首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The soil and ground water at a General Motors plant site were contaminated with petroleum products from leaking underground storage tanks. Based on the initial assessment, the site was complex from the standpoint of geology (clay layers), hydrology (a recharge zone with a perched water table), and contaminant (approximately 4800 gallons of mixed gasoline and oil). After a thorough study of remedial alternatives, a synergistic remedial approach was adopted including pump and treat, product removal, vapor extraction, and bioventing. The system was designed and implemented at the site through 22 dual-extraction wells. Over a 21-month period, 4400 gallons of gasoline and oil were removed from the system, including 59 percent by vapor extraction, 28 percent by bioventing, and 13 percent by pump and treat. Synergism between the various remedial methods was demonstrated clearly. Ground water pump and treat lowered the water table, allowing air to flow for vapor extraction. The vacuum applied for vapor extraction increased the ground water removal rate and the efficiency of pump and treat. The vapor extraction system also added oxygen to the soil to stimulate aerobic biodegradation.  相似文献   

2.
Ground water circulation wells (GCWs) provide an appealing alternative to typical pump-and-treat ground water remediation systems because of the inherent resource-conservative nature of the GCW systems. GCW performance prediction is challenging because the consideration of extraction and recharge in a single well is unusual for most practitioners, the technology is relatively new, and a meaningful body of literature has not been published. A three-part evaluation process using state-of-the-practice numerical ground water flow and mass transport models was developed for application during GCW pilot studies at the former Nebraska Ordnance Plant site. A small-scale ground water flow model was developed during the pilot study planning process to predict the system performance and to locate performance-measuring monitoring wells. Key predictions included the capture zone predicted to develop upgradient of the GCW, the downgradierit GCW recharge zone, and the circulation zone centered on the GCW. The flow model was subsequently verified using ground water elevation data and contaminant concentration data collected during pilot study operation. Aquifer parameters were reestimated as a result of the verification process. Those parameter values were used as input to a larger scale model, which was used to develop a remedial alternative consisting of multiple GCW systems.  相似文献   

3.
Vapor extraction (soil venting) has been demonstrated to be a successful and cost-effective remediation technology for removing VOCs from the vadose (unsaturated) zone. However, in many cases, seasonal water table fluctuations, drawdown associated with pump-and-treat remediation techniques, and spills involving dense, non-aqueous phase liquids (DNAPLS) create contaminated soil below the water table. Vapor extraction alone is not considered to be an optimal remediation technology to address this type of contamination.
An innovative approach to saturated zone remediation is the use of sparging (injection) wells to inject a hydrocarbon-free gaseous medium (typically air) into the saturated zone below the areas of contamination. The contaminants dissolved in the ground water and sorbed onto soil particles partition into the advective air phase, effectively simulating an in situ air-stripping system. The stripped contaminants are transported in the gas phase to the vadose zone, within the radius of influence of a vapor extraction and vapor treatment system.
In situ air sparging is a complex multifluid phase process, which has been applied successfully in Europe since the mid-1980s. To date, site-specific pilot tests have been used to design air-sparging systems. Research is currently underway to develop better engineering design methodologies for the process. Major design parameters to be considered include contaminant type, gas injection pressures and flow rates, site geology, bubble size, injection interval (areal and vertical) and the equipment specifications. Correct design and operation of this technology has been demonstrated to achieve ground water cleanup of VOC contamination to low part-per-billion levels.  相似文献   

4.
This report summarizes the initial results of subsurface remediation at Terminal 1, Kenneth International Airport, to remediate soil and ground water contaminated with Jet A fuel. The project was driven and constrained In the const ruction schedule of a major new terminal at the facility. The remediation system used a combination of ground water pumping, air injection, and soil vapor extraction. In the first five months of operation, the combined processes of dewatering, volatilization, and biodegradation removed a total of 36,689 pounds of total volatile and semivolatile organic jet fuel hydrocarbons from subsurface soil and ground water. The. results of this case study have shown that 62 percent of the removal resulted from biodegradation, 21 percent occurred as a result of liquid removal, and 11 percent resulted from the extraction of volatile organic compounds (VOC's).  相似文献   

5.
Contaminants may persist for long time periods within low permeability portions of the vadose zone where they cannot be effectively treated and are a potential continuing source of contamination to ground water. Setting appropriate vadose zone remediation goals typically requires evaluating these persistent sources in terms of their impact on meeting ground water remediation goals. Estimating the impact on ground water can be challenging at sites with low aqueous recharge rates where vapor-phase movement is the dominant transport process in the vadose zone. Existing one-dimensional approaches for simulating transport of volatile contaminants in the vadose zone are considered and compared to a new flux-continuity-based assessment of vapor-phase contaminant movement from the vadose zone to the ground water. The flux-continuity-based assessment demonstrates that the ability of the ground water to move contaminant away from the water table controls the vapor-phase mass flux from the vadose zone across the water table. Limitations of these approaches are then discussed with respect to the required assumptions and the need to incorporate three-dimensional processes when evaluating vapor-phase transport from the vadose zone to the ground water. The carbon tetrachloride plume at the U.S. Department of Energy Hanford Site is used as the example site where persistent vadose zone contamination needs to be considered in the context of ground water remediation.  相似文献   

6.
Bank filtration and artificial ground water recharge are important, effective, and cheap techniques for surface water treatment and removal of microbes, as well as inorganic, and some organic, contaminants. Nevertheless, physical, chemical, and biological processes of the removal of impurities are not understood sufficiently. A research project titled Natural and Artificial Systems for Recharge and Infiltration attempts to provide more clarity in the processes affecting the removal of these contaminants. The project focuses on the fate and transport of selected emerging contaminants during bank filtration at two transects in Berlin, Germany. Several detections of pharmaceutically active compounds (PhACs) in ground water samples from bank filtration sites in Germany led to furthering research on the removal of these compounds during bank filtration. In this study, six PhACs including the analgesic drugs diclofenac and propyphenazone, the antiepileptic drugs carbamazepine and primidone, and the drug metabolites clofibric acid and 1-acetyl-1-methyl-2-dimethyl-oxamoyl-2-phenylhydrazide were found to leach from the contaminated streams and lakes into the ground water. These compounds were also detected at low concentrations in receiving public supply wells. Bank filtration either decreased the concentrations by dilution (e.g., for carbamazepine and primidone) and partial removal (e.g., for diclofenac), or totally removed PhACs (e.g., bezafibrate, indomethacine, antibiotics, and estrogens). Several PhACs, such as carbamazepine and especially primidone, were readily transported during bank filtration. They are thought to be good indicators for evaluating whether surface water is impacted by contamination from municipal sewage effluent or whether contamination associated with sewage effluent can be transported into ground water at ground water recharge sites.  相似文献   

7.
Innovative remediation studies were conducted between 1994 and 2004 at sites contaminated by nonaqueous phase liquids (NAPLs) at Hill and Dover AFB, and included technologies that mobilize, solubilize, and volatilize NAPL: air sparging (AS), surfactant flushing, cosolvent flooding, and flushing with a complexing-sugar solution. The experiments proved that aggressive remedial efforts tailored to the contaminant can remove more than 90% of the NAPL-phase contaminant mass. Site-characterization methods were tested as part of these field efforts, including partitioning tracer tests, biotracer tests, and mass-flux measurements. A significant reduction in the groundwater contaminant mass flux was achieved despite incomplete removal of the source. The effectiveness of soil, groundwater, and tracer based characterization methods may be site and technology specific. Employing multiple methods can improve characterization. The studies elucidated the importance of small-scale heterogeneities on remediation effectiveness, and fomented research on enhanced-delivery methods. Most contaminant removal occurs in hydraulically accessible zones, and complete removal is limited by contaminant mass stored in inaccessible zones. These studies illustrated the importance of understanding the fluid dynamics and interfacial behavior of injected fluids on remediation design and implementation. The importance of understanding the dynamics of NAPL-mixture dissolution and removal was highlighted. The results from these studies helped researchers better understand what processes and scales are most important to include in mathematical models used for design and data analysis. Finally, the work at these sites emphasized the importance and feasibility of recycling and reusing chemical agents, and enabled the implementation and success of follow-on full-scale efforts.  相似文献   

8.
Bair ES  Metheny MA 《Ground water》2002,40(6):657-668
Remediation of ground water and soil contamination at the Wells G & H Superfund Site, Woburn, Massachusetts, uses technologies that reflect differences in hydrogeologic settings, concentrations of volatile organic compounds (VOCs), and costs of treatment. The poorly permeable glacial materials that overlie fractured bedrock at the W.R. Grace property necessitate use of closely spaced recovery wells. Contaminated ground water is treated with hydrogen peroxide and ultraviolet (UV) oxidation. At UniFirst, a deep well completed in fractured bedrock removes contaminated ground water, which is treated by hydrogen peroxide, UV oxidation, and granular activated carbon (GAC). The remediation system at Wildwood integrates air sparging, soil-vapor extraction, and ground water pumping. Air stripping and GAC are used to treat contaminated water; GAC is used to treat contaminated air. New England Plastics (NEP) uses air sparging and soil-vapor extraction to remove VOCs from the unsaturated zone and shallow ground water. Contaminated air and water are treated using separate GAC systems. After nine years of operation at W.R. Grace and UniFirst, 30 and 786 kg, respectively, of VOCs have been removed. In three years of operation, 866 kg of VOCs have been removed at Wildwood. In 15 months of operation, 36 kg of VOCs were removed at NEP. Characterization work continues at the Olympia Nominee Trust, Whitney Barrel, Murphy Waste Oil, and Aberjona Auto Parts properties. Risk assessments are being finalized that address heavy metals in the floodplain sediments along the Aberjona River that are mobilized from the Industri-Plex Superfund Site located a few miles upstream.  相似文献   

9.
In Situ Abiotic Detoxification and Immobilization of Hexavalent Chromium   总被引:1,自引:0,他引:1  
Detailed site characterization data from the former electroplating shop at the U.S. Coast Guard Air Support Center, Elizabeth City, North Carolina, suggested that the elevated Cr(VI) in the capillary fringe area had contaminated the ground water at the site. Most of the mobile Cr(VI) is present in the capillary fringe zone of the aquifer under an oxidizing environment. Current literature suggests that the reduction of Cr(VI) to Cr(III) through in situ redox manipulation in the presence of a reductant is an innovative technique for remediating chromate-contaminated sediments and ground water. The objective of this study was to evaluate the effectiveness of sodium dithionite in creating a reductive environment to remediate Cr(VI) present in soil. Sodium dithionite, a strong reductant, was injected into a small area of the vadose zone where elevated Cr(VI) was identified. Several striking changes observed in the target zone during the post-injection monitoring periods include a significant decrease in Eh(SHE), as much as ∼700 mV, absence of dissolved oxygen for 48 weeks, and the increase of Fe(II) concentrations. Results indicated that the in situ remedial treatment of Cr(VI) in the capillary fringe area was effective and consequently the concentration of Cr(VI) in ground water dropped below the MCLG level. This research demonstrated the effectiveness of in situ abiotic remediation by reducing Cr(VI) concentrations, mobility, and toxicity in soils and ground water within a short period of time. Therefore, sodium dithionite would be a feasible and cost-effective option for a full-scale remedial approach for the contaminated site at the U.S. Coast Guard Facility.  相似文献   

10.
The performance of cyclodextrin (CD)‐enhanced push‐pull (PP) and line‐drive (LD) approaches to remediation of a site contaminated with a multicomponent dense nonaqueous phase liquid (DNAPL) present in a surficial sandy aquifer was evaluated in this field study. The treatment techniques were compared to each other and to the projected performance of a conventional water‐flushing system. Performance was assessed based on contaminant mass removed per unit volume of extraction solution and per unit time of operation. As expected, the CD‐enhanced LD and PP approaches to remediation were more efficient than conventional flushing with water. Between the two techniques, the PP approach performed 1.5 to 2 times better than the LD approach, particularly for higher DNAPL saturation of the source zone. This result suggests that forcing the flushing solution directly into and through the DNAPL source zone minimized flow bypassing and consequently resulted in a more efficient transfer of contaminant mass between the DNAPL phase and the flushing solution. Nonuniform treatment zone contaminant concentrations and changes in contaminant composition influenced the treatment performances, but these effects were small and still permitted the comparison of successive tests. Although CD was used as the solubility‐enhancing flushing agent in this study, it is likely that the results can be transferred to other chemically enhanced flushing technologies that use, for example, surfactants or alcohols.  相似文献   

11.
Large-scale column experiments were undertaken to evaluate the potential of polymer mats to remove selected volatile organic compounds, polycyclic aromatic hydrocarbons, and pesticides (atrazine and fenamiphos) from ground water and potentially to act as permeable reactive barriers in contaminated ground water environments. The polymer mats, composed of interwoven silicone (dimethylsiloxane) tubes and purged with air, were installed in 2 m long flow-through columns. The polymer mats proved efficient in physically removing (stripping) benzene and naphthalene from contaminated water. Removal efficiencies for both these compounds from an aqueous phase flowing past a polymer mat were 75% or greater. However, for atrazine and fenamiphos, removal efficiencies were 5% or less, probably as a result of their lower Henry's law constants and possibly lower polymer diffusion coefficients.
These experiments indicate that, at least for relatively volatile compounds, polymer mats can provide a remediation technique for the removal of organic compounds from contaminated water. Application of this technique may be well suited as a longer-term, semipassive strategy to remediate contaminated ground water, using natural ground water flow to deliver contaminated ground water to polymer mats engineered as sorption-stripping barriers.
Additional benefits of this technique may include targeted delivery of gaseous chemical amendments, such as oxygen, to enhance aerobic biodegradation and to further reduce any residual concentrations of contaminants.  相似文献   

12.
Ground Water Sampling Bias Observed in Shallow, Conventional Wells   总被引:1,自引:0,他引:1  
A previous field demonstration project on nitrate-based bioremediation of a fuel-contaminated aquifer used short-screened clustered well points in addition to shallow (10 foot), conventional monitoring wells to monitor the progress of remediation during surface application of recharge. These well systems were placed in the center and at one edge of each of two treatment cells. One cell received recharge amended with nitrate (nitrate cell), and the other received unamended recharge (control cell). Data from the clustered well points were averaged to provide a mean estimate for comparison with the associated conventional monitoring well.
Conservative tracer profiles were similar for each of the four systems, with better fits obtained for well systems located at the edge of the treatment cells. However, aromatic hydrocarbon and electron acceptor profiles varied greatly for the two center well systems, with the conventional monitoring well data suggesting that remediation was proceeding at a much more rapid rate than indicated by the cluster well points. Later tests with an electromagnetic borehole flowmeter demonstrated a significant vertical flow through the well-bore of the conventional monitoring well under simulated operating conditions. This created an artifact during sampling, thought to arise from preferential flow of recharge water from the water table to deeper portions of the contaminated zone resulting in several effects, including an actual decreased residence time of water sampled by the conventional well. These data provide additional evidence that conventional monitoring wells may be inadequate for monitoring remediation in the presence of significant vertical hydraulic gradients, even for fairly shallow homogeneous aquifers.  相似文献   

13.
A full-scale ground water circulation well (GCW) system was installed and operated to demonstrate in situ remediation of soil and ground water impacted with a mixture of chlorinated and nonchlorinated organic compounds at a Superfund site in upstate New York. System performance and applicability under site-specific conditions were evaluated based on the system's ability to meet the New York State Department of Environmental Conservation (NYSDEC) cleanup goals for target compounds in ground water and soil. Contaminants from the unsaturated zone were mobilized (volatilized) by one-way vacuum extraction, and treated via enhanced biodegradation (bioventing). In the saturated zone, contaminants were mobilized by soil flushing (solubilized) and treated by a combination of air stripping and biodegradation. An in situ aqueous phase bioreactor, and an ex situ gas phase bioreactor, were integrated into the system to enhance treatment via bioremediation. After 15 months of operation, the mass of target contaminants in soil and ground water combined had been reduced by 75%. Removal by biological mechanisms ranged from 35% to 56% of the total observed mass reduction. The in situ and the ex situ bioreactors mineralized 79% and 76%, respectively, of their target biodegradable contaminant loads. Results indicate that some mass reduction in target contaminants may have been from aerobic and aerobic processes within the circulation cell. Nonchlorinated compounds were relatively easy to mobilize (volatilize, solubilize, and/or transport) and treat when compared to chlorinated compounds. The data collected during the 15-month study indicate that remediation could be accomplished at the Sweden-3 Chapman site using the technology tested.  相似文献   

14.
Release of an estimated 150,000 gallons (568,000 L).of 1.2–dichloroethane (EDC) from a buried pipeline into a ditch and surrounding soil resulted in shallow subsurface contamination of a Gulf Coast site. Short-term remediation included removal of EDC DNAPI. (dense nonaqueous phase liquid) by dredging and vacuuming the ditch, and by dredging the river where the ditch discharged. EDC saturation in shallow impacted sediments located beneath the ditch was at or below residual saturation and these sediments were therefore left in place. The ditch was lined, backfilled, and capped. Long-term remediation includes EDC DNAPL recovery and hydraulic containment from the shallow zone with long-term monitoring of the shallow, intermediate, and deep (200 foot) aquifers. Ground water, DNAPL., and dissolved phase models were used to guide field investigations and the selection of an effective remedial action strategy. The DNAPL. modeling was conducted for a two-dimensional vertical cross section of the site, and included the three aquifers separated by two aquitards with microfractures. These aquitards were modeled using a dual porosity approach. Matrix and fracture properties of the aquitards used for DNAPL modeling were determined from small-scale laboratory properties. These properties were consistent with effective hydraulic conductivity determined from ground water flow modeling. A sensitivity analysis demonstrated that the vertical migration of EDC was attenuated by dissolution of EDC into the matrix of the upper aquitard. When the organic/water entry pressure of the aquitard matrix, or the solubility of EDC were decreased to unrealislically low values. EDC DNAPL. accumulated in the aquifer below the upper aquitard.
EDC DNALM, did not reach the regional (deepest) aquifer in any of the cases modeled. The limited extent of vertical EDC migration predicted is supported by ground water monitoring conducted over the four years since the spill.  相似文献   

15.
Two of the biggest drawbacks of using permeable reactive barriers (PRBs) to treat contaminated ground water are the high capital cost of installation, particularly when the contaminated ground water is deep below ground surface, and the uncertainty of whether or not PRBs remain effective for the long time scales (e.g., decades) needed for many contaminant plumes. The use of an injection-extraction treatment well pair (IETWP) for capture and treatment of contaminated ground water can circumvent these difficulties, while still providing many of the same advantages offered by PRBs. In this paper, the hydraulics of IETWPs and PRBs are compared, focusing primarily on the width of the captured plume. It is demonstrated that IETWPs act as hydraulic barriers in a manner similar to PRBs, and that IETWPs provide excellent plume capture. A mathematical expression is presented for the plume capture width of an IETWP oriented perpendicular to the ground water flow direction in a homogeneous aquifer. Also discussed are other practical considerations that might determine whether an IETWP is better suited than a PRB for a particular contaminated site; these considerations include operating and maintenance costs, and the conditions under which an IETWP system can be used for in situ remediation.  相似文献   

16.
Pilot-scale testing of an innovative ground water remediation technology was conducted in a source zone of a trichloroethene-contaminated Superfund site in Tucson, Arizona. The technology is designed to enhance the removal of low-solubility organic contaminants from heterogeneous sedimentary aquifers by using a dual-screened vertical circulation well to inject and extract solutions containing a complexing sugar (hydroxypropyl-beta-cyclodextrin (HPCD]). Prior to initiating the pilot test, tracer tests were conducted to determine hydraulic characteristics of the vertical flow field and to evaluate trichloroethene-elution behavior during water flushing. The pilot test involved injecting approximately 4 m3 of a 20% HPCD solution into the upper screened interval of the well and extracting from the lower screened interval. The results of the pilot test indicate that the cyclodextrin solution increased the rate of trichloroethene removal from the aquifer. The concentrations of trichloroethene in the ground water extracted from the lower screened interval of the well increased by a factor of three (∼750 μg/L) in the presence of the cyclodextrin pulse, compared to concentrations obtained during previous water flushing (∼250 μg/L). Furthermore, the concentration of trichloroethene in water collected from the circulation well under static conditions was reduced to 6% of the levels measured prior to the test.  相似文献   

17.
Contaminated site remediation is generally difficult, time consuming, and expensive. As a result ranking may aid in efficient allocation of resources. In order to rank the priorities of contaminated sites, input parameters relevant to contaminant fate and transport, and exposure assessment should be as accurate as possible. Yet, in most cases these parameters are vague or not precise. Most of the current remediation priority ranking methodologies overlook the vagueness in parameter values or do not go beyond assigning a contaminated site to a risk class. The main objective of this study is to develop an alternative remedial priority ranking system (RPRS) for contaminated sites in which vagueness in parameter values is considered. RPRS aims to evaluate potential human health risks due to contamination using sufficiently comprehensive and readily available parameters in describing the fate and transport of contaminants in air, soil, and groundwater. Vagueness in parameter values is considered by means of fuzzy set theory. A fuzzy expert system is proposed for the evaluation of contaminated sites and a software (ConSiteRPRS) is developed in Microsoft Office Excel 2007 platform. Rankings are employed for hypothetical and real sites. Results show that RPRS is successful in distinguishing between the higher and lower risk cases.  相似文献   

18.
EPA's approach for developing, evaluating, and selecting ground water response actions at Superfund sites with contaminated ground water involves a series of key decisions to support necessary actions. These actions include the following:
Planning how the site will be managed
Determining data needs
Determining remedial action objectives
Developing alternatives
Selecting and implementing the remedy.
The key decisions should reflect a policy and decision-making approach developed within the framework of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA 1980) as amended by the Superfund Amendments and Reauthorization Act (SARA 1986) and program policies to implement these acts. This paper outlines a flexible, iterative process, described in detail in the Guidance on Remedial Actions for Contaminated Ground Water at Superfund Sites (U.S. EPA 1988), by which ground water remedies can be identified, evaluated, selected, and implemented at Superfund sites beginning with initial site investigation tasks and ending with evaluation of implemented actions. Proper consideration of the factors presented in this paper should result in an efficient, effective procedure for making remedial action decisions for contaminated ground water that ensures protection of human health and the environment.  相似文献   

19.
At an aviation gasoline spill site in Traverse City, Michigan, historical records indicate a positive correlation between significant rainfall events and increased concentrations of slightly soluble organic compounds in the monitoring wells of the site. To investigate the recharge effect on ground water quality due to infiltrating, water percolating past residual oil and into the saturated zone, an in situ infiltration experiment was performed at the site. Sampling cones were set at various depths below a circular test area, 13 feet (4 meters) in diameter. Rainfall was simulated by sprinkling the test area at a rate sufficiently low to prevent runoff. The sampling cones for soil-gas and ground water quality were installed in the unsaturated and saturated zones to observe the effects of the recharge process. At the time of the test, the water table was below the residual oil layer. The responses of the soil-gas and ground water quality were monitored during the recharge and drainage periods, which resulted from the sprinkling.
Infiltrated water was determined to have transported organic constituents of the residual oil, specifically benzene, toluene, ethylbenzene, and ortho-xylene (BTEX), into the ground water beneath the water table, elevating the aqueous concentrations of these constituents in the saturated zone. Soil-gas concentrations of the organic compounds in the unsaturated zone increased with depth and time after the commencement of infiltration. Reaeration of the unconfined aquifer via the infiltrated water was observed. It is concluded that water quality measurements are directly coupled to recharge events for the sandy type of aquifer with an overlying oil phase, which was studied in this work. Ground water sampling strategies and data analysis need to reflect the effect of recharge from precipitation on shallow, unconfined aquifers where an oil phase may be present.  相似文献   

20.
In situ bioreclamation is a proven technology that cost-effectively treats organic contamination in subsurface environments. As a remediation strategy, it reduces both the contamination dissolved in ground water, as well as residual soil-bound contamination.
To maximize biodegradation, the technology is applied after conducting laboratory studies. Application of the technology involves infiltrating necessary nutrients to the contaminated subsurface.
Results of a specific case study indicate excellent performance with rapid cleanup of petroleum hydrocarbon contamination from soils and ground water.
Costs associated with in situ bioreclamation technology showed a savings of approximately 50 percent over simple pump-and-treat technology. Time frame for cleanup was shown to be approximately 30 percent of the projected time frame of simple pump-and-treat technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号