainage of peatlands (0.3) and fenlands (0.5), and peat extraction (0.2). A range of other sources and sinks not covered by the IPCC guidelines were also quantified, namely, the accumulation of carbon in undrained peatlands (–0.7, ignoring methane emission), sediment accretion in coastal marshes (–0.1), the possible U.K. share of the CO2 and N fertilization carbon sink (–2.0) and riverine organic and particulate carbon export to the sea (1.4, which may be assumed to be a source if most of this carbon is released as CO2 in the sea). All sinks totalled –6.2 and sources 10.2, giving a net flux to the atmosphere in 1990 of 4.0 MtC a-1. Uncertainties associated with categories, mostly based on best guesses, ranged from ±15% for forest biomass and litter to ±60% for CO2 and N fertilization.  相似文献   

11.
Increased water yield and baseflow and decreased peak flow are common goals of watershed service programs. However, is the forest management often used in such programs likely to provide these beneficial watershed services? Many watershed service investments such as water funds typically change less than 10% of watershed land cover. We simulate the effects of 10% forest-cover change on water yield, low flow, and high flow in hydrologic models of 29 watersheds around the world. The forest-cover changes considered are: forest restoration from degraded natural lands or agriculture, forest conversion to agriculture, and forest conversion to urban cover. We do not consider grassland restoration by removal of alien tree species from riparian zones, which does increase water yield and low flow. Forest restoration from locally-predominant agricultural land resulted in median loss in annual water yield of 1.4%. Forest restoration reduced low flow and high flow by ∼3%. After forest restoration, low flow increased in ∼25% of cases while high flow and water yield declined in nearly all cases. Development of forest to agriculture or urban cover resulted in a 1–2% median increase in water yield, a 0.25–1% increase in low flow, and a 5–7% increase in high flow. We show that hydrologic responses to forest cover changes are not linearly related to climate, physiography, initial land cover, nor a multitude of watershed characteristics in most cases. These results suggest that enhanced streamflow watershed services anticipated from forest restoration or conservation of 10% or less of a watershed are generally modest.  相似文献   

12.
As the world’s population continues to grow, agricultural expansion is expected to increase to meet future food demand often at the expense of other land uses. However, there are limited studies examining the degree to which forest cover will change and the underlying assumptions driving these projections. Focusing on food and forest scenarios for the middle to the end of the current century, we review 63 main scenarios and 28 global modelling studies to address variations in land use projections and evaluate the potential outcomes on forest cover. Further, their potential impacts on greenhouse gases (GHG) emission/sequestration and global temperature are explored. A majority (59%) of scenarios expected a reduction in both forests and pasturelands to make way for agricultural expansion (particularly reference and no mitigation scenarios). In most scenarios, the extent of forest loss is proportional to that of crop gain, which is associated with higher GHG emission and global temperature, loss of carbon sequestration potential and increase in soil erosion. However, 32% of scenarios predicted that meeting food security objectives is possible without leading to further deforestation if there is a global reduction in the demand for energy intensive foods, and improvements in crop yields. Forest gain and lower rates of deforestation are needed to achieve ambitious climate targets over the next decade. Our analysis also highlights carbon taxes (prices), reforestation/afforestation and bioenergy as important variables that can contribute to maintaining or increasing global forest area in the future.  相似文献   

13.
Short-rotation woody crops (SRWC) could potentially displace fossil fuels and thus mitigate CO2 buildup in the atmosphere. To determine how much fossil fuel SRWC might displace in the United States and what the associated fossil carbon savings might be, a series of assumptions must be made. These assumptions concern the net SRWC biomass yields per hectare (after losses); the amount of suitable land dedicated to SRWC production; wood conversion efficiencies to electricity or liquid fuels; the energy substitution properties of various fuels; and the amount of fossil fuel used in growing, harvesting, transporting, and converting SRWC biomass. Assuming the current climate, present production, and conversion technologies and considering a conservative estimate of the U.S. land base available for SRWC (14 × 106 ha), we calculate that SRWC energy could displace 33.2 to 73.1 × 106 Mg of fossil carbon releases, 3–6% of the current annual U.S. emissions. The carbon mitigation potential per unit of land is larger with the substitution of SRWC for coal-based electricity production than for the substitution of SRWC-derived ethanol for gasoline. Assuming current climate, predicted conversion technology advancements, an optimistic estimate of the U.S. land base available for SRWC (28 × 106 ha), and an optimistic average estimate of net SRWC yields (22.4 dry Mg/ha), we calculate that SRWC energy could displace 148 to 242 × 106 Mg of annual fossil fuel carbon releases. Under this scenario, the carbon mitigation potential of SRWC-based electricity production would be equivalent to about 4.4% of current global fossil fuel emissions and 20% of current U.S. fossil fuel emissions.Research sponsored by the Biofuels Systems Division, U.S. Department of Energy, under contract DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc. Environmental Sciences Division Publication number 3952.  相似文献   

14.
Forests play an important role in sequestrating carbon from the atmosphere. Since the 1980s, reforestation activities have been implemented in the area surrounding the Qianyanzhou Forest Experimental Station in Jiangxi Province, China. Farmland and heavily eroded waste land were replanted with fruit, orchards and forest plantations. The area surrounding the Qianyanzhou Forest Experimental Station was selected as research site to analyze the potential of reforestation in carbon sequestration. This study evaluates the variation of soil organic carbon storage under the different land use types. Soil organic carbon storage varied greatly with land use types. From 1984 to 2002, soil organic carbon storage increased 2.45 × 106 kg across eight land use types. This study demonstrates the potential for carbon sequestration in soils from reforestation. However, a complete understanding of soil carbon fluxes at the landscape scale will depend on the potential and retention period of soil organic carbon.  相似文献   

15.
Terrestrial carbon pools in southeast and south-central United States   总被引:1,自引:0,他引:1  
Analyses of regional carbon sources and sinks are essential to assess the economical feasibility of various carbon sequestration technologies for mitigating atmospheric CO2 accumulation and for preventing global warming. Such an inventory is a prerequisite for regional trading of CO2 emissions. As a U.S. Department of Energy Southeast Regional Carbon Sequestration Partner, we have estimated the state-level terrestrial carbon pools in the southeast and south-central US. This region includes: Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Texas, and Virginia. We have also projected the potential for terrestrial carbon sequestration in the region. Texas is the largest contributor (34%) to greenhouse gas emission in the region. The total terrestrial carbon storage (forest biomass and soils) in the southeast and south-central US is estimated to be 130 Tg C/year. An annual forest carbon sink (estimated as 76 Tg C/year) could compensate for 13% of the regional total annual greenhouse gas emission (505 Tg C, 1990 estimate). Through proper policies and the best land management practices, 54 Tg C/year could be sequestered in soils. Thus, terrestrial sinks can capture 23% of the regional total greenhouse emission and hence are one of the most cost-effective options for mitigating greenhouse emission in the region.  相似文献   

16.
Protected areas (PAs) serve as a critical strategy for protecting natural resources, conserving biodiversity, and mitigating climate change. While there is a critical need to guide area-based conservation efforts, a systematic assessment of PA effectiveness for storing carbon stocks has not been possible due to the lack of globally consistent forest biomass data. In this study, we present a new methodology utilizing forest structural information and aboveground biomass density (AGBD) obtained from the Global Ecosystem Dynamics Investigation (GEDI) mission. We compare PAs with similar, unprotected forests obtained through statistical matching to assess differences in carbon storage and forest structure. We also assess matching outcomes for a robust and minimally biased way to quantify PA efficacy. We find that all analyzed PAs in Tanzania possess higher biomass densities than their unprotected counterfactuals (24.4% higher on average). This is also true for other forest structure metrics, including tree height, canopy cover, and plant area index (PAI). We also find that community-governed PAs are the most effective category of PAs at preserving forest structure and AGBD – often outperforming those managed by international or national entities. In addition, PAs designated under more than one entity perform better than the PAs with a single designation, especially those with multiple international designations. Finally, our findings suggest that smaller PAs may be more effective for conservation, depending on levels of connectivity. Taken together, these findings support the designation of PAs as an effective means for forest management with considerable potential to protect forest ecosystems and achieve long-term climate goals.  相似文献   

17.
提取GLC2009土地覆盖数据,将其运用到WRF数值模式并与模式自带的MODIS、USGS土地覆盖进行对比,以海南岛做为研究区域,选择一次海风锋天气过程进行敏感性分析,结果表明:①GLC2009对海南岛农耕地、森林的划分最接近实际情况,在海南岛平原以及丘陵地带,MODIS和USGS划分的农耕地比例过高,而在山区森林比例偏低;②GLC2009、MODIS、USGS对海南岛北部的降水模拟出现了空报,但是GLC2009对东海岸的强降水模拟的较好,并避免了MODIS和USGS在海南西南部的降水空报的情况;③GLC2009模拟的10米风场清晰刻画了东海岸海风锋辐合,其相对合理的森林覆盖提高了地表粗糙度并增强了风场辐合、低反照率对地面气温的增加和海陆热力差异的增强有一定的促进作用。④GLC2009对这次海风锋过程中模拟的感热通量和潜热通量都要高于MODIS和USGS,这种陆气间的热通量交换利于强对流天气的触发,发展。  相似文献   

18.
Assessing large-scale patterns of gross primary production (GPP) in arid and semi-arid (ASA) areas is important for both scientific and practical purposes. Remote sensing-based models, which integrate satellite data with input from ground-based meteorological measurements and vegetation characteristics, improve spatially extended estimates of vegetation productivity with high accuracy. In this study, the authors simulated GPP in ASA areas by integrating moderate resolution imaging spectral radiometer (MODIS) data with eddy covariance and meteorological measurements at the flux tower sites using the Vegetation Photosynthesis Model (VPM), which is a remote sensing-based model for analyzing the spatial pattern of GPP in different land cover types. The field data were collected by coordinating observations at nine stations in 2008. The results indicate that in the region during the growing season GPP was highest in cropland sites, second highest in woodland sites, and lowest in grassland sites. VPM captured the temporal and spatial characteristics of GPP for different land covers in ASA areas. Further, Enhanced Vegetation Index (EVI) had a strong liner relationship with GPP in densely vegetated areas, while the Normalized Difference Vegetation Index (NDVI) had a strong liner relationship with GPP over less dense vegetation. This study demonstrates the potential of satellite-driven models for scaling-up GPP, which is a key component for studying the carbon cycle at regional and global scales.  相似文献   

19.
Throughout history, humans have transformed natural forests into agricultural land, settlement areas and managed forests. Studies on the dynamics of forest change are one of the mainstays in land change science. The forest transition theory offers a powerful tool to analyze changes in human interference with forests. At the national level, a range of factors have been found to influence a country's forest change. The role of international wood product trade has, however, rarely been studied based on empirical data. We offer a global assessment of how this trade helps shape observed forest change, by relating forest stock change to net trade of wood products for the period 1997-2007 and by localizing the origin of wood consumed in a given nation. For many nations, traded wood products have a relevant impact on the course of ongoing forest transitions. We develop a general typology of how wood product trade can influence forest change and place various nations within this framework. We find that many wealthy nations with returning forests seem to accelerate this return by importing wood products. These imports appear to be provided by two main types of wood exporters: (a) by wealthy countries with low population densities and stable forests and (b) by relatively poor countries with declining forests, employing increasing population and welfare levels. We discuss these findings in the light of general theories on land use transitions and forest change and conclude by highlighting implications for national forest policies and global environmental governance, aiming at reducing negative impacts of wood products and enhancing the positive role they can play in replacing more fossil fuel intensive products.  相似文献   

20.
A carbon sequestration strategy has recently been proposed in which a forest is actively managed, and a fraction of the wood is selectively harvested and stored to prevent decomposition. The forest serves as a ‘carbon scrubber’ or ‘carbon remover’ that provides continuous sequestration (negative emissions). Earlier estimates of the theoretical potential of wood harvest and storage (WHS) based on coarse wood production rates were 10?±?5 GtC y?1. Starting from this physical limit, here we apply a number of practical constraints: (1) land not available due to agriculture; (2) forest set aside as protected areas, assuming 50 % in the tropics and 20 % in temperate and boreal forests; (3) forests difficult to access due to steep terrain; (4) wood use for other purposes such as timber and paper. This ‘top-down’ approach yields a WHS potential 2.8 GtC y?1. Alternatively, a ‘bottom-up’ approach, assuming more efficient wood use without increasing harvest, finds 0.1–0.5 GtC y?1 available for carbon sequestration. We suggest a range of 1–3 GtC y?1 carbon sequestration potential if major effort is made to expand managed forests and/or to increase harvest intensity. The implementation of such a scheme at our estimated lower value of 1 GtC y?1 would imply a doubling of the current world wood harvest rate. This can be achieved by harvesting wood at a moderate harvesting intensity of 1.2 tC ha?1 y?1, over a forest area of 8 Mkm2 (800 Mha). To achieve the higher value of 3 GtC y?1, forests need to be managed this way on half of the world’s forested land, or on a smaller area but with higher harvest intensity. We recommend WHS be considered part of the portfolio of climate mitigation and adaptation options that needs further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号