首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Reconstructions of the timing and frequency of past eruptions are important to assess the propensity for future volcanic activity, yet in volcanic areas such as the East African Rift only piecemeal eruption histories exist. Understanding the volcanic history of scoria-cone fields, where eruptions are often infrequent and deposits strongly weathered, is particularly challenging. Here we reconstruct a history of volcanism from scoria cones situated along the eastern shoulders of the Kenya–Tanzania Rift, using a sequence of tephra (volcanic ash) layers preserved in the ~250-ka sediment record of Lake Chala near Mount Kilimanjaro. Seven visible and two non-visible (crypto-) tephra layers in the Lake Chala sequence are attributed to activity from the Mt Kilimanjaro (northern Tanzania) and the Chyulu Hills (southern Kenya) volcanic fields, on the basis of their glass chemistry, textural characteristics and known eruption chronology. The Lake Chala record of eruptions from scoria cones in the Chyulu Hills volcanic field confirms geological and historical evidence of its recent activity, and provides first-order age estimates for seven previously unknown eruptions. Long and well-resolved sedimentary records such as that of Lake Chala have significant potential for resolving regional eruption chronologies spanning hundreds of thousands of years.  相似文献   

2.
Just like contemporary sediments, peat itself is a good repository of information about climate change, the effects of volcanic activity on climate change have been truly recorded in peat, since it is a major archive of volcanic eruption incidents. A section of sand was identified as tephra from the Jinchuan peat, Jilin Province, China, for the grains look like slag with surface bubbles and pits, characterized by high porosity, and loose structure with irregular edges and corners. According to the peat characteristics of uniform deposition, the tephra was dated at 2002–1976 a B.P. by way of linear interpolation, so the time of volcanic eruption was 15 B.C.–26 A.D. (the calibrated age). While the geochemical characteristics of tephra in this study are quite the same as those of tephra from the Jinlongdingzi volcano at Longgang and from alkaline basaltic magma, with the contents of SiO2<55%, and the similar contents to Al2O3 and Fe, but the contents of Na2O>K2O. We speculated that the tephra in this study came from the Longgang volcano group. Compared with 11 recorded volcanic eruption events as shown on the carbon and oxygen isotope curves of the Jinchuan peat cellulose, it is obviously seen that adjacent or large-scale volcanic eruptions are precisely corresponding to the minimum temperature and humidity. It seems that these volcanic eruptions indeed affected the local climate, leading to the drop of regional temperature and humidity. As a result, there was prevailing a cold and dry climate there, and all these changes can be well recorded in peat. So the comparison of volcanic eruption events with information about climate change developed from peat, can provide strong evidence for the impact of volcanism on climate change.  相似文献   

3.
火山灾害与监测   总被引:6,自引:0,他引:6       下载免费PDF全文
世界各地几乎都有火山分布,平均每年约有50次喷发。火山喷发在给人类创造财富的同时也带来许多灾害。火山灾害取决于火山喷发的类型、性质、规模和所处的地点等因素。火山喷发动力作用引起冲击波、地震、海啸、滑坡、泥石流等灾害,火山喷出的气体、灰烬、碎屑流和熔岩流等也会造成很大灾害。由于火山造成的灾害严重又来得突然,因此必须采取有效的防范措施,认真监测以掌握火山活动的脉搏。火山监测工作主要有两方面,一是基础地质调查,二是火山活动指标的监视和测量。在中国,具有潜在危险的火山主要分布在长白山、五大连池、台湾、雷琼、腾冲以及西昆仑阿什库勒等地,其中潜在危险最大的是长白山火山。  相似文献   

4.
A tephra layer offers an isochronous surface in sediments, thus serving as a key bed and/or an age marker. Recent high-resolution sediment research (e.g. varved sediments) has revealed optically invisible tephra fingerprints and provided high-precision tephra ages. However, a tephra-based correlation cannot succeed without detailed knowledge of the tephra characteristics in a proximal area to correlate with tephra in high-resolution sediments in remote areas. Here we documented the detailed characteristics of Towada-Chuseri (To-Cu) tephra, which is associated with the Middle Holocene volcanic explosivity index 5 eruption of Towada volcano, northeast Japan. We used To-Cu tephra samples to achieve the proximal–distal correlation of three members: Chuseri pumice (Cu), Kanegasawa pumice (Kn) and Utarube ash (Ut). These distal occurrences correlate with proximal To-Cu tephra based on volcanic glass morphology and refractive index, as well as on major element composition of volcanic glass shards. Refractive indices allow the preliminary correlation of each member, and major element composition helps in distinguishing Ut from the other members. Glass morphology provides additional support. These correlations reveal that To-Cu, especially Cu, covered central to northeast Japan while confirming that To-Cu is the representative tephra in the Middle Holocene of the Tohoku region.  相似文献   

5.
Floating tephra was deposited together with ice core,snow layer,abyssal sediment,lake sediments,and other geological records.It is of great significance to interpret the impact on the climate change of volcanic eruptions from these geological records.It is the first time that volcanic glass was discovered from the peat of Jinchuan(金川)Maar,Jilin(吉林)Province,China.And it is in situ sediments from a near-source explosive eruption according to particle size analysis and identification results.The tephra were neither from Tianchi(天池)volcano eruptions,Changbai(长白)Mountain,nor from Jinlongdingzi(金龙顶子)volcano about 1 600 aBP eruption,but maybe from an unknown eruption of Longgang(龙岗)volcano group according to their geochemistry and distribution.Geochemical characters of the tephra are similar to those of Jingiongdingzi,which are poor in s.Jica,deficient in alkali,Na20 content is more than K20 content,and are similar to distribution patterns of REE and incompatible elements,which helps to speculate that they originated from the same mantle magma with rare condemnation,and from basaltic explosive eruption of Longgang volcano group.The tephra,from peat with age proved that the eruption possibly happened in 15 BC-26 AD,is one of Longgang volcano group eruption that was not recorded and is earlier than that of Jinglongdingzi about 1 600 aBP eruption.And the sedimentary time of tephra is during the period of low temperature alteration.which may be the influence of eruption toward the local climate according to the correlativity of eruption to local temperature curve of peat cellulose oxygen isotope.  相似文献   

6.
太行山隆起南段新构造变形过程研究   总被引:9,自引:0,他引:9  
基于TM遥感影像解译和断裂滑动矢量资料的野外观测,结合年轻地质体热同位素和放射性同位素年代学测试结果分析,重点描述了太行山隆起南段构造地貌特征,划分了新构造变形阶段,确定了新构造应力场及其转换历史。研究表明,新近纪以来,太行山南段经历了两期重要的引张变形时期。中新世中晚期,伴随华北地区广泛的基性火山喷溢活动,太行山南段受近NE-SW向引张应力作用,构造变形集中在南段东缘和南缘断裂带上。上新世至早更新世时期,强烈的NW-SE向地壳引张导致太行山隆起南段夷平地貌的解体和地堑盆地的形成。自中晚更新世以来,太行山南缘断裂带成为新构造变形的主要边界带。断面滑动矢量分析和山前年轻冲积扇体和小冲沟沿断裂错移特征分析,表明太行山南缘断裂带是一条斜张左旋走滑边界断裂带,引张方向为NW-SE至NNW-SSE.从区域大地构造角度,中新世中国东部NE-SW向拉伸作用与东部太平洋板块向西俯仲导致的弧后扩张动力过程有关;而上新世以来新构造变形是与青藏高原快速隆升及其向东构造挤出作用有关。   相似文献   

7.
We document the mineralogical and geochemical composition of tephra layers identified in the late Quaternary sediments of Puyehue Lake (Southern Volcanic Zone of the Andes, Chile, 40°S) to identify the source volcanoes and to present the first tephrostratigraphic model for the region. For the last millennium, we propose a multi-criteria correlation model based on five tephra layers identified at seven coring sites. The two upper tephras are thin fine-grained green layers composed of more than 80% rhyodacitic glass shards, and associated to the AD 1960 and AD 1921-22 eruptions of the Puyehue-Cordon de Caulle volcanic complex. The third tephra is a sandy layer dominated by orthopyroxene, and related to the AD 1907 eruption of Rininahue maar. An olivine-rich tephra was deposited at the end of the 16th century, and a tephra characterized by a two-pyroxene association marks the second half of the first millennium AD. In addition, we detail the tephra succession of an 11.22-m-long sediment core covering the last 18,000 yr. The results demonstrate that the central province of the Southern Volcanic Zone has been active throughout the last deglaciation and the Holocene, with no increase in volcanic activity during glacial unloading.  相似文献   

8.
At least 12 silicic tephra layers (SILK tephras) erupted between ca. 6600 and ca. 1675 yr BP from the Katla volcanic system, have been identified in southern Iceland. In addition to providing significant new knowledge on the Holocene volcanism of the Katla system which typically produces basaltic tephra, the SILK tephras form distinct and precise isochronous marker horizons in a climatically sensitive location close to both the atmospheric and marine polar fronts. With one exception the SILK tephras have a narrow compositional range, with SiO2 between 63 and 67%. Geochemically they are indistinguishable from ocean transported pumice found on beaches in the North Atlantic region, although they differ significantly from the silicic component of the North Atlantic Ash Zone One (NAAZO). Volumes of airborne SILK tephra range from 0.05 to 0.3 km3. We present new isopach maps of the six largest layers and demonstrate that they originate within the Katla caldera. The apparently stable magma system conditions that produced the SILK tephras may have been established as a consequence of the eruption of the silicic component of NAAZO (ca. 10.3 ka) and disrupted by another large‐scale event, the tenth century ad Eldgjá eruption (ca. 1 ka). Despite the current long repose, silicic activity of this type may occur again in the future, presenting hitherto unknown hazards. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
袁晓博  方念乔 《地质通报》2019,38(4):689-695
三水盆地是南海北部邻区陆域唯一具有新生代火山活动记录的盆地,最晚一期火山喷发时间是38Ma,也是南海北部陆域已知的在南海扩张之前最晚的火山喷发年代。应用K-Ar同位素年代测定方法,首次发现三水盆地存在29.27±1.52Ma的玄武岩和28.25±1.14Ma的流纹岩,构造判别图解指示其产出环境是板内拉张,与盆地之前火山类型一致,为双峰式火山岩,玄武岩具有与洋岛玄武岩相似的地球化学特征,流纹岩具有与A型花岗岩相似的地球化学特征,且玄武岩与流纹岩均与其他地区地幔柱成因火山岩具有相似的地球化学特征。这一代表板内破裂的双峰式火山记录将南海北部陆缘的火山喷发活动从早先已知的古新世—中始新世延续至渐新世中期,众所周知,南海的开裂起始时间约在32Ma,对于南海扩张期间周边陆域是否存在相关联的火山活动及建立南海早期开裂模式具有重要意义。  相似文献   

10.
A hitherto unknown distal volcanic ash layer has been detected in a sediment core recovered from the southeastern Levantine Sea (Eastern Mediterranean Sea). Radiometric, stratigraphic and sedimentological data show that the tephra, here termed as S1 tephra, was deposited between 8970 and 8690 cal yr BP. The high-silica rhyolitic composition excludes an origin from any known eruptions of the Italian, Aegean or Arabian volcanic provinces but suggests a prevailing Central Anatolian provenance. We compare the S1 tephra with proximal to medial-distal tephra deposits from well-known Mediterranean ash layers and ash fall deposits from the Central Anatolian volcanic field using electron probe microanalyses on volcanic glass shards and morphological analyses on ash particles. We postulate a correlation with the Early Holocene ‘Dikkart?n’ dome eruption of Erciyes Da? volcano (Cappadocia, Turkey). So far, no tephra of the Central Anatolian volcanic province has been detected in marine sediment archives in the Eastern Mediterranean region. The occurrence of the S1 tephra in the south-eastern part of the Levantine Sea indicates a wide dispersal of pyroclastic material from Erciyes Da? more than 600 km to the south and is therefore an important tephrostratigraphical marker in sediments of the easternmost Mediterranean Sea and the adjacent hinterland.  相似文献   

11.
西藏东巧北尕苍见岛弧的厘定及地质意义   总被引:8,自引:0,他引:8       下载免费PDF全文
在班公错—怒江小洋盆内晚侏罗世存在向南的俯冲已被许多学者所证实,近期在班—怒带中部的东巧蛇绿岩带北侧发现一套晚侏罗世火山岩——尕苍见(组)火山岩,该套火山岩以内部变形微弱而明显有别于东巧蛇绿岩带,其地球化学特点反映具有岛弧性质,并具有初期为拉斑玄武质-钙碱性岩浆喷发,尔后以钙碱性火山活动为主,至晚期岛弧演化成熟,发生岛弧橄榄安粗质火山喷发活动,并伴有富Nb岛弧玄武岩产出。证明在班怒小洋盆内晚期也曾存在向北的俯冲作用。这一发现对完整重溯班—怒带构造演化和构建青藏高原大地构造格局具有重要意义。  相似文献   

12.
We found Bronze Age lake sediments from the Agro Pontino graben (Central Italy) to contain a thin (2–3 cm) continuous tephra layer composed of lithics, crystals and minor volcanic glass. Tephrochronological and compositional constraints strongly suggest that this layer represents the Avellino pumice eruption, which has also been identified in Central Italian lake cores. Its provenance is corroborated by electron-microprobe analyses performed on juvenile pumice grains, showing that the tephra layer is probably the distal equivalent of the EU2 event of the Avellino eruption. We used multiple 14C age estimations of two lacustrine sequences with intercalated tephra layer, from the western border zone (Migliara 44.5) and the centre of the former lake (Campo Inferiore), for in tandem dating of this eruption, employing the OxCal code, which yielded a robust age of 3945 ± 10 calBP (1995 ± 10 calBC). To date, this is the only study providing both a terminus post and terminus ante quem of this precision, also demonstrating the advantage of dating distal tephra layers in a clear stratigraphic context over proximal deposits in sequences with major stratigraphic hiatuses. Our new results underscore the importance of the Avellino tephra layer as a precise time marker for studies on the Early Bronze Age of Central Italy.  相似文献   

13.
We report tephrochronological and geochemical data on early Holocene activity from Plosky volcanic massif in the Kliuchevskoi volcanic group, Kamchatka Peninsula. Explosive activity of this volcano lasted for ~1.5 kyr, produced a series of widely dispersed tephra layers, and was followed by profuse low-viscosity lava flows. This eruptive episode started a major reorganization of the volcanic structures in the western part of the Kliuchevskoi volcanic group. An explosive eruption from Plosky (M~6), previously unstudied, produced tephra (coded PL2) of a volume of 10–12 km3 (11–13 Gt), being one of the largest Holocene explosive eruptions in Kamchatka. Characteristic diagnostic features of the PL2 tephra are predominantly vitric sponge-shaped fragments with rare phenocrysts and microlites of plagioclase, olivine and pyroxenes, medium- to high-K basaltic andesitic bulk composition, high-K, high-Al and high-P trachyandesitic glass composition with SiO2 = 57.5–59.5 wt%, K2O = 2.3–2.7 wt%, Al2O3 = 15.8–16.5 wt%, and P2O5 = 0.5–0.7 wt%. Other diagnostic features include a typical subduction-related pattern of incompatible elements, high concentrations of all REE (>10× mantle values), moderate enrichment in LREE (La/Yb ~ 5.3), and non-fractionated mantle-like pattern of LILE. Geochemical fingerprinting of the PL2 tephra with the help of EMP and LA-ICP-MS analyses allowed us to map its occurrence in terrestrial sections across Kamchatka and to identify this layer in Bering Sea sediment cores at a distance of >600 km from the source. New high-precision 14C dates suggest that the PL2 eruption occurred ~10,200 cal BP, which makes it a valuable isochrone for early Holocene climate fluctuations and permits direct links between terrestrial and marine paleoenvironmental records. The terrestrial and marine 14C dates related to the PL2 tephra have allowed us to estimate an early Holocene reservoir age for the western Bering Sea at 1,410 ± 64 14C years. Another important tephra from the early Holocene eruptive episode of Plosky volcano, coded PL1, was dated at 11,650 cal BP. This marker is the oldest geochemically characterized and dated tephra marker layer in Kamchatka to date and is an important local marker for the Younger Dryas—early Holocene transition. One more tephra from Plosky, coded PL3, can be used as a marker northeast of the source at a distance of ~110 km.  相似文献   

14.
Two widespread tephra deposits constrain the age of the Delta Glaciation in central Alaska. The Old Crow tephra (ca. 140,000 ± 10,000 yr), identified by electron microprobe and ion microprobe analyses of individual glass shards, overlies an outwash terrace coeval with the Delta glaciation. The Sheep Creek tephra (ca. 190,000 yr) is reworked in alluvium of Delta age. The upper and lower limiting tephra dates indicate that the Delta glaciation occurred during marine oxygen isotope stage 6. We hypothesize that glaciers in the Delta River Valley reached their maximum Pleistocene extent during this cold interval because of significant mid-Pleistocene tectonic uplift of the east-central Alaska Range.  相似文献   

15.
塔里木盆地巴楚隆起西缘的同1井(TX1)在寒武系之下钻遇一套火山岩,本文对该套火山岩的岩石类型、形成时代、岩石成因及构造环境进行了详细研究。结果显示,这套火山岩可分为上下两段,分别为杏仁状辉石安山岩和角闪石英安岩,属于钙碱性系列火山岩,形成于大陆边缘弧构造环境。安山岩锆石U-Pb年龄(747±12Ma)表明该岩浆弧发育时代为新元古代。同1井钻揭的火山岩与卡塔克隆起上塔参1井(TC1)钻揭的闪长岩(744.0±9.3Ma~790.0±22.1Ma)和花岗闪长岩(757.4±6.2Ma)成岩时代一致、形成环境相同,表明横亘塔里木盆地中部的古隆起带(巴楚隆起-卡塔克隆起-古城虚隆起)起源于一条新元古代陆缘岩浆弧,塔里木盆地的基底是由新元古代造山作用拼合的基底。以中央隆起带为界,南、北塔里木的基底性质和成盆演化过程可能有所差异。  相似文献   

16.
The Tiscapa maar in the center of Managua city formed by a phreatomagmatic eruption <3 ka ago. The eruption excavated a crater deep into the basement exposing a coherent Pleistocene to Holocene volcaniclastic succession that we have divided into four formations. The lowermost, >60 ka old basaltic–andesitic formation F1 comprises mafic ignimbrites and phreatomagmatic tephras derived from the Las Sierras volcanic complex south of Managua. Formation F2 contains the ~60 ka basaltic–andesitic Fontana tephra erupted from the Las Nubes Caldera of the Las Sierras complex 15 km to the S, the 25 ka Upper Apoyo tephra from the Apoyo Caldera 35 km to the SE, and the Lower (~17 ka) and Upper (12.4 ka) Apoyeque tephras from the Chiltepe volcanic complex 15 km to the NW. These tephras are separated by weathering horizons and paleosols indicating dry climatic conditions. Fluvial deposits of a SSW-NNE running paleo-river system build formation F3. The fluvial sediments contain, from bottom to top, scoriae from the ~6 ka basaltic San Antonio tephra, pumice lapilli from the Apoyo and Apoyeque tephras and the 6.1 ka Xiloà tephra, and scoriae derived from the Fontana tephra. The fluvial sediment succession thus reflects progressively deeper carving erosion in the southern highlands (where a large-amplitude regional erosional unconformity exists at the appropriate stratigraphic level) that began after ~6 ka. This suggests that the mid-Holocene tropical high-precipitation climatic phase affected western Nicaragua about a thousand years later than other circum-Caribbean regions. The end of the wet climate phase ~3 ka ago is recorded by a deep weathering zone and paleosol atop formation F3 prior to the Tiscapa eruption. Formation F4 is the Tiscapa tuffring composed of pyroclastic surge and fallout deposits that cover a minimum area of 1.2 km2. The 4 × 109 kg of erupted basaltic magma is compositionally and genetically related to the low-Ti basalts of the N–S striking Nejapa-Miraflores volcanic–tectonic alignment 5 km to the West of Tiscapa. Ascent and eruption mode of the Tiscapa magma were controlled by the Tiscapa fault that has a very active seismic history as it achieved 12 m displacement in about 3000 years. Managua city is thus exposed to continued seismic and volcanic risks.  相似文献   

17.
长白山火山灾害及其对大型工程建设的影响   总被引:2,自引:0,他引:2  
刘松雪  刘祥 《世界地质》2005,24(3):289-292
长白山火山是世界著名的活火山,历史时期有过多次喷发,有再次爆发的危险.长白山火山最大的一次爆发发生在公元1199-1200年,这次大爆发的火山灰最远到达距其1 000km远的日本北部.依据这次大爆发由火山喷发空中降落堆积物、火山碎屑流和火山泥流造成的巨大火山灾害,预测了长白山火山未来爆发火山灾害的类型、强度和范围,并编制了长白山火山未来爆发火山喷发空中降落堆积物灾害预测图、火山碎屑流灾害预测图和火山泥流灾害预测图.该研究可预防和减轻火山灾害,指导核电站等大型工程选址.  相似文献   

18.
准噶尔盆地西北缘的下二叠统佳木河组是一个油气聚集非常丰富的地区,其沉积岩相十分复杂。佳木河组下亚组为火山火山碎屑岩体系,中、上亚组是由正常碎屑岩体系和火山火山碎屑岩体系构成的复合体系。从下到上随着火山岩的大量喷发堆积及构造活动,环中拐地区不断凸起,沉积岩相不断向东迁移,油气的聚集也随之东移  相似文献   

19.
In Quaternary studies, tephras are widely used as marker horizons to correlate geological deposits. Therefore, accurate and precise dating is crucial. Among radiometric dating techniques, luminescence dating has the potential to date tephra directly using glass shards, volcanic minerals that formed during the eruption or mineral fragments that originate from the shattered country rock. Moreover, sediments that frame the tephra can be dated to attain an indirect age bracket. A review of numerous luminescence dating studies highlights the method's potential and challenges. While reliable direct dating of volcanic quartz and feldspar as a component in tephra is still methodically difficult mainly due to thermal and athermal signal instability, red thermoluminescence of volcanic quartz and the far-red emission of volcanic feldspar have been used successfully. Furthermore, the dating of xenolithic quartz within tephra shows great potential. Numerous studies date tephra successfully indirectly. Dating surrounding sediments is generally straightforward as long as samples are not taken too close to the tephra horizons. Here, issues arise from the occurrence of glass shards within the sediments or unreliable determination of dose rates. This includes relocation of radioelements, mixing of tephra into the sediment and disregarding different dose rates of adjacent material.  相似文献   

20.
In the south-eastern depocentre of the Val d’Agri basin (Southern Apennines), a volcanic ash layer crops out interbedded within poorly structured alluvial fan deposits of Late Pleistocene age. Textural, depositional and pedological features of this weathered layer suggest a primary deposition from a pyroclastic fall-out of volcanic ash. Chemical analyses of feldspars show an alkali trachytic composition and accessory minerals association allow to correlate this tephra layer with the regionally dispersed Y-7 marine tephra layer (Tufo Verde Epomeo eruption, Ischia volcano), dated at 56 ± 4 ka. The Val d’Agri tephra here described for the first time was deposited during MIS Stage 3. Its recovery and characterization permit to contribute to regional correlation of the Mediterranean climatic and volcanic events from marine to continental successions and to describe landscape evolution of the Southern Apennines during glacial–interglacial cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号