首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents a method for separating the small metallic nonferrous particles from two component nonferrous mixtures using a new type of dynamic eddy-current separator with permanent magnets. The so called Angular Drum Eddy-Current Separator (ADECS) consists of a horizontal rotary drum covered with permanent magnets, alternately N–S and S–N oriented. The rotor is placed oblique, under the superior part of a horizontal conveyor belt, coplanar with its surface. The axis of the drum and the direction of displacement of the belt make a certain angle, depending on the physical properties of the particles subjected to the separation process. The separator functions on the basis of the jump effect of the strongly conducting particles which assume different trajectories in the active zone of the field, namely, upper part of the drum. The experimental results and comments regarding the values obtained for grade and recovery for wastes consisting in Cu–Pb and Cu–Al mixtures are given.  相似文献   

2.
This paper presents a theoretical study and a method regarding the separation of small nonferrous particles (Au, Ag) in low concentration from mineral wastes, using the dielectrophoresis phenomenon. The main theoretical considerations referring to the dielectrophoresis and the appearance and action of the electric gradient forces, typical for nonuniform fields, are presented. The gradient and superficial electric forces, in competition with gravitational forces, act on the dielectric particles from the surface of the material subjected to the separation process. Under the combined actions of all these forces, the metallic particles are concentrated on the surface of the mixture, forming a superficial conductive layer. Finally, the experimental results and conclusions regarding the concentrations in Au and Ag of the particles collected from the formed layer are presented, based on chemical analysis.  相似文献   

3.
Marine black shales of the Lower Cambrian Niutitang Formation in southern China host Mo–Ni–platinum group elements (PGE) mineralization confined to a phosphate- and pyrite-rich stratiform body (max. 20-cm thick). The H/C atomic ratio, carbon isotopic composition, FTIR spectra of bulk organic matter, and spectra of extractable part of organic matter indicate similar sources and thermal evolution of organic matter in barren and mineralized black shales.The morphology and relative abundance of organic particles in barren and mineralized shales are different. In barren black shales, organic particles comprise only elongated bodies and laminae 2–10 μm across or elongated larger bodies (> 10 μm) with Rmax = 2.96–5.21% (Type I particles). Mineralized black shales contain Type I particles in rock matrix (90–95 vol%), small veinlets or irregular organic accumulations (Type II particles, 1–5 vol%) that display weak to well developed mosaic texture and a variable reflectance (Rmax = 3.55–8.65%), and small (< 1 to 5 μm) rounded or irregular Type III organic particles (1–4 vol%) distributed within phosphate nodules and sulphide rip-up clasts. Type III particles show similar reflectance as particles of Type I in rock matrix. Type I particles are interpreted as remnants of in situ bacterially reworked organic matter of cyanobacteria/algal type, Type II as solidified products or oil-derived material (migrabitumen), and Type III particles as remnants of original organic matter in phosphatized or sulphidized algal/microbial oncolite-like bodies. Equivalent vitrinite reflectances of Type I and III particles in barren and mineralized rocks are similar and correspond to semi-anthracite and anthracite. Micro-Raman spectra of organic particles in rocks display a wide belt in the area of 1600 cm− 1 (G belt) and approximately the same belt in the area of 1350 cm− 1 (D belt). The ratio of integrated areas of the two belts correlate with Rmax values.The Mo–Ni–PGE mineralized body is interpreted as to represent a remnant of phosphate- and sulphide-rich subaquatic hardground supplied with organic material derived from plankton and benthic communities as well as with algal/microbial oncolite-like bodies that originated in wave-agitated, shallow-water, nearshore environment.  相似文献   

4.
Mineral exploration in the Neoproterozoic Goiás Magmatic Arc, central Brazil, dates back to the beginning of the 1970s. The Goiás Magmatic Arc extends for more than 1000 km in the western and northern parts of Goiás, into Tocantins, and disappears under the Phanerozoic Parnaíba Basin. Two main areas of Neoproterozoic juvenile crust, the Arenópolis and the Mara Rosa arcs, are identified. They lie in the southern and northern sectors of the Goiás Arc, respectively, and are relatively well studied.The Goiás Magmatic Arc dominantly comprises tonalitic/dioritic orthogneisses and narrow NNE-striking volcano-sedimentary belts. Recent U–Pb zircon data indicate crystallization of the tonalite protoliths in two main episodes: the older between ca. 890 and 790 Ma and the younger at 670–600 Ma. Nd isotopic data indicate the very primitive nature of the original magmas, with TDM model ages mostly within the interval between 0.9 and 1.0 Ga and Nd(T) values between +3.0 and +4.6. In the Chapada–Mara Rosa area, the supracrustal rocks form three individual NNE belts, known as the eastern, central and western belts, separated from each other by metatonalites/metadiorites.Gold and Cu–Au deposits of the Mara Rosa area occur in four main associations: (i) Au–Ag–Ba (e.g., Zacarias), which are interpreted as stratiform, disseminated volcanogenic deposits, (ii) Cu–Au (e.g., Chapada) which has been interpreted either as volcanogenic or as a porphyry-type deposit, (iii) Au-only deposits (e.g., Posse), interpreted as an epigenetic disseminated deposit controlled by a mesozonal shear zone and (iv) Au–Cu–Bi (e.g., the Mundinho occurrence), which are considered as vein-type deposits controlled by magnetite-rich diorites.The gold and Cu–Au deposits located within the Goiás Magmatic Arc can be spatially and temporally related to the magmatic evolution of a collisional belt or, in other words, to an orogenic gold deposit model. These models are based on the continuous evolution of collisional plates, which can be subdivided into four stages with distinct magmatic characteristics: (i) subduction stage, (ii) syntectonic collisional magmatism stage, (iii) post-tectonic collisional magmatism stage and (iv) post-orogenic extension stage.  相似文献   

5.
The Katanga Copperbelt is the Congolese part of the well-known Central African Copperbelt, the largest sediment-hosted stratiform Cu–Co province on Earth. Petrographic examination of borehole samples from the Kamoto and Luiswishi mines in the Katanga Copperbelt recognized two generations of hypogene Cu–Co sulfides and associated gangue minerals (dolomite and quartz). The first generation is characterized by fine-grained Cu–Co sulfides and quartz replacing dolomite. The second generation is paragenetically later and characterized by coarse-grained Cu–Co sulfides and quartz overgrown and partly replaced by dolomite. Fluid inclusion microthermometric data were collected from two different types of fluid inclusions: type-I fluid inclusions (liquid + vapor) in the quartz of the first generation and type-II fluid inclusions (liquid + vapor + halite) in the quartz of the second generation. The microthermometric analyses indicate that the fluids represented by type-I and type-II fluid inclusions had very different temperatures and salinities and were not in thermal equilibrium with the host rock.Petrographic and microthermometric data indicate the presence of at least two main hypogene Cu–Co sulfide phases in the Katanga Copperbelt. The first is an early diagenetic typical stratiform phase, which produced fine-grained sulfides that are disseminated in the host rock and frequently concentrated in nodules and lenticular layers. This phase is related to a hydrothermal fluid with a moderate temperature (115 to 220 °C, or less if reequilibration of inclusions has occurred) and salinity (11.3 to 20.9 wt.% NaCl equiv.). The second hypogene Cu–Co phase produced syn-orogenic coarse-grained sulfides, which also occur disseminated in the host rock but mainly concentrated in a distinct type of stratiform nodules and layers and in stratabound veins and tectonic breccia cement. This second phase is related to a hydrothermal fluid with high temperature (270 to 385 °C) and salinity (35 to 45.5 wt.% NaCl equiv.).A review of available microthermometric and ore geochronological data of the Copperbelt in both the Democratic Republic of Congo and Zambia supports the regional presence of the two Cu–Co phases proposed in our study. Future geochemical analyses in the Copperbelt should take into account the presence of, at least, these two Cu–Co phases, their contrasting fluid systems and the possible overprint of the first phase by the second one.  相似文献   

6.
This work describes a laboratory study concerning the adsorption of isopropylxanthate ions onto modified zeolites particles. The separation of the loaded carrier and their removal, from aqueous solutions, was conducted by flocculation followed by dissolved air flotation, DAF. The zeolite employed was a natural sample (approximately 48% clinoptilolite and 30% mordenite) which was previously treated with sodium ions (activation) and modified with copper ions (Cu–Z) before the xanthate ions uptake. Adsorption capacities (qm) for Cu–Z were 0.34 meq g− 1 for the powdered form, and 1.12 meq g− 1 for the floc form. The adsorption capacity for the floc form appears to involve an enhanced electrostatic adsorption due to the positive sites on the floc surface. In all cases, the isopropylxanthate concentration in the treated water was found to be negligible (< 0.04 mg L− 1). The flotation technique showed to be a fast process, requires a low recycle ratio (20%) in air saturated water, and the treated water ended up with a very low residual turbidity (6.8 NTU). It is believed that this adsorption–flotation technique, here named adsorptive particulate flotation, using activated and modified natural zeolite has a high potential as an alternative for pollutants removal (copper and isopropylxanthate ions) from waste mining effluents.  相似文献   

7.
This paper presents the petrographical, mineralogical and geochemical characteristics of the Carlés Cu–Mo–Au ore deposit, located in the Rio Narcea Gold Belt (Cantabrian zone of the Iberian Massif). It is related to a small postkinematic calc-alkaline monzogranite, which intrudes as a cedar-tree laccolith into the upper siliciclastic Furada Formation (late Silurian age) and the Nieva carbonates (early Devonian age). The Carlés deposit consists mainly of a well-developed exoskarn. The exoskarn is mostly calcic skarn made up of early garnet and pyroxene, and later amphibole, magnetite and sulfides. The presence of magnesian skarn has been recorded on the north side of the intrusion (roof of granitoid). Magnesian skarn consists of olivine, which is partially replaced by diopside and phlogopite and spinel. Close to the igneous rock, skarns are overprinted by strong potassic alteration. The ore is related to the skarn retrogradation and post-skarn veining and faulting. The skarn-related ore consists of earlier, uneconomic magnetite and Fe–As sulfide assemblages and economic Cu–Au–Ag (Bi–Te) assemblages on the eastern and western sides of the contact aureole, and uneconomic Mo and subeconomic Fe–As–Cu–Au–Ag on the northern side of the contact. Later subeconomic Fe–As–Sb–(Zn–Sn–Cu–Au–Ag) assemblages crosscut the granitoid, skarn, marbles and mineral associations developed previously, and are related to younger episodes of fracturing and faulting. Fluid inclusions in the first hydrothermal stage consist of an aqueous solution with significant contents of CO2, which reach unmixing conditions as a result of a decrease in PT conditions. This led to two types of solutions, aqueous solutions of moderate to high salinity and hydrocarbon solutions of low salinity. This unmixing phenomenon controlled the first stage of gold precipitation. During the late hydrothermal activity, primary low-salinity-aqueous-carbonic inclusions with contrasting densities are found. They homogenize into vapor, critical or liquid phase. Homogenization temperatures are practically the same in all inclusions, indicating a boiling phenomenon that could control a new precipitation of gold.  相似文献   

8.
The Kundelungu foreland, north of the Lufilian arc in the Democratic Republic of Congo, contains a number of various vein-type and stratiform copper mineralisations. The geodynamic context and metallogenesis of these mineral occurrences remain enigmatic. Currently, the vein-type Cu–Ag ore deposit at Dikulushi is the most significant deposit in the region. Mineralisation at Dikulushi comprises two major styles: 1) a polysulphide assemblage (Zn–Pb–Fe–Cu–As) within brecciated rocks along an anticlinal closure; and 2) a vein-hosted Cu–Ag assemblage. Petrographic and fluid inclusion studies indicate that the early Zn–Pb–Fe–Cu–As assemblage formed from a high-salinity Ca–Na–Cl fluid of modest temperature (135–172 °C). The later, economically more significant vein-related Cu–Ag mineralisation formed from intermediate salinity, lower temperature (46–82 °C) Na–Cl fluids. Weathering of the sulphide minerals resulted in a supergene enrichment with the formation of secondary Cu-minerals.  相似文献   

9.
The area of the Middle–Lower Yangtze River valley, Eastern China, extending from Wuhan (Hubei province) to western Zhenjiang (Jiangsu province), hosts an important belt of Cu–Au–Mo and Fe deposits. There are two styles of mineralization, i.e., skarn/porphyry/stratabound Cu–Au–Mo–(Fe) deposits and magnetite porphyry deposits in several NNE-trending Cretaceous fault-bound volcanic basins. The origin of both deposit systems is much debated. We dated 11 molybdenite samples from five skarn/porphyry Cu–Au–Mo deposits and 5 molybdenite samples from the Datuanshan stratabound Cu–Au–Mo deposit by ICP-MS Re–Os isotope analysis. Nine samples from the same set were additionally analyzed by NTIMS on Re–Os. Results from the two methods are almost identical. The Re–Os model ages of 16 molybdenite samples range from 134.7 ± 2.3 to 143.7 ± 1.6 Ma (2σ). The model ages of the five samples from the Datuanshan stratabound deposit vary from 138.0 ± 3.2 to 140.8 ± 2.0 Ma, with a mean of 139.3 ± 2.6 Ma; their isochron age is 139.1 ± 2.7 Ma with an initial Os ratio of 0.7 ± 8.1 (MSWD = 0.29). These data indicate that the porphyry/skarn systems and the stratabound deposits have the same age and suggest an origin within the same metallogenic system. Albite 40Ar/39Ar dating of the magnetite porphyry deposits indicates that they formed at 123 to 125 Ma, i.e., 10–20 Ma later. Both mineralization styles characterize transitional geodynamic regimes, i.e., the period around 140 Ma when the main NS-trending compressional regime changed to an EW-trending lithospheric extensional regime, and the period of 125–115 Ma of dramatic EW-trending lithospheric extension.  相似文献   

10.
Two tin-polymetallic vein-type deposits widely separated in time and space but with strong similarities in terms of mineralization style, ore mineralogy and chemistry have been studied comparatively with the aim of understanding the mineralogical evolution of In-rich hydrothermal systems. The Tosham deposit, Bhiwani district, Haryana, India, is of Neoproterozoic age and constitutes a Sn–Cu prospect with unusually high In content. The disseminated, crude stockwork and vein mineralization is hosted by greisenised metasedimentary rocks intruded by a porphyritic granite stock and by later rhyolitic effusives. The Goka deposit, Naegi district, Japan is probably of uppermost Cretaceous age and occurs close to a well fractionated ilmenite series granitoid body. The tin-polymetallic vein in the Goka deposit is hosted by a welded tuff unit close to a subvolcanic granodiorite porphyry.The main host minerals of indium in the Tosham and Goka ores are sphalerite, stannite, unidentified Zn–Cu–Fe–In–Sn–S phases and chalcopyrite. Up to 0.48 wt.% In has been noted in the Goka chalcopyrite, whereas at Tosham, the mineral has a maximum In concentration of 1220 ppm. At Goka the sphalerite contains up to 1.89 wt.% In, whereas In-bearing stannite carries up to ca. 9 wt.% of the metal. Roquesite is the other indium mineral present in the Tosham ores, but is absent in Goka. The mineral chemistry of the Tosham and Goka ores suggest that the In-bearing minerals belong to a multi-component Zn–Cu–Fe–(Ag)–Sn–In–S system. Based on various triangular plots of the atomic proportions of the main metals, it is inferred that there are end-member phases, roquesite and stannite, in the Tosham ores co-existing with chalcopyrite. The sphalerite is both pure end-member and Cu–In-bearing in both the Tosham and Goka ores. Some of the analysed stannite grains in Tosham ores could possibly be petrukite. The Zn–Cu–Fe–Sn–In–S system in the two ores has a Sn-poor, high-In solid solution phase and also a Sn-rich, low-In solid solution phase. It seems possible that these two solid solutions were the first to form during hydrothermal ore deposition at high temperatures from a disordered solid solution located at the (Cu + Ag):(Zn + Fe):(In + Sn) = 3:5:2 intersection in the (Cu + Ag)–(Zn + Fe)–(In + Sn) field. With decreasing temperatures, the Sn-poor, In-rich solid solution exsolved the Zn–In-mineral of Ohta [Ohta, E., 1980. Mineralization of Izumo and Sorachi veins of the Toyoha mine, Hokkaido, Japan. Bulletin, Geological Survey of Japan 31, 585–597. (in Japanese with English abstract).] and sphalerite, while the Sn-rich, In-poor solid solution was broken down to stannite and relatively-Cu-rich sphalerite.  相似文献   

11.
The Itacaiúnas Belt of the highly mineralised Carajás Mineral Province comprises ca. 2.75 Ga volcanic rocks overlain by sedimentary sequences of ca. 2.68 Ga age, that represent an intracratonic basin rather than a greenstone belt. Rocks are generally at low strain and low metamorphic grade, but are often highly deformed and at amphibolite facies grade adjacent to the Cinzento Strike Slip System. The Province has been long recognised for its giant enriched iron and manganese deposits, but over the past 20 years has been increasingly acknowledged as one of the most important Cu–Au and Au–PGE provinces globally, with deposits extending along an approximately 150 km long WNW-trending zone about 60 km wide centred on the Carajás Fault. The larger deposits (approx. 200–1000 Mt @ 0.95–1.4% Cu and 0.3–0.85 g/t Au) are classic Fe-oxide Cu–Au deposits that include Salobo, Igarapé Bahia–Alemão, Cristalino and Sossego. They are largely hosted in the lower volcanic sequences and basement gneisses as pipe- or ring-like mineralised, generally breccia bodies that are strongly Fe- and LREE-enriched, commonly with anomalous Co and U, and quartz- and sulfur-deficient. Iron oxides and Fe-rich carbonates and/or silicates are invariably present. Rhenium–Os dating of molybdenite at Salobo and SHRIMP Pb–Pb dating of hydrothermal monazite at Igarapé-Bahia indicate ages of ca. 2.57 Ga for mineralisation, indistinguishable from ages of poorly-exposed Archean alkalic and A-type intrusions in the Itacaiúnas Belt, strongly implicating a deep magmatic connection.A group of smaller, commonly supergene-enriched Cu–Au deposits (generally < 50 Mt @ < 2% Cu and < 1 g/t Au in hypogene ore), with enrichment in granitophile elements such as W, Sn and Bi, spatially overlap the Archean Fe-oxide Cu–Au deposits. These include the Breves, Águas Claras, Gameleira and Estrela deposits which are largely hosted by the upper sedimentary sequence as greisen-to ring-like or stockwork bodies. They generally lack abundant Fe-oxides, are quartz-bearing and contain more S-rich Cu–Fe sulfides than the Fe-oxide Cu–Au deposits, although Cento e Dezoito (118) appears to be a transitional type of deposit. Precise Pb–Pb in hydrothermal phosphate dating of the Breves and Cento e Dezoito deposits indicate ages of 1872 ± 7 Ma and 1868 ± 7 Ma, respectively, indistinguishable from Pb–Pb ages of zircons from adjacent A-type granites and associated dykes which range from 1874 ± 2 Ma to 1883 ± 2 Ma, with 1878 ± 8 Ma the age of intrusions at Breves. An unpublished Ar/Ar age for hydrothermal biotite at Estrela is indistinguishable, and a Sm–Nd isochron age for Gameleira is also similar, although somewhat younger. The geochronological data, combined with geological constraints and ore-element associations, strongly implicate a magmatic connection for these deposits.The highly anomalous, hydrothermal Serra Pelada Au–PGE deposit lies at the north-eastern edge of the Province within the same fault corridor as the Archean and Paleoproterozoic Cu–Au deposits, and like the Cu–Au deposits is LREE enriched. It appears to have formed from highly oxidising ore fluids that were neutralised by dolomites and reduced by carbonaceous shales in the upper sedimentary succession within the hinge of a reclined synform. The imprecise Pb–Pb in hydrothermal phosphate age of 1861 ± 45 Ma, combined with an Ar/Ar age of hydrothermal biotite of 1882 ± 3 Ma, are indistinguishable from a Pb–Pb in zircon age of 1883 ± 2 Ma for the adjacent Cigano A-type granite and indistinguishable from the age of the Paleoproterozoic Cu–Au deposits. Again a magmatic connection is indicated, particularly as there is no other credible heat or fluid source at that time.Finally, there is minor Au–(Cu) mineralisation associated with the Formiga Granite whose age is probably ca. 600 Ma, although there is little new zircon growth during crystallisation of the granite. This granite is probably related to the adjacent Neoproterozoic (900–600 Ma) Araguaia Fold Belt, formed as part of the Brasiliano Orogeny.Thus, there are two major and one minor period of Cu–Au mineralisation in the Carajás Mineral Province. The two major events display strong REE enrichment and strongly enhanced LREE. There is a trend from strongly Fe-rich, low-SiO2 and low-S deposits to quartz-bearing and more S-rich systems with time. There cannot be significant connate or basinal fluid (commonly invoked in the genesis of Fe-oxide Cu–Au deposits) involved as all host rocks were metamorphosed well before mineralisation: some host rocks are at mid- to high-amphibolite facies. The two major periods of mineralisation correspond to two periods of alkalic to A-type magmatism at ca. 2.57 Ga and ca. 1.88 Ga, and a magmatic association is compelling.The giant to world-class late Archean Fe-oxide Cu–Au deposits show the least obvious association with deep-seated alkaline bodies as shown at Palabora, South Africa, and implied at Olympic Dam, South Australia. The smaller Paleoproterozoic Cu–Au–W–Sn–Bi deposits and Au–PGE deposit show a more obvious relationship to more fractionated A-type granites, and the Neoproterozoic Au–(Cu) deposit to crustally-derived magmas. The available data suggest that magmas and ore fluids were derived from long-lived metasomatised lithosphere and lower crust beneath the eastern margin of the Amazon Craton in a tectonic setting similar to that of other large Precambrian Fe-oxide Cu–Au deposits.  相似文献   

12.
Geochemical stream sediment survey in Winder Valley, Balochistan, Pakistan   总被引:1,自引:0,他引:1  
A pilot scale geochemical survey of sediments from the Winder Stream (SW Pakistan) and its tributaries was carried out. The Winder Stream mainly receives sediment from the southern extensions of the Mor and Pab Ranges in the District of Lasbela (Balochistan). In these two mountain ranges, rocks from Jurassic to Cretaceous age are exposed. Rocks of the Ferozabad Group comprise of carbonates and siliciclastics of Lower–Middle Jurassic age and occupy the dominant part of the Mor Range. These strata host syngenetic and epigenetic Zn–Pb–Ba mineralizations of Stratiform Sediment-Hosted (SSH) and Mississippi Valley Type (MVT) deposits.Quantitative estimates of mobile and immobile elements were made from active stream sediments of the Winder stream and its tributaries. The samples were analyzed for Ag, Zn, Pb, Cu, Ni, Co, V, Mn, Fe and Ba using atomic absorption spectroscopy. The abundance of these elements is discussed in relation to local geological conditions such as bedrock, climate, weathering, mobility and pH of the dispersing waters. A number of Zn anomalies have been distinguished in the study area. Kharrari (Zn, 360 ppm), Sand (Zn, 340 ppm) and Draber (Zn, 210 ppm) are demarcated as new areas for Zn mineralization. The present study also indicates prospects of Ag, Cu and V in the rocks of the Mor Range.Relationships between various elements have been identified from scattergrams and reflect genetic associations. Whereby the positive correlation between Cu–Zn (0.55, n=18) and Cu–Pb (0.63) is related to possible sulphide mineralization.  相似文献   

13.
Over the last few years various lead precipitates have been found in natural gas production installations in north-western Europe during routine cleaning operations. We have studied the composition and morphology of these precipitates and will discuss the probable depositional processes. The lead precipitates can be divided into three categories based on morphology and composition. (1) Thin, crustal precipitates containing metallic lead, barite and galena. These precipitates originate from untreated gas–water mixtures, and are found in pipes throughout production installations. (2) Annular, homogeneous precipitates of metallic lead, formed from separated production water in pumps of production installations. (3) Suspended precipitates which are found either in the well tubing, or in pipes or valves downstream from the installations, originating from untreated gas–water mixtures. All lead precipitates contain 210Pb, whereas precipitates of both lead and barite contain 226Ra as well. These naturally occurring radionuclides are most likely derived from 238U-enriched organic sediments or 226Ra-enriched precipitates in or near the gas reservoirs.  相似文献   

14.
Sediment-hosted base metal sulfide deposits in the Otavi Mountain Land occur in most stratigraphic units of the Neoproterozoic Damara Supergroup, including the basal Nosib Group, the middle Otavi Group and the uppermost Mulden Group. Deposits like Tsumeb (Pb–Cu–Zn–Ge), Kombat (Cu–Pb–Zn), Berg Aukas (Zn–Pb–V), Abenab West (Pb–Zn–V) all occur in Otavi Group dolostones, whereas siliciclastic and metavolcanic rocks host Cu–(Ag) or Cu–(Au) mineralization, respectively. The Tsumeb deposit appears to have been concentrated after the peak of the Damara orogeny at around 530 Ma as indicated by radiometric age data.Volcanic hosted Cu–(Au) deposits (Neuwerk and Askevold) in the Askevold Formation may be related to ore forming processes during continental rifting around 746 Ma. The timing of carbonate-hosted Pb–Zn deposits in the Abenab Subgroup at Berg Aukas and Abenab is not well constrained, but the stable (S, O, C) and Pb isotope as well as the ore fluid characteristics are similar to the Tsumeb-type ores. Regional scale ore fluid migration typical of MVT deposits is indicated by the presence of Pb–Zn occurrences over 2500 km2 within stratabound breccias of the Elandshoek Formation. Mulden Group siliciclastic rocks host the relatively young stratiform Cu–(Ag) Tschudi resource, which is comparable to Copperbelt-type sulfide ores.  相似文献   

15.
The Altaids are an orogenic collage of Neoproterozoic–Paleozoic rocks located in the center of Eurasia. This collage consists of only three oroclinally bent Neoproterozoic–Early Paleozoic magmatic arcs (Kipchak, Tuva–Mongol, and Mugodzhar–Rudny Altai), separated by sutures of their former backarc basins, which were stitched by new generations of overlapping magmatic arcs. In addition, the Altaids host accreted fragments of the Neoproterozoic to Early Paleozoic oceanic island chains and Neoproterozoic to Cenozoic plume-related magmatic rocks superimposed on the accreted fragments. All these assemblages host important, many world-class, Late Proterozoic to Early Mesozoic gold, copper–molybdenum, lead–zinc, nickel and other deposits of various types.In the Late Proterozoic, during breakup of the supercontinent Rodinia, the Kipchak and Tuva–Mongol magmatic arcs were rifted off Eastern Europe–Siberia and Laurentia to produce oceanic backarc basins. In the Late Ordovician, the Siberian craton began its clockwise rotation with respect to Eastern Europe and this coincides with the beginning of formation of the Mugodzhar–Rudny Altai arc behind the Kipchak arc. These earlier arcs produced mostly Cu–Pb–Zn VMS deposits, although some important intrusion-related orogenic Au deposits formed during arc–arc collision events in the Middle Cambrian and Late Ordovician.The clockwise rotation of Siberia continued through the Paleozoic until the Early Permian producing several episodes of oroclinal bending, strike–slip duplication and reorganization of the magmatic arcs to produce the overlapping Kazakh–Mongol and Zharma-Saur–Valerianov–Beltau-Kurama arcs that welded the extinct Kipchak and Tuva–Mongol arcs. This resulted in amalgamation of the western portion of the Altaid orogenic collage in the Late Paleozoic. Its eastern portion amalgamated only in the early Mesozoic and was overlapped by the Transbaikal magmatic arc, which developed in response to subduction of the oceanic crust of the Paleo-Pacific Ocean. Several world-class Cu–(Mo)-porphyry, Cu–Pb–Zn VMS and intrusion-related Au mineral camps, which formed in the Altaids at this stage, coincided with the episodes of plate reorganization and oroclinal bending of magmatic arcs. Major Pb–Zn and Cu sedimentary rock-hosted deposits of Kazakhstan and Central Asia formed in backarc rifts, which developed on the earlier amalgamated fragments. Major orogenic gold deposits are intrusion-related deposits, often occurring within black shale-bearing sutured backarc basins with oceanic crust.After amalgamation of the western Altaids, this part of the collage and adjacent cratons were affected by the Siberian superplume, which ascended at the Permian–Triassic transition. This plume-related magmatism produced various deposits, such as famous Ni–Cu–PGE deposits of Norilsk in the northwest of the Siberian craton.In the early Mesozoic, the eastern Altaids were oroclinally bent together with the overlapping Transbaikal magmatic arc in response to the northward migration and anti-clockwise rotation of the North China craton. The following collision of the eastern portion of the Altaid collage with the Siberian craton formed the Mongol–Okhotsk suture zone, which still links the accretionary wedges of central Mongolia and Circum-Pacific belts. In the late Mesozoic, a system of continent-scale conjugate northwest-trending and northeast-trending strike–slip faults developed in response to the southward propagation of the Siberian craton with subsequent post-mineral offset of some metallogenic belts for as much as 70–400 km, possibly in response to spreading in the Canadian basin. India–Asia collision rejuvenated some of these faults and generated a system of impact rifts.  相似文献   

16.
The Lufilian arc is an orogenic belt in central Africa that extends between Zambia and the Democratic Republic of Congo (DRC) and deforms the Neoproterozoic-Lower Palaeozoic metasedimentary succession of the Katanga Supergroup. The arc contains thick bodies of fragmental rocks that include blocks reaching several kilometres in size. Some megablocks contain Cu and Cu–Co-mineralised Katangan strata. These coarse clastic rocks, called the Katangan megabreccias, have traditionally been interpreted in the DRC as tectonic breccias formed during Lufilian orogenesis due to friction underneath Katangan nappes. In mid-90th, several occurrences in Zambia have been interpreted in the same manner. Prominent among them is an occurrence at Mufulira, considered by previous workers as a ≈1000 m thick tectonic friction breccia containing a Cu–Co-mineralised megablock.This paper presents new results pertaining to the lower stratigraphic interval of the Katanga Supergroup at Mufulira and represented by the Roan Group and the succeeding Mwashya Subgroup of the Guba Group. The interval interpreted in the past as tectonic Roan megabreccia appears to be an almost intact sedimentary succession, the lower part of which consists of Roan Group carbonate rocks with siliciclastic intercalations containing several interbeds of matrix-supported conglomerate. A Cu–Co-mineralised interval is not an allochthonous block but a part of the stratigraphic succession underlain and overlain by conglomerate beds, which were considered in the past as tectonic friction breccias. The overlying megabreccia is a syn-rift sedimentary olistostrome succession that rests upon the Roan strata with a subtle local unconformity. The olistostrome succession consists of three complexes typified by matrix-supported debris-flow conglomerates with Roan clasts. Some of the conglomerate beds pass upwards to normally graded turbidite layers and are accompanied by solitary slump beds. The three conglomeratic assemblages are separated by two intervals of sedimentary breccia composed of allochthonous Roan blocks interpreted as mass-wasting debris redeposited into the basin by high-volume sediment-gravity flows. Sedimentary features are the primary characteristics of the conglomerate interbeds in the Roan succession and of the overlying megabreccia (olistostrome) sequence. Both lithological associations are slightly sheared and brecciated in places, but stratigraphic continuity is retained throughout their succession. The olistostrome is deformed by an open fold, the upper limb of which is truncated by and involved in a shear zone that extends upwards into Mwashya Subgroup strata thrust above.Based on the sedimentary genesis of the megabreccia, local tectonostratigraphic relations and correlation with the succession present in the Kafue anticline to the west, the Mwashya Subgroup, formerly considered as a twofold unit, is redefined here as a three-part succession. The lower Mwashya consists of an olistostrome complex defined as the Mufulira Formation, the middle Mwashya (formerly lower Mwashya) is a mixed succession of siliciclastic and carbonate strata locally containing silicified ooids and tuff interbeds, and the term upper Mwashya is retained for a succession of black shales with varying proportions of siltstone and sandstone interlayers. The sedimentary genesis and stratigraphic relations of the megabreccia at Mufulira imply that the position and tectonostratigraphic context of the Katangan Cu and Cu–Co orebodies hosted in megablocks associated with fragmental rocks, which were in the past interpreted as tectonic friction breccias, need to be critically re-assessed in the whole Lufilian arc.  相似文献   

17.
The Aguablanca Cu–Ni orthomagmatic ore deposit is hosted by mafic and ultramafic rocks of the Aguablanca stock, which is part of the larger, high-K calc-alkaline Santa Olalla plutonic complex. This intrusive complex, ca. 338 Ma in age, is located in the Ossa-Morena Zone (OMZ) of the Iberian Variscan Belt. Mineralization consists mainly of pyrrhotite, pentlandite and chalcopyrite resulting from the crystallization of an immiscible sulphide-rich liquid. Isotope work on the host igneous rocks (Sr, Nd) and the ore (S) suggests that contamination with an upper-crustal component took place at some depth before final emplacement of the plutons (Nd338=−6 to −7.5; Sr(338)=0.7082 to 0.7100; δ34S(sulphides) near +7.4‰). Assimilation–fractional crystallization (AFC) processes are invoked to explain early cumulates and immiscible sulphide-magma formation. Intrusion took place at the beginning of the type-A oblique subduction of the South Portuguese Zone under the Ossa-Morena Zone and was probably driven by transpressive structures (strike-slip faults). The mineralization is thus synorogenic.Aguablanca is probably the first case referred to in the literature of a magmatic Cu–Ni ore deposit hosted by calc-alkaline igneous rocks.  相似文献   

18.
Cu–Ni–Co–As–U mineralization in the Anarak area of central Iran occurs at the intersection of the Uroumieh-Dokhtar magmatic belt with the Great Kavir–Doruneh fault. In the area, the volcanism associated with the magmatic belt is shoshonitic in character. Chemical analyses indicate that these are subduction related magmas. Detailed investigations in the vicinity of the Talmessi mine indicate that mineralization occurred in two separate stages: a first stage of copper sulphide mineralization with a relatively simple mineralogy and associated with the Eocene magmatism, and a second stage of Cu–Ni–Co–As–U mineralization with a complex mineralogy, which probably formed during another phase of deformation in the Upper Miocene. This later deformation reactivated previously formed faults. The mineralogy, element association and isotopic composition of carbonates for the second phase of mineralization suggest a different origin to that of the first phase. The fluids are likely to be non-magmatic in origin, possibly showing an increased input from meteoric waters. The close spatial association with basic/ultrabasic igneous rocks indicates that these may be the source through alteration and remobilization. The arsenide mineralization in the Anarak area shows many features that are similar to those of the classic five-element deposits.  相似文献   

19.
The Neoproterozoic central African Copperbelt is one of the greatest sediment-hosted stratiform Cu–Co provinces in the world, totalling 140 Mt copper and 6 Mt cobalt and including several world-class deposits (10 Mt copper). The origin of Cu–Co mineralisation in this province remains speculative, with the debate centred around syngenetic–diagenetic and hydrothermal-diagenetic hypotheses.The regional distribution of metals indicates that most of the cobalt-rich copper deposits are hosted in dolomites and dolomitic shales forming allochthonous units exposed in Congo and known as Congolese facies of the Katangan sedimentary succession (average Co:Cu = 1:13). The highest Co:Cu ratio (up to 3:1) occurs in ore deposits located along the southern structural block of the Lufilian Arc. The predominantly siliciclastic Zambian facies, exposed in Zambia and in SE Congo, forms para-autochthonous sedimentary units hosting ore deposits characterized by lower a Co:Cu ratio (average 1:57). Transitional lithofacies in Zambia (e.g. Baluba, Mindola) and in Congo (e.g. Lubembe) indicate a gradual transition in the Katangan basin during the deposition of laterally correlative clastic and carbonate sedimentary rocks exposed in Zambia and in Congo, and are marked by Co:Cu ratios in the range 1:15.The main Cu–Co orebodies occur at the base of the Mines/Musoshi Subgroup, which is characterized by evaporitic intertidal–supratidal sedimentary rocks. All additional lenticular orebodies known in the upper part of the Mines/Musoshi Subgroup are hosted in similar sedimentary rocks, suggesting highly favourable conditions for the ore genesis in particular sedimentary environments. Pre-lithification sedimentary structures affecting disseminated sulphides indicate that metals were deposited before compaction and consolidation of the host sediment.The ore parageneses indicate several generations of sulphides marking syngenetic, early diagenetic and late diagenetic processes. Sulphur isotopic data on sulphides suggest the derivation of sulphur essentially from the bacterial reduction of seawater sulphates. The mineralizing brines were generated from sea water in sabkhas or hypersaline lagoons during the deposition of the host rocks. Changes of Eh–pH and salinity probably were critical for concentrating copper–cobalt and nickel mineralisation. Compressional tectonic and related metamorphic processes and supergene enrichment have played variable roles in the remobilisation and upgrading of the primary mineralisation.There is no evidence to support models assuming that metals originated from: (1) Katangan igneous rocks and related hydrothermal processes or; (2) leaching of red beds underlying the orebodies. The metal sources are pre-Katangan continental rocks, especially the Palaeoproterozoic low-grade porphyry copper deposits known in the Bangweulu block and subsidiary Cu–Co–Ni deposits/occurrences in the Archaean rocks of the Zimbabwe craton. These two sources contain low grade ore deposits portraying the peculiar metal association (Cu, Co, Ni, U, Cr, Au, Ag, PGE) recorded in the Katangan sediment-hosted ore deposits. Metals were transported into the basin dissolved in water.The stratiform deposits of Congo and Zambia display features indicating that syngenetic and early diagenetic processes controlled the formation of the Neoproterozoic Copperbelt of central Africa.  相似文献   

20.
The Um Samiuki Zn–Cu–Pb–Ag mineralisation, south Eastern Desert, Egypt is hosted by felsic volcanic rocks which form part of the 712-Ma-old, east-west-trending Shadli Volcanic Belt. Two major occurrences of massive sulphides are present at the top of rhyolitic breccia in the Western and Eastern mine areas. In each occurrence, a bornite-bearing zone is overlain by a pyrite-chalcopyrite-bearing zone and underlain by a disseminated, Cu-depleted zone. In the massive sulphide ore, sphalerite, chalcopyrite, pyrite, galena, bornite and tetrahedrite–tennantite are major minerals, whereas arsenopyrite, pyrrhotite, molybdenite and magnetite are accessory phases. Covellite and digenite are common secondary minerals. Bornite, tetrahedrite–tennantite and covellite contain high amounts of silver (averages of 1.97, 1.39 and 1.82 wt% respectively). Based on mineralogical balance calculations, bornite and covellite accommodate 80% of silver in the Um Samiuki deposit. Ag was incorporated in the crystal structure of the early-crystallised copper sulphides and sulphosalts and silver minerals. The temperature, sequential precipitation of the fluids and the structure of the crystallising phases control the distribution of silver. Post-depositional deformation and metamorphic processes caused liberation, remobilisation and redeposition of silver within the massive sulphides.Editorial handling: D. Lentz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号