首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 9 毫秒
1.
Palaeo-ice sheets are important analogues for understanding contemporary ice sheets, offering a record of ice sheet behaviour that spans millennia. There are two main approaches to reconstructing palaeo-ice sheets. Empirical reconstructions use the available glacial geological and chronological evidence to estimate ice sheet extent and dynamics but lack direct consideration of ice physics. In contrast, numerically modelled simulations implement ice physics, but often lack direct quantitative comparison with empirical evidence. Despite being long identified as a fruitful scientific endeavour, few ice sheet reconstructions attempt to reconcile the empirical and model-based approaches. To achieve this goal, model-data comparison procedures are required. Here, we compare three numerically modelled simulations of the former British–Irish Ice Sheet with the following lines of evidence: (a) position and shape of former margin positions, recorded by moraines; (b) former ice-flow direction and flow-switching, recorded by flowsets of subglacial bedforms; and (c) the timing of ice-free conditions, recorded by geochronological data. These model–data comparisons provide a useful framework for quantifying the degree of fit between numerical model simulations and empirical constraints. Such tools are vital for reconciling numerical modelling and empirical evidence, the combination of which will lead to more robust palaeo-ice sheet reconstructions with greater explicative and ultimately predictive power.  相似文献   

2.
The evolution and dynamics of the last British–Irish Ice Sheet (BIIS) have hitherto largely been reconstructed from onshore and shallow marine glacial geological and geomorphological data. This reconstruction has been problematic because these sequences and data are spatially and temporally incomplete and fragmentary. In order to enhance BIIS reconstruction, we present a compilation of new and previously published ice-rafted detritus (IRD) flux and concentration data from high-resolution sediment cores recovered from the NE Atlantic deep-sea continental slope adjacent to the last BIIS. These cores are situated adjacent to the full latitudinal extent of the last BIIS and cover Marine Isotope Stages (MIS) 2 and 3. Age models are based on radiocarbon dating and graphical tuning of abundances of the polar planktonic foraminifera Neogloboquadrina pachyderma sinistral (% Nps) to the Greenland GISP2 ice core record. Multiple IRD fingerprinting techniques indicate that, at the selected locations, most IRD are sourced from adjacent BIIS ice streams except in the centre of Heinrich (H) layers in which IRD shows a prominent Laurentide Ice Sheet provenance. IRD flux data are interpreted with reference to a conceptual model explaining the relations between flux, North Atlantic hydrography and ice dynamics. Both positive and rapid negative mass balance can cause increases, and prominent peaks, in IRD flux. First-order interpretation of the IRD record indicates the timing of the presence of the BIIS with an actively calving marine margin. The records show a coherent latitudinal, but partly phased, signal during MIS 3 and 2. Published data indicate that the last BIIS initiated during the MIS 5/4 cooling transition; renewed growth just before H5 (46 ka) was succeeded by very strong millennial-scale variability apparently corresponding with Dansgaard–Oeschger (DO) cycles closely coupled to millennial-scale climate variability in the North Atlantic region involving latitudinal migration of the North Atlantic Polar Front. This indicates that the previously defined “precursor events” are not uniquely associated with H events but are part of the millennial-scale variability. Major growth of the ice sheet occurred after 29 ka with the Barra Ice Stream attaining a shelf-edge position and generating turbiditic flows on the Barra–Donegal Fan at ~27 ka. The ice sheet reached its maximum extent at H2 (24 ka), earlier than interpreted in previous studies. Rapid retreat, initially characterised by peak IRD flux, during Greenland Interstadial 2 (23 ka) was followed by readvance between 22 and 16 ka. Readvance during H1 was only characterised by BIIS ice streams draining central dome(s) of the ice sheet, and was followed by rapid deglaciation and ice exhaustion. The evidence for a calving margin and IRD supply from the BIIS during Greenland Stadial 1 (Younger Dryas event) is equivocal. The timing of the initiation, maximum extent, deglacial and readvance phases of the BIIS interpreted from the IRD flux record is strongly supported by recent independent data from both the Irish Sea and North Sea sectors of the ice sheet.  相似文献   

3.
The Malin Shelf, off north-west Ireland, was an important zone of confluence for marine-based ice streams of the former British–Irish Ice Sheet (BIIS). Legacy geophysical datasets are used to construct models of the seismic character, relative age and distribution of shelf sediments and landforms. Buried and surface landform assemblages provide evidence that during deglaciation of the Late Devensian BIIS, the region was occupied not by a single Hebrides Ice Stream as previously proposed, but by four discrete ice streams, here referred to as the Sea of the Hebrides (SHIS), Inner Hebrides, North Channel and Tory Island ice streams. Our observations of stratigraphic relationships between the deposits of these ice streams indicate physical interactions between them during shelf deglaciation. We interpret an initial dominant cross-shelf flow along the SHIS impeding cross-shelf ice flow from other ice sheet sectors. Following withdrawal of the SHIS grounding line from the shelf edge to mid-shelf bathymetric highs during deglaciation, a reconfiguration of ice sheet flow paths allowed the expansion of smaller cross-shelf ice streams draining central Scotland and north-western Ireland. This internal dynamic behaviour provides a possible physical analogue for time-transgressive flow patterns reported for outlets draining the West Antarctic Ice Sheet.  相似文献   

4.
Motivated to help improve the robustness of predictions of sea level rise, the BRITICE-CHRONO project advanced knowledge of the former British–Irish Ice Sheet, from 31 to 15 ka, so that it can be used as a data-rich environment to improve ice sheet modelling. The project comprised over 40 palaeoglaciologists, covering expertise in terrestrial and marine geology and geomorphology, geochronometric dating and the modelling of ice sheets and oceans. A systematic and directed campaign, organised across eight transects from the continental shelf edge to a short distance (10s of kilometres) onshore, was used to collect 914 samples which yielded 639 new ages, tripling the number of dated sites constraining the timing and rates of change of the collapsing ice sheet. This special issue synthesises these findings of ice advancing to the maximum extent and its subsequent retreat for each of the eight transects to produce definitive palaeogeographic reconstructions of ice margin positions across the marine to terrestrial transition. These results are used to understand the controls that drove or modulated ice sheet retreat. A further paper reports on how ice sheet modelling experiments and empirical data can be used in combination, and another probes the glaciological meaning of ice-rafted debris.  相似文献   

5.
The findings of BRITICE-CHRONO Transect 2 through the North Sea Basin and eastern England are reported. We define ice-sheet marginal oscillation between ~31 and 16 ka, with seven distinctive former ice-sheet limits (L1–7) constrained by Bayesian statistical analysis. The southernmost limit of the North Sea Lobe is recorded by the Bolders Bank Formation (L1; 25.8–24.6 ka). L2 represents ice-sheet oscillation and early retreat to the northern edge of the Dogger Bank (23.5–22.2 ka), with the Garret Hill Moraine in north Norfolk recording a significant regional readvance to L3 at 21.5–20.8 ka. Ice-marginal oscillations at ~26–21 ka resulted in L1, L2 and L3 being partially to totally overprinted. Ice-dammed lakes related to L1–3, including Lake Humber, are dated at 24.1–22.3 ka. Ice-sheet oscillation and retreat from L4 to L5 occurred between 19.7 and 17.3 ka, with grounding zone wedges marking an important transition from terrestrial to marine tidewater conditions, triggered by the opening of the Dogger Lake spillway between 19.9 and 17.5 ka. L6 relates to ice retreat under glacimarine conditions and final ice retreat into the Firth of Forth by 15.8 ka. L7 (~15 ka) represents an ice retreat from Bosies Bank into the Moray Firth.  相似文献   

6.
We present results from a suite of forward transient numerical modelling experiments of the British and Irish Ice Sheet (BIIS), consisting of Scottish, Welsh and Irish accumulation centres, spanning the last Glacial period from 38 to 10 ka BP. The 3D thermomechanical model employed uses higher-order physics to solve longitudinal (membrane) stresses and to reproduce grounding-line dynamics. Surface mass balance is derived using a distributed degree-day calculation based on a reference climatology from mean (1961–1990) precipitation and temperature patterns. The model is perturbed from this reference state by a scaled NGRIP oxygen isotope curve and the SPECMAP sea-level reconstruction. Isostatic response to ice loading is computed using an elastic lithosphere/relaxed asthenosphere scheme. A suite of 350 simulations were designed to explore the parameter space of model uncertainties and sensitivities, to yield a subset of experiments that showed close correspondence to offshore and onshore ice-directional indicators, broad BIIS chronology, and the relative sea-level record. Three of these simulations are described in further detail and indicate that the separate ice centres of the modelled BIIS complex are dynamically interdependent during the build up to maximum conditions, but remain largely independent throughout much of the simulation. The modelled BIIS is extremely dynamic, drained mainly by a number of transient but recurrent ice streams which dynamically switch and fluctuate in extent and intensity on a centennial time-scale. A series of binge/purge, advance/retreat, cycles are identified which correspond to alternating periods of relatively cold-based ice, (associated with a high aspect ratio and net growth), and wet-based ice with a lower aspect ratio, characterised by streaming. The timing and dynamics of these events are determined through a combination of basal thermomechanical switching spatially propagated and amplified through longitudinal coupling, but are modulated and phase-lagged to the oscillations within the NGRIP record of climate forcing. Phases of predominant streaming activity coincide with periods of maximum ice extent and are triggered by abrupt transitions from a cold to relatively warm climate, resulting in major iceberg/melt discharge events into the North Sea and Atlantic Ocean. The broad chronology of the modelled BIIS indicates a maximum extent at ~20 ka, with fast-flowing ice across its western and northern sectors that extended to the continental shelf edge. Fast-flowing streams also dominate the Irish Sea and North Sea Basin sectors and impinge onto SW England and East Anglia. From ~19 ka BP deglaciation is achieved in less than 2000 years, discharging the freshwater equivalent of ~2 m global sea-level rise. A much reduced ice sheet centred on Scotland undergoes subsequent retrenchment and a series of advance/retreat cycles into the North Sea Basin from 17 ka onwards, culminating in a sustained Younger Dryas event from 13 to 11.5 ka BP. Modelled ice cover is persistent across the Western and Central Highlands until the last remnant glaciers disappear around 10.5 ka BP.  相似文献   

7.
Deep Sea Drilling Program (DSDP) Site 548 was cored in 1984 at a water depth of 1256 m on the Goban Spur, offshore southwest Ireland. Coring retrieved a ~100-m-thick Pleistocene contourite sequence. This study uses planktonic foraminiferal assemblage and benthic foraminiferal oxygen isotope analyses to establish an age model for the upper 40 m of this core. This site's multidisciplinary analyses of planktonic foraminiferal assemblages, lithic grains, facies and calcium carbonate concentration reveal a 250 000-year record of the North Atlantic polar front variability and British–Irish Ice Sheet (BIIS) history. The sequence is characterized by alternations of ice rafted debris (IRD) laden pelagic mud facies with calcium carbonate-rich silty sand contourite facies that track glacial/interglacial cycles. The polar front migrated southward across the area several times during glacial maxima and stadial periods, while warmer Mediterranean Outflow Water (MOW) flowed northward across the region during interglacial and interstadial periods depositing contourites. Lithic analyses reveal a complex history of IRD deposition associated with iceberg calving from the Laurentide Ice Sheet and northwest European ice sheets, mainly the BIIS. Comparison between the Goban Spur (DSDP Site 548) and the Celtic Margin (MD03-2692) and central North Atlantic Integrated Ocean Drilling Program (IODP) Site U1308 suggests differences between the ‘non-Laurentide Ice Sheet’ Heinrich Events (HE) 6 and 3 at the Goban Spur, with IRD from the BIIS being prominent during HE 6 and IRD from other European ice sheets north of the BIIS likely being more dominant during HE 3. The nature of lithics in IRD-rich horizons during Terminations 3, 3A, 2 and 1 suggests significant iceberg calving episodes preceding BIIS retreat during the onset of interstadial intervals.  相似文献   

8.
Palaeoenvironmental change following deglaciation of the last British–Irish Ice Sheet on the continental shelf west of Ireland was investigated using multiproxy analyses of sediment and foraminifera data from nine sediment cores. Lithofacies associations record various depositional regimes across the shelf, which evolve from subglacial to postglacial conditions. Census data provide the first characterisation of benthic foraminifera populations across the continental shelf and multivariate analyses reveal three distinct biotopes. Biomineralization within these biotopes is restricted to ≤21 200 cal a bp by four radiocarbon ages. The transition from glacial to postglacial benthic foraminifera populations near the shelf break marks the establishment of productive, nutrient-rich, ice-distal conditions at ~20 900 cal a bp ; these conditions may also mark the start of favourable conditions for postglacial cold-water coral growth. Postglacial conditions on the inner shelf were not established until <14 500 cal a bp , suggesting glacial conditions west of Ireland may have persisted into the Bølling–Allerød Interstadial.  相似文献   

9.
Fourteen samples obtained from Torridon sandstone boulders on four moraines marking the limit of the Wester Ross Readvance (WRR) in NW Scotland yielded tightly clustered 10Be exposure ages confirming contemporaneous or penecontemporaneous moraine deposition. Collectively, the 14 samples yield mean ages of 13.5 ± 1.2 ka to 14.0 ± 1.7 ka, depending on choice of geomagnetic scaling and sampling surface erosion rates. All fourteen moraine ages are significantly younger than an age of ca 16.3 ka previously proposed for the WRR, and also younger than most samples obtained from rock outcrops within the WRR limits. The ages obtained for the WRR moraines appear to confirm that a substantial cover of glacier ice persisted over low ground in NW Scotland during at least the early part of the Lateglacial Interstade (≈Greenland Interstade 1). We infer that the WRR probably occurred in response to rapid short-lived cooling during the Older Dryas climatic reversal (≈Greenland Interstade 1d), though the possibilities that the WRR represents ice-margin response to a later climatic reversal during the Lateglacial Interstade or stabilization and readvance of the ice margin following rapid offshore calving cannot be discounted.  相似文献   

10.
The Wicklow Trough is one of several Irish Sea bathymetric deeps, yet unusually isolated from the main depression, the Western Trough. Its formation has been described as proglacial or subglacial, linked to the Irish Sea Ice Stream (ISIS) during the Last Glacial Maximum. The evolution of the Wicklow Trough and neighbouring deeps, therefore, help us to understand ISIS dynamics, when it was the main ice stream draining the former British–Irish Ice Sheet. The morphology and sub-seabed stratigraphy of the 18 km long and 2 km wide Wicklow Trough is described here from new multibeam echosounder data, 60 km of sparker seismic profiles and five sediment cores. At a maximum water depth of 82 m, the deep consists of four overdeepened sections. The heterogeneous glacial sediments in the Trough overlay bedrock, with indications of flank mass-wasting and subglacial bedforms on its floor. The evidence strongly suggests that the Wicklow Trough is a tunnel valley formed by time-transgressive erosional processes, with pressurised meltwater as the dominant agent during gradual or slow ice sheet retreat. Its location may be fault-controlled, and the northern end of the Wicklow Trough could mark a transition from rapid to slow grounded ice margin retreat, which could be tested with modelling.  相似文献   

11.
Predicting the future response of ice sheets to climate warming and rising global sea level is important but difficult. This is especially so when fast-flowing glaciers or ice streams, buffered by ice shelves, are grounded on beds below sea level. What happens when these ice shelves are removed? And how do the ice stream and the surrounding ice sheet respond to the abruptly altered boundary conditions? To address these questions and others we present new geological, geomorphological, geophysical and geochronological data from the ice-stream-dominated NW sector of the last British–Irish Ice Sheet (BIIS). The study area covers around 45 000 km2 of NW Scotland and the surrounding continental shelf. Alongside seabed geomorphological mapping and Quaternary sediment analysis, we use a suite of over 100 new absolute ages (including cosmogenic-nuclide exposure ages, optically stimulated luminescence ages and radiocarbon dates) collected from onshore and offshore, to build a sector-wide ice-sheet reconstruction combining all available evidence with Bayesian chronosequence modelling. Using this information we present a detailed assessment of ice-sheet advance/retreat history, and the glaciological connections between different areas of the NW BIIS sector, at different times during the last glacial cycle. The results show a highly dynamic, partly marine, partly terrestrial, ice-sheet sector undergoing large size variations in response to sub-millennial-scale climatic (Dansgaard–Oeschger) cycles over the last 45 000 years. Superimposed on these trends we identify internally driven instabilities, operating at higher frequency, conditioned by local topographic factors, tidewater dynamics and glaciological feedbacks during deglaciation. Specifically, our new evidence indicates extensive marine-terminating ice-sheet glaciation of the NW BIIS sector during Greenland Stadials 12 to 9 – prior to the main ‘Late Weichselian’ ice-sheet glaciation. After a period of restricted glaciation, in Greenland Interstadials 8 to 6, we find good evidence for rapid renewed ice-sheet build-up in NW Scotland, with the Minch ice-stream terminus reaching the continental shelf edge in Greenland Stadial 5, perhaps only briefly. Deglaciation of the NW sector took place in numerous stages. Several grounding-zone wedges and moraines on the mid- and inner continental shelf attest to significant stabilizations of the ice-sheet grounding line, or ice margin, during overall retreat in Greenland Stadials 3 and 2, and to the development of ice shelves. NW Lewis was the first substantial present-day land area to deglaciate, in the first half of Greenland Stadial 3 at a time of globally reduced sea-level c. 26 kabp , followed by Cape Wrath at c. 24 kabp. The topographic confinement of the Minch straits probably promoted ice-shelf development in early Greenland Stadial 2, providing the ice stream with additional support and buffering it somewhat from external drivers. However, c. 20–19 kabp , as the grounding-line migrated into shoreward deepening water, coinciding with a marked change in marine geology and bed strength, the ice stream became unstable. We find that, once underway, grounding-line retreat proceeded in an uninterrupted fashion with the rapid loss of fronting ice shelves – first in the west, then the east troughs – before eventual glacier stabilization at fjord mouths in NW Scotland by ~17 kabp. Around the same time, ~19–17 kabp , ice-sheet lobes readvanced into the East Minch – possibly a glaciological response to the marine-instability-triggered loss of adjacent ice stream (and/or ice shelf) support in the Minch trough. An independent ice cap on Lewis also experienced margin oscillations during mid-Greenland Stadial 2, with an ice-accumulation centre in West Lewis existing into the latter part of Heinrich Stadial 1. Final ice-sheet deglaciation of NW mainland Scotland was punctuated by at least one other coherent readvance at c. 15.5 kabp , before significant ice-mass losses thereafter. At the glacial termination, c. 14.5 kabp , glaciers fed outwash sediment to now-abandoned coastal deltas in NW mainland Scotland around the time of global Meltwater Pulse 1A. Overall, this work on the BIIS NW sector reconstructs a highly dynamic ice-sheet oscillating in extent and volume for much of the last 45 000 years. Periods of expansive ice-sheet glaciation dominated by ice-streaming were interspersed with periods of much more restricted ice-cap or tidewater/fjordic glaciation. Finally, this work indicates that the role of ice streams in ice-sheet evolution is complex but mechanistically important throughout the lifetime of an ice sheet – with ice streams contributing to the regulation of ice-sheet health but also to the acceleration of ice-sheet demise via marine ice-sheet instabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号