首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
Quartz-pebbles of the early Proterozoic Au-bearing Tarkwaian conglomerates in Ghana reveal several original (inherited) pre-sedimentary fluid inclusions. These inclusions are CO2-N2 rich and display a distinct high density (up to 1.15 g/cm3). The unusual high density and composition compare well with CO2-N2-rich inclusions in quartz-vein type gold deposits of the Birimian Supergroup in Ghana and Burkina Faso. This type of fluid inclusions has not been reported from any other lode-gold deposit of greenstone affiliation and is thus a specific characteristic for Birimian-hosted gold deposits. Therefore, it can be used as an unequivocal pathfinder for epigenetic as well as for syn-sedimentary gold mineralization of the early Proterozoic of West Africa. The inherited fluid inclusions with the unique physicochemical characteristics suggest that the Tarkwaian quartz-pebbles and possibly some gold were derived from Au-quartz vein deposits comparable in mineralogy, petrography and genesis to those along the NW-margin of the Ashanti belt (e.g. Ashanti Mine, Prestea Mine).  相似文献   

2.
A relationship has been established between morphological features and fineness of gold particles and the distance over which they have been transported in recent alluvial placer deposits, such as the rivers of the Barberton Mountain Land, South Africa and the river Rhine in Germany. It was possible to show that most gold particles from the Witwatersrand conglomerates retained their detrital morphology and by comparing them with particles from recent alluvial gold deposits it was possible to estimate the distance of transport for the Witwatersrand gold, which in most cases ranged from 10 km to 30 km. Gold particles in recent placers show a characteristic increase in fineness with increasing distance of transport because of the leaching of the silver from them. The Witwatersrand gold particles on the other hand, have retained their primary fineness, because leaching of silver in the oxygen-deficient Precambrian atmosphere was not feasible chemically.  相似文献   

3.
Field observations and experimental results show that gold is mobile under a wide range of natural conditions in the surficial environment. However, the extent to which, and the form(s) in which gold was mobile in ancient placers remains speculative. Rather more convincing is the extent to which diagenetic and metamorphic processes have been active in redistributing the gold.Huronian paleoplacer gold deposits span a critical transition in Earth history, namely, the oxyatmoversion, evidence for which exists in the upper Gowganda Formation dated at 2.288 Ga. Prior to this transition, deposition of gold occurred under reducing atmospheric conditions, with transportation of the more finely-divided material possibly as organic-protected colloids, as has been suggested for the Witwatersrand. Following the oxyatmoversion, gold deposition will have been subject to secondary enrichment, like many Phanerozoic placer gold occurrences. For this reason, and on purely sedimentological grounds, upper Huronian strata ought to have as much potential for hosting economic deposits of gold as the basal units.A total of 121 Au and Au---U occurrences, including several past and presently producing mines from the Huronian Supergroup, are examined. These are classified according to whether mineralization is: in or adjacent to diabase dikes (11 cases); in (quartz, quartz—carbonate) veins (85 cases); stratiform (25 cases). Of the non-diabase-hosted occurrences, 41.3% occur in the Cobalt Group, 15.7% in the Quirke Lake Group, 24.9% in the Hough Lake Group and 9% in the Elliott Lake Group.Frequency of occurrence can be related to transgressive sedimentary cycles, with deposits concentrated in the Matinenda, Mississagi and Gowganda Formations, which immediately overlie the Archean—Huronian unconformity. Most of the deposits occur in the Gowganda Formation, although none of these is stratiform.In terms of Au content, there is a large overlap in class intervals of stratiform vein deposits. Vein deposits are, in general, richer than stratiform by a factor of 10. Selected stratiform deposits in the Matinenda, Mississagi and Serpent Formations are examined in light of available geological and geochemical data. In these deposits, anomalous gold values in dominantly quartzitic metasediments are accompanied by fine-grained pyrite and other heavy minerals, including uranium, which occurs in most, but not all cases. Metamorphic grade ranges from upper greenschist to lower amphibolite facies. A few of the stratiform occurrences are accompanied by accumulations of carbonaceous material, an association reminiscent of the Witwatersrand goldfields.Results of electron-microprobe study indicate that much of the gold in the Huronian metasediments occurs as low level concentrations in pyrite of morphologically different types, in arsenopyrite, chalcopyrite, and in pyrrhotite variously altered to marcasite. It is clear that Huronian paleoplacer gold deposits exist, but only in conditions much modified by diagenetic and metamorphic processes.  相似文献   

4.
Various paleosols have been reported from within the Witwatersrand and Ventersdorp Supergroups, South Africa. They were studied in an attempt to constrain the amount of oxygen available in the atmosphere during deposition of the gold- and uranium-bearing Witwatersrand conglomerates. The majority of these horizons do not have any physical characteristics of paleosols, and none of them have a chemistry consistent with weathering, suggesting they have been subjected to modification by later alteration processes. A similar chemistry, indicating overprinting of any original soil chemistry, has been reported from paleosols elsewhere (Elliot Lake region, Canada; Hekpoort basalt, South Africa), but it does not appear that significant cognizance has been taken of this fact when using these paleosols to determine the composition of the Precambrian atmosphere. It is concluded here that characteristics previously attributed to Precambrian weathering in an oxygen-deficient atmosphere are better explained by post-burial, hydrothermal alteration along lithological contacts.  相似文献   

5.
In northwestern Canada, iron-formation occurs as part of the Rapitan Group, a dominantly sedimentary succession of probable Late Precambrian age. The Rapitan Group contains abundant evidence of glaciogenic deposition. It includes massive mixtites which contain numerous faceted and striated clasts. Finely bedded and laminated sedimentary rocks of the Lower Rapitan contain many large isolated (ice-rafted?) intra- and extra-basinal clasts. The Lower and Middle Rapitan are interpreted as products of a glacial marine regime. The iron-formation is interbedded with thin mixtite beds and contains large exotic clasts which are probably indicative of the existence of floating ice at the time of deposition of at least part of the iron-formation. If the apparently low paleolatitudes are confirmed, then glacial marine interpretation of the Rapitan, and the probably correlative Toby Conglomerate of southern British Columbia, support the postulate of a very extensive Late Precambrian ice sheet in North America.Similar iron-formations of similar age are present in South America (Jacadigo Series), in South-West Africa (Damara Supergroup) and in South Australia (Yudnamutana Sub-Group). All of these iron-formations are associated with glaciogenic rocks. In addition to the iron-formations, dolostones, limestones and evaporites (?) are intimately associated with Late Precambrian mixtites, considered by many to be glaciogenic.Huronian (Early Proterozoic) and correlative sequences of North America, and rocks of similar age in South Africa also contain closely juxtaposed undoubted glaciogenic rocks, iron-formations, dolostones and aluminous quartzites. The dolostones and aluminous sedimentary rocks have been interpreted as having formed under warm climatic conditions, but might also be explained by invoking higher PCO2 levels in the Early Proterozoic atmosphere. By analogy with the Huronian succession, preservation of “warm climate” indicators in mixtite-bearing Late Precambrian sequences does not preclude a glacial origin for the mixtites.  相似文献   

6.
The Tarkwaian rocks of Burkina Faso overlie the Birimian Supergroup which is considered to be part of a juvenile crust formed during the Eburnean orogen. They comprise fluviatile pebbles (quartz, rhyolite, chert and schist), embedded in an acid volcaniclastic matrix. During a sinistral transpressive shearing they underwent a low-grade metamorphism characterized by a paragonitic muscovite assemblage formed during isoclinal folding. Fold axes are nearly horizontal, parallel to a stretching lineation and oriented 035–215°.A typologic study of zircons in the volcaniclastics, coupled with radiometric datings, enables the volcanism to be characterized and its age to be determined.The typologic study has shown that: (1) zircons from the rhyolitic pebbles, the matrix of the conglomerates and from the sandstone are basically the same; (2) the zircons' morphology characterizes a calc-alkaline to alkaline evolutionary trend implying three main episodes of volcanism; (3) the morphology of this zircon population is very similar to those usually observed in post-orogenic metasediments or sediments. The tectonic setting is one of intracontinental extension associated with rifting and crustal thinning in the course of a major period of crustal growth around 2.1 Ga. The continental volcaniclastics accumulated in the rift at the same time as the sediments.The radiometric study has shown that there are no reworked Archean rocks. The ages cover the period 2170 to 2124 Ma. Three main volcanic episodes may be defined 2170, 2150 and 2124 Ma; the last one was probably contemporaneous with the sedimentation. Deformation of Tarkwaian rocks took place between 2124 ± 9 Ma (the age of the youngest inherited zircon) and 1991 ± 12 Ma (the age of a post-Tarkwaian granite). This period, 2170 to 2124 Ma, fits well with the main Birimian crustal growth and the ages reported for the Tarkwaian rocks of Ghana. The same period of accretion is also recognized in South America.The Tarkwaian conglomeratic rocks of Burkina Faso do not have gold concentrations similar to those in Ghana and Guyana. With respect to the Tarkwaian rocks of Ghana, where gold is concentrated in the quartz pebbles, they also differ because: (1) there is a volcaniclastic contribution; (2) the zircons from the Tarkwaian rocks in Burkina Faso are euhedral, indicating that transport distances were short; and (3) they have been deformed by shearing.With respect to Guyana, the rocks are very similar and probably have the same origin; the short transport distance may not allow a secondary concentration of gold. These differences, at least, may help explain the lack of economic gold concentration in the Tarkwaian metasediments.  相似文献   

7.
The first systematic analyses of the trace and rare earth element (REE) distribution in uraninite from various gold-bearing conglomerates of the Mesoarchaean Central Rand Group in South Africa’s Witwatersrand Basin by in situ laser ablation-inductively coupled plasma-mass spectrometry confirms a placer origin for the uraninite and a magmatogenic provenance thereof. The chemistry of commonly rounded to sub-rounded uraninite is highly variable from grain to grain but generally marked by elevated Th, W, Bi, Mo, Ta, Y, REE contents and unusually high Au concentrations. Especially, the high Th contents and the chondrite-normalised REE patterns are incompatible with post-sedimentary hydrothermal genetic models for the U mineralisation and point to derivation of the detrital uraninite from a high-temperature, magmatogenic, presumably granitic to pegmatitic source. The elevated Au concentrations (of as much as 67 ppm) in this uraninite are unique to the Witwatersrand and hint at a granitic hinterland that was enriched in both U and Au, thus presenting a potential source domain for some of the detrital gold in the Witwatersrand conglomerates. Minute fracture fills of brannerite in close proximity to the larger, rounded uraninite grains are devoid of detectable Bi, Mo, REE and Au and have only very low concentrations of Th, W, Ta and Y. This is explicable by crystallisation from a low-temperature hydrothermal fluid. Thus, Witwatersrand U phases show, analogous to many other ore constituents, such as pyrite and gold, clear evidence of partial, short-range mobilisation of originally detrital particles by post-sedimentary fluids.  相似文献   

8.
Summary In the West Rand Group of the 3.07–2.71 Ga old Witwatersrand Supergroup, South Africa, a series of banded iron-formations occur. They are of chemical origin and were deposited in an offshore shelf environment. The coarser-grained, in places pyrite-bearing, and partly auriferous metasedimentary rocks forming the bulk of the Witwatersrand Supergroup are regressive. The iron-formations, however, were deposited during transgression. The presence of allogenic pyrite in the fluviatile metaconglomerates and that of magnetite and, in places, haematite in the marine iron-formations suggests a lower pH and higher sulfur activity for the Archaean meteoric environment than for recent hydrothermal fluids on the ocean floor. Post-depositional alteration of the Witwatersrand rocks includes burial metamorphism at temperatures between 300 and 350 °C and pressures around 2.5 kbar, and multiple hydrothermal inflitration events at slightly lower temperatures, coeval with the brittle deformation of the basin fill during the deposition of the Transvaal Supergroup and the Bushveld Vredefort events.Additional thermal metamorphic overprint of the iron-formations around the Vredefort Dome caused the growth of orthoamphiboles. They show a wide range of compositions between ferro-anthophyllite and ferrous alumino-gedrite, suggesting that the crest of the solvus curve for Fe-rich orthoamphiboles is below 500 °C.Chlorite and amphibole compositions, and the presence of Fe-oxide-bearing horizons between pyrite-bearing ones indicate that the fluid composition during post-depositional alteration was largely controlled by the bulk rock composition of the infiltrated stratigraphic horizons and not by some external source.
Zusammenfassung Die West Rand Group innerhalb der 3.07–2.71 Milliarden Jahre alten Witwatersrand Supergroup, Südafrika, führt eine Reihe von Magnetit- und Hämatit-haltigen Eisenformationen. Diese sind chemischen Ursprungs und wurden in einem flachmarinen Schelfmilieu abgelagert. Der überwiegende Teil der Witwatersrand Abfolge, bestehend aus klastischen, verschiedentlich Pyrit-führenden und teilweise goldhaltigen Metasedimentgesteinen, kann regressiven Phasen zugeschrieben werden. Die Eisenformationen wurden hingegen während transgressiven Phasen abgelagert. Aufgrund des Auftretens allogener Pyrite in den fluviatilen Konglomeratlagen und von Magnetit und Hämatit in den marinen Eisenformationen lassen sich für den meteorischen Bereich im Archaikum niedrigere pH-Werte und höhere Schwefelfugazität ableiten als für rezente submarine hydrothermale Fluide. Post-diagenetische Alterationsprozesse sind der Versenkungsmetamorphose mit Temperaturen zwischen 300 und 350 °C und Drucken um 2.5 kbar sowie etwas niedriger temperierten hydrothermalen Fluiden zuzuschreiben, die als Folge der inkompetenten Deformation der Beckenfüllung in diese während mehrer Stadien infiltrierten. Infiltration hydrothermaler Fluide während der Ablagerung der Transvaal Supergroup (2.55 Ga) und während des Bildung der Vredefort Struktur (2.0 Ga) sind durch Altersdaten belegt.Zusätzliche thermische Metamorphose der Fe-reichen Pelite und Eisenformationen im Bereich der Vredefort Struktur führte zur Bildung von Orthoamphibolen, deren Zusammensetzung von Anthophyllit bis zu Fe-reichem Alumino-Gedrit reicht. Dies läßt darauf schließen, daß die Solvuskurve für Fe-reiche Orthoamphibole unterhalb von 500 °C liegt.Die Zusammensetzung der Chlorite und Amphibole sowie das Auftreten von Fe-Oxid-führenden Horizonten in den generall Pyrit-reichen Metasedimentgesteinen gestatten die Annahme, daß die post-diagenetische Fluidzusammensetzung hauptsächlich durch die jeweilige Zusammensetzung der infiltrierten Gesteinshorizonte und nicht durch eine externe Quelle bestimmt wurde.


With 8 Figures  相似文献   

9.
西非是世界上铁矿资源最为丰富的地区之一,铁矿石总资源量可达649.5亿吨,占全球8%,主要分布于马恩地盾和雷圭巴特地盾,以几内亚、塞拉利昂、利比里亚和毛里塔尼亚四国最为丰富,成因类型以BIF型为主。公开资料显示,目前有43家公司投资开发73个西非铁矿项目,其中中国庆华集团、宝武集团、赢联盟集团、中国铝业和中投资本公司等五家中资企业拥有权益资源量达217.5亿吨,形成与西非本土8国和西方7国公司三足鼎立的局势。基于标普数据库和各公司最新年报统计,发现近10年西非铁矿石年均产量为0.2亿吨,世界占比不足0.1%。目前大部分矿山处于暂停开发或暂时搁置状态,仅有21个铁矿山处于活跃状态。其中,中资企业控制的五个项目中也只有唐克里里铁矿处于开发状态。基于西非地质和航磁资料,利用证据权模型,预测在90%、50%和10%置信水平下,西非地区未发现铁矿床数量分别为63个、92个和324个,铁矿石预测资源量分别为264.6亿吨、386.4亿吨和1360.8亿吨。  相似文献   

10.
Petrographic and sulphur isotope studies support the long‐held contention that rounded grains of pyrite in siliciclastic sequences of the Late Archaean Witwatersrand Supergroup originated as placer grains. The grains are concentrated at sites where detrital heavy minerals are abundant within quartz‐pebble conglomerates and quartzose sandstones. Depositional sites with abundant pyrite are: (1) within the matrix of bar‐type, clast‐supported conglomerates; (2) on scoured or winnowed surfaces; and (3) on stratification planes. The grains are internally compact or porous, with truncation of internal structure at outer margins indicating fragmentation and rounding of pyritic source‐rocks during erosion and sediment transport. A large range in textures reflects source‐rock lithologies, with known varieties linked to sedimentary‐hosted diagenetic pyrite, volcanic‐hosted massive sulphide deposits and hydrothermal pyrite. Laser ablation sulphur isotope analysis of pyrite reveals a broader range in δ34S values (? 5·3 to + 6·7‰) than that of previously reported conventional bulk‐grain analyses (? 1 to + 4‰). Rounded pyrite from the Steyn Reef has significant variation in δ34S values (? 4·7 to + 6·7‰) that establishes heterogeneous sulphur compositions, with even adjacent grains having diverse isotopic signatures. The heterogeneity supports a placer origin for rounded pyrite. Euhedral pyrite and pyrite overgrowths which are undoubtedly authigenic have restricted δ34S values (? 0·5 to + 2·5‰), are chemically distinct from rounded pyrite and are probably the products of metamorphism or hydrothermal alteration. The placer origin of rounded pyrite indicates that pyrite was a stable heavy mineral during erosion and transport in the early atmosphere. Its distribution in three sequences (Witwatersrand Supergroup, Ventersdorp Contact Reef and Black Reef), and in other sequences not linked to Witwatersrand‐type Au‐U ore deposits, implies deposition of redox‐sensitive detrital heavy minerals during the Late Archaean. Consequently, rounded grains of detrital pyrite are strong indicators of an oxygen‐poor atmosphere. While not confirming a placer origin for gold in Witwatersrand Au‐U ore deposits, the palaeoenvironmental significance of rounded pyrite negates its link to hydrothermal mineralization.  相似文献   

11.
Mineralized conglomerates in the Witwatersrand goldfields consistently exhibit intense fracturing of quartz pebbles. The fractures are coated with quartz, phyllosilicates, organic matter, uraninite, gold, and base metal sulfide minerals, showing that all of these phases were at least partially epigenetic. Samples from five goldfields (Evander, West Rand, Carletonville, Klerksdorp, Welkom) across the Witwatersrand Basin show comparable paragenetic sequences of fracture-fillings. This implies that fracturing and several episodes of mineral deposition were basinwide events, rather than the result of local processes. Fluid inclusion data for the quartz indicates precipitation from these basinwide fluids at relatively low temperatures (<250 °C), which may be consistent with other evidence for mineralization following the Vredefort Event at 2025 Ma.  相似文献   

12.
Compared to the prokaryote-dominated lower Proterozoic there are few environments now left on Earth where prokaryotes are dominant. By about 2.5 Ga chemical conditions affecting the solution and precipitation of minerals were much influenced by microbial communities. Results of recent experiments show that modern living prokaryotes are capable of actively precipitating or flocculating gold. This process goes far towards explaining the phenomenal extent to which gold is enriched in kerogenous marker seams on the Witwatersrand.Neutron activation analyses confirm that gold is likewise anomalously enriched in kerogenous material present in the Lower Huronian metasediments of Ontario. Long known as thucholite, it appears from pyrolysis and X-ray studies of a sample from a stratiform occurrence that it is a kerogen remarkably similar to kerogen from the Vaal Reef, South Africa. A prokaryote precursor has been postulated for the Vaal Reef kerogen, and the same may well be true of at least some of the stratiform occurrences of kerogen in the Huronian.Simplifying solutions to the metallogeny of Witwatersrand-type gold that do not take into account the diverse types of gold in the deposits, are unrealistic. Precipitated gold associated with kerogen is only one of four main types of Witwatesrand gold, but it may be the major one. Our proposed model to account for this gold involves the weathering of gold from Archean source rock under anaerobic conditions, and probably in the presence of S-cycling microbial communities. Transported as a solution or colloid the gold was stabilized by humic acids, or S-cycle intermediates, and was deposited onto braided alluvial plains. There, in the presence of extensive prokaryote microbial mats (now preserved as kerogen), gold was precipitated in forms characteristic of biologically induced biomineralization.  相似文献   

13.
Based on traditional petrochemical and nontraditional mineralogical methods (accessory zircon generation analysis), specific features of the primary composition of strongly metamorphosed rocks from some Early Precambrian Au-bearing rocks of the Ukrainian Shield (US) were studied. The confinement of several gold ore occurrences to primarily sedimentary Late Archean rocks of the Ukrainian Shield has been established and the possibility of their chemogenic origin is considered. The joint analysis of plicative tectonics and metamorphism facies in the study area demonstrated that Au-bearing primarily sedimentary (chemogenic) rocks of the Khashchevatoe–Zaval'ev Formation of the Bug Group (AR2) are confined to amphibolite-facies domains within tectonic (high-order synform) structures with a significant gold potential.  相似文献   

14.
In this study, compositions and δ13C and δ2H isotopic values of hydrocarbon gases from 5 mines in the Witwatersrand basin, South Africa, support the widespread occurrence of microbially produced methane in millions of years-old fissure waters. The presence of microbial methane is, to a large extent, controlled by the geologic formations in which the gases are found. Samples from the Witwatersand Supergroup have the largest microbial component based on δ13C and δ2H signatures and CH4/C2+ values. Based on mixing between a microbial CH4 component and a more 13C-enriched and 2H-depleted C2+-rich end member, conservative estimates of the % contribution of microbial CH4 to the gas samples range from >90% microbial CH4 at Beatrix, Masimong, and Merriespruit, to between 5 and 80% microbial CH4 at Evander, and <18% microbial CH4 at Kloof. The Witwatersrand basin’s history of thermal alteration of organic-rich ancient sedimentary units suggests a thermogenic origin for this 13C-enriched end member. Alternatively, the potential for an abiogenic origin similar to hydrocarbon gases produced by water-rock interaction at other Precambrian Shield mines is discussed. Microbial methane is predominantly found in paleo-meteoric fissure waters with δ18O and δ2H values that fall on the meteoric waterline, and have temperatures between 30 to 40°C. In contrast, fissure waters with a larger component of nonmicrobial hydrocarbon gases show a trend towards more enriched δ18O and δ2H values that fall well above the meteoric waterline, and temperatures of 45 to 60°C. The enrichment in 18O and 2H in these samples, and their high salinity, are similar to the isotopic and compositional characteristics of saline groundwaters and brines produced by water-rock interaction at Precambrian Shield sites elsewhere. The reported 100 Ma ages of fissure waters from the Witwatersrand and Ventersdorp formations suggest that these microbial hydrocarbon gases are the product of in situ methanogenic communities in the deep subsurface of the Witswaterand basin. Small subunit ribosomal RNA genes were amplified using archaeal-specific primer sets from DNA extracts derived from several of these waters. Fissure waters with a high proportion of microbial methane also contained sequences resembling those of known methanogens.  相似文献   

15.
Genesis of deposits in the world’s largest Witwatersrand auriferous region (South Africa) remains a debatable issue over several decades. Based on geological and mineralogical-geochemical investigations, we previously proposed a sedimentary-exhalative hypothesis for its origin. In the present communication, we have attempted to develop and scrutinize this concept based on the study of organic matter in ore and nonore conglomerates, quartz in conglomerate pebbles, and fluid inclusions in quartz from pebbles and cement of ore and nonore conglomerates.  相似文献   

16.
SHRIMP dating of xenotime overgrowths on detrital zircon grains can constrain maximum durations since diagenesis and therefore provide minimum dates of sediment deposition. Thus, xenotime dating has significant economic application to Precambrian sediment-hosted ore deposits, such as Witwatersrand Au–U, for which there are no precise depositional ages. The growth history of xenotime in the Witwatersrand Supergroup is texturally complex, with several phases evident. The oldest authigenic xenotime 207Pb/206Pb age obtained in sandstone underlying the Vaal Reef is 2764 ± 5 Myr (1 σ), and most likely represents a mixture of diagenetic and hydrothermal growth. Nevertheless, this represents the oldest authigenic mineral age yet recorded in the sequence and provides a minimum age of deposition. Other xenotime data record a spread of ages that correspond to numerous post-diagenetic thermotectonic events (including a Ventersdorp event at ≈ 2720 Ma) up to the ≈2020 Ma Vredefort event.  相似文献   

17.
Samples of potentially uranium-bearing conglomerates from deeply weathered outcrops of the 2900 to 3200 m.y. old Pongola Supergroup were investigated from three different localities in the southeastern Transvaal and northern Zululand. Uranium isotope and uranium fission track analyses were carried out to study and to unravel the complex uranium redistribution processes which took place and which are still in progress in the weathering zone of the conglomerates. It is proposed that the combination of the two radiochemical methods can provide valuable information assisting the exploration of uranium mineralization in early Precambrian quartz-pebble conglomerates.  相似文献   

18.
With a few exceptions, shales from the Archean Witwatersrand Supergroup (~2800 Ma) in South Africa are depleted in Na, Ca, LILE, REE and HFSE compared to Phanerozoic shales. Cr, Co and Ni are enriched in all Witwatersrand shales and Fe and Mg are high in shales from the West Rand Groups (WRG) and lower Central Rand Group (CRG). Shales from the CRG and uppermost WRG are enriched in Na, Al, LILE, REE, HFSE and transition metals relative to shales from the lower WRG. Chondrite-normalized REE patterns for all Witwatersrand shales are enriched in light-REE and exhibit small to moderate negative Eu anomalies. A positive correlation of REE and Al2O3 contents in the shales suggests that REE are contained principally in clay minerals.Relative to shales from the CRG, shales from the WRG exhibit depletions of Na, Ca and Sr, a feature probably reflecting intense chemical weathering of their source rocks. CIA indices in Witwatersrand shales are variable (chiefly 70–98), even within the same shale unit. Such variations reflect chiefly variable climatic zones or rates of tectonic uplift in source areas with perhaps some contribution from provenance and element remobilization during metamorphism.Compared to present-day upper continental crust, all but the Orange Grove, Roodepoort, and K8 shales appear to have been derived from continental sources depleted in LILE, REE, and HFSE and enriched in transition metals. Computer mixing models based on six relatively immobile elements (Th, Hf, Yb, La, Sc, Co) and four source rocks indicate that the relative proportions of granite, basalt and komatiite increased with time in sediment source areas at the expense of tonalite. The contributions of basalt and komatiite appear to reach a maximum during deposition of the Booysens shale, and granite during deposition of the K8 shales and possibly during deposition of the Orange Grove shales.  相似文献   

19.
Recent geochronological investigations reinforce the early suggestion that the upper part of the Paleoproterozoic Huronian Supergroup of Ontario,Canada is present in the Animikie Basin on the south shore of Lake Superior.These rocks,beginning with the glaciogenic Gowganda Formation,are interpreted as passive margin deposits.The absence of the lower Huronian(rift succession) from the Animikie Basin may be explained by attributing the oldest Paleoroterozoic rocks in the Animikie Basin(Chocolay Group)to deposition on the upper plate of a north-dipping detachment fault,which lacks sediments of the rift phase.Following thermal uplift that led to opening of the Huronian Ocean on the south side of what is now the Superior province,renewed uplift(plume activity) caused large-scale gravitational folding of the Huronian Supergroup accompanied by intrusion of the Nipissing diabase suite and Senneterre dikes at about 2.2 Ga.Termination of passive margin sedimentation is normally followed by ocean closure but in the Huronian and Animikie basins there was a long hiatus- the Great Stratigraphic Gap- which lasted for about 350 Ma.This hiatus is attributed to a second prolonged thermal uplift of part of Kenorland that culminated in complete dismemberment of the supercontinent shortly before 2.0 Ga by opening of the Circum-Superior Ocean.These events caused regional uplift(the Great Stratigraphic Gap) and delayed completion of the Huronian Wilson Cycle until a regional compressional tectonic episode,including the Penokean orogeny,belatedly flooded the southern margin of the Superior province with foreland basin deposits,established the limits of the Superior structural province and played an important role in constructing Laurentia.  相似文献   

20.
Fleet 《地学学报》1998,10(6):302-306
Pyrite is easily oxidized, and therefore unambiguous evidence of detrital pyrite grains in metasediments is a significant constraint on when an oxygenated atmosphere developed. Compact rounded pyrite in the Witwatersrand gold reefs of South Africa has a detrital habit and is texturally equivalent to and spatially associated with detrital zircon and chromite. X-ray precession photography reveals that petrographically featureless As-poor grains are untwinned single crystals of high diffraction quality. This new evidence from crystallography is consistent with mechanically abraded pyrite from primary lode gold deposits, and excludes an origin by replacement of a pre-existing detrital phase. Further evidence of a detrital origin for the compact rounded pyrite is afforded by isolated grains of arsenian pyrite displaying truncated As-rich growth bands. The geographically extensive Witwatersrand fluvial conglomerates evidently had a matrix of quartz and pyrite sand and pyritic mud in their unconsolidated state and, thus, the late Archean atmosphere of Earth was likely essentially anoxic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号