首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a model for the particle acceleration to energy E≈1021 eV in Seyfert galactic nuclei. The model is based on the theory of active galactic nuclei by Vilkoviskij et al. (1999). The acceleration takes place in hot spots of relativistic jets, which decay in a dense stellar kernel at a distance of 1–3 pc from the center. The maximum energy and chemical composition of the accelerated particles depend on the jet magnetic-field strength. Fe nuclei acquire the largest energy, E≈8×1020 eV, if the jet field strength is B≈16 G. At a field strength B~5–40 G, the nuclei with Z≥10 acquire energy E≥2×1020 eV; the lighter nuclei are accelerated to E≤1020 eV. In a field B~1000 G, only the particles with Z≥23 gain energy E≤1020 eV. The protons are accelerated to E<4×1019 eV, and they do not fall within the energy range concerned at any field strength B. Interactions with infrared photons do not affect the accelerated-particle escape from the sources if the galactic luminosity L≤1046 erg s?1 and if the angle between the normal to the galactic plane and the line of sight is sufficiently small, i.e., if the galactic-disk axial ratio is comparatively large. The particles do not lose their energy through magnetodrift radiation if their deflection from the jet axis does not exceed 0.03–0.04 pc at a distance R≈40–50 pc from the center. The synchrotron losses are small, because the magnetic field frozen in the galactic wind at R≤40–50 pc is directed (as in the jet) predominantly along the motion. If this model is correct, then the detected protons are nuclear fragments or are accelerated in other sources. The jet magnetic fields can be estimated by using the cosmic-ray energy spectrum and chemical composition.  相似文献   

2.
We propose and test new statistical tools to study the distribution of cosmic rays based on the use of the minimal spanning tree. The method described is particularly sensitive to filamentary structures, as those expected to arise from strong sources of charged cosmic rays which get deflected by intervening magnetic fields. We also test the method with data available from the AGASA and SUGAR surface detector arrays.  相似文献   

3.
The presence of nearby discrete cosmic ray (CR) sources can lead to many interesting effects on the observed properties of CRs. In this paper, we study about the possible effects on the CR primary and secondary spectra and also the subsequent effects on the CR secondary-to-primary ratios. For the study, we assume that CRs undergo diffusive propagation in the Galaxy and we neglect the effect of convection, energy losses and reacceleration. In our model, we assume that there exists a uniform and continuous distribution of CR sources in the Galaxy generating a stationary CR background at the Earth. In addition, we also consider the existence of some nearby sources which inject CRs in a discrete space–time model. Assuming a constant CR source power throughout the Galaxy, our study has found that the presence of nearby supernova remnants (SNRs) produces noticeable variations in the primary fluxes mainly above ∼100 GeV n−1, if CRs are assumed to be released instantaneously after the supernova explosion. The variation reaches a value of ∼45 per cent at around 105 GeV n−1. Respect to earlier studies, the variation in the case of the secondaries is found to be almost negligible. We also discuss about the possible effects of the different particle release times from the SNRs. For the particle release time of ∼105 yr, predicted by the diffusive shock acceleration theories in SNRs, we have found that the presence of the nearby SNRs hardly produces any significant effects on the CRs at the Earth.  相似文献   

4.
The mechanism of ion-stimulated erosion of atmosphereless solar system bodies is suggested and investigated. A theoretical model for the brittle surface erosion resulting under the effect of multicharge ion cosmic rays is analyzed. It is shown that the thermoelastic waves originated in the energetic track of a very heavy ion can result in the near-surface stresses exceeding the dynamic tensile strength of the surface material for any atmosphereless solar system body. The thermoelastic wave surface arrival yields brittle erosion of the material and ejection of this latter fragments (the track-breaking process). Thus ejected dust grains have plano-oblong shape, average mass on the order of 10–17 g and velocity up to 400 m/sec providing the surface erosion rate of 10–1 ÷ 3 · 102 »/year (near the Earth orbit) which depends upon the surface material (rock or ice). Possible track-breaking consequences, in particular, presence of the dust fraction of ultramicron grains and their aggregates on the lunar surface are discussed. Near the bodies with the radii from 10 to 300 km predicted is the existence of extended dust cocoons consisting of ultramicron and submicron grains. Smaller objects (asteroids, comets, smallest satellites of planets, meteoroids, etc.) can serve sources of permanent dust wind of ultramicron and submicron sized grains escaping from their surfaces. The interplanetary dust yield owing to the ion-stimulated erosion of these bodies is not less than 1012 g/year. Possible interpreting in the frames of track-breaking process some observational data and effects, including existence of dust grains with the mass of 10–18 ÷ 10–17 g near the Halley's comet and the nature of 2060 Chiron dust coma is discussed. To prove the theory, observational identification and investigation of dust phenomena complex related to the ion-stimulated erosion of atmosphereless bodies, suggested is employing extreme ultraviolet and far infrared/submillimeter wavelengths, as well as polarimetric methods.  相似文献   

5.
The relative abundances of the nuclei from neon to iron in the energy interval 150–400 MeV/n have been estimated by using a balloon borne cellulose-nitrate plastic detector. The source abundances are obtained by extrapolating the near-earth abundances using leaky box model of cosmic ray propagation in the interstellar space. The results are compared with those of other investigators and a general agreement is obtained. However, a discrepancy arises especially in the case of Al which is not detected in the present investigation.  相似文献   

6.
Uryson  A. V. 《Astronomy Letters》2004,30(12):816-823
Astronomy Letters - We computed the energy spectra of the incident (on an air shower array) ultrahigh-energy (E&;gt;4×1019eV) cosmic rays (CRs) that were accelerated in nearby Seyfert...  相似文献   

7.
We have used data from five neutron monitor stations with primary rigidity (Rm) ranging from 16 GeV to 33 GeV to study the diurnal variations of cosmic rays over the period: 1965–1986 covering one 22-year solar magnetic cycle. The heliosphere interplanetary magnetic field (IMF) and plasma hourly measurements taken near Earth orbit, by a variety of spacecraft, are also used to compare with the results of solar diurnal variation. The local time of maximum of solar diurnal diurnal variations displays a 22-year cycle due to the solar polar magnetic field polarities. In general, the annual mean of solar diurnal amplitudes, magnitude of IMF and plasma parameters are found to show separte solar cycle variations. Moreover, during the declining period of the twenty and twenty-ne solar cycles, large solar diurnal amplitudes are observed which associated with high values of solar wind speed, plasma temperature and interplanetary magnetic field magnitude B3.  相似文献   

8.
We analyse in detail the two-dimensional Kolmogorov–Smirnov test as a tool to learn about the distribution of the sources of the ultra-high energy cosmic rays. We confront, in particular, models based on active galactic nuclei observed in X-rays, galaxies observed in H  i and isotropic distributions, discussing how this method can be used not only to reject isotropy but also to support or reject specific source models, extending results obtained recently in the literature.  相似文献   

9.
All the components of Cosmic Rays (CR) have ‘structure’ in their energy spectra at some level, i.e. deviations from a simple power law, and their examination is relevant to the origin of the particles. Emphasis, here, is placed on the large-scale structures in the spectra of nuclei (the ‘knee’ at about 3 PeV), that of electrons plus positrons (a shallow ‘upturn’ at about 100 GeV) and the positron to electron plus positron ratio (an upturn starting at about 5 GeV).Fine structure is defined as deviations from the smooth spectra which already allow for the large-scale structure. Search for the fine structure has been performed in the precise data on positron to electron plus positron ratio measured by the AMS-02 experiment. Although no fine structure is indicated, it could in fact be present at the few percent level.  相似文献   

10.
11.
The quasi-linear theory for cosmic ray propagation is a well-known and widely accepted theory. In this paper, we discuss the different contributions to the pitch-angle Fokker–Planck coefficient from large and small scales for slab geometry using the damping model of dynamical turbulence. These examinations will give us a hint on the limitation range where the quasi-linear approximation is a good approximation.  相似文献   

12.
13.
We investigated the acceleration of solar cosmic rays (SCRs) by the shock waves produced by coronal mass ejections. We performed detailed numerical calculations of the SCR spectra produced during the shock propagation in the solar corona in terms of a model based on the diffusive transport equation using a realistic set of physical parameters for the corona. The resulting SCR energy spectrum N(ε) ∝ ε exp [? (ε/εmax)α] is shown to include a power-law portion with an index γ?2 that ends with an exponential tail with α ? 2.5 ? β, where β is the spectral index of the background Alfvén turbulence. The maximum SCR energy lies within the range εmax = 1–300 MeV, depending on the shock velocity. Because of the steep spectrum of the SCRs, their backreaction on the shock structure is negligible. The decrease in the Alfvén Mach number of the shock due to the increase in the Alfvén velocity with heliocentric distance r causes the efficient SCR acceleration to terminate when the shock reaches a distance of r = 2–3R. Since the diffusive SCR propagation in this case is faster than the shock expansion, SCR particles intensively escape from the shock vicinity. A comparison of the calculated SCR fluxes expected near the Earth’s orbit with available experimental data indicates that the theory satisfactorily explains all of the main observed features.  相似文献   

14.
Active galactic nuclei and pulsars as cosmic ray sources   总被引:2,自引:0,他引:2  
Relativistic e± particles and cosmic rays are accelerated in the magnetospheres of supermassive black holes and neutron stars. The possibility of synchrotron radiation with extremely high intensity inside the deepest regions of magnetospheres is investigated. Very high brightness temperatures are expected for such radiation by relativistic protons, which can be made even higher in the presence of non-stationary conditions, Doppler boosting and coherent processes. The main parameters for models of such high-brightness-temperature radiation are determined. Two types of active galactic nuclei (AGNs) are expected. One type is associated with the acceleration and ejection of relativistic e± particles only (probably non-IDV sources and FR-I radio galaxies). The second type of AGN is also associated with e± acceleration, but is dominated by the contribution of relativistic protons (probably IDV sources and FR-II radio galaxies). Analogous objects for pulsars are plerion and shell supernova remnants with neutron stars or pulsars without synchrotron nebulae, respectively.  相似文献   

15.
16.
In the present work the cosmic ray data of three different neutron monitoring stations, Deep River, Inuvik, and Tokyo, located at different geomagnetic cutoff rigidities and altitudes have been harmonically analyzed for the period 1980–95 for a comparative study of diurnal semi-diurnal and tri-diurnal anisotropies in cosmic ray intensity in connection with the change in interplanetary magnetic field Bz component and solar wind velocity on 60 quietest days. It is observed that the amplitudes of all the three harmonics increase during the period 1982–84 at all the stations during the high speed solar wind stream epoch and remain low during the declining phase of the stream. The amplitudes of the three harmonics have no obvious characteristics associated with the time variation of magnitude of the Bz component. The phases of all the three harmonics have no time variation characteristics associated with solar wind velocity and Bz. Published in Astrofizika, Vol. 49, No. 4, pp. 651–664 (August 2006).  相似文献   

17.
18.
Solar activity indices (coronal, chromospheric as well as photospheric) and cosmic ray neutron monitor rates (different cut‐off rigidity) have been used to study 27‐day variations in the years from 1957 to 2004. Daily data were employed for this purpose, analysed by the FFT and wavelet techniques. To work with a continuous data set for the cosmic rays (CR), the ‘Composite Cosmic Ray’ (CCR) set was first created from the observations carried out at different neutron monitor stations. The CCR frequency analysis shows significant 27‐day variations in the intensity of CR, with its amplitude's values very sensitive to the sign of the quantity qA. The most significant 27‐day variations of CR were found not to correlate with those of other solar indices. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In the present work an analysis has been made of the extreme events occurring during July 2005. Specifically, a rather intense Forbush decrease was observed at different neutron monitors all over the world during 16 July 2005. An effort has been made to study the effect of this unusual event on cosmic ray intensity as well as various solar and interplanetary plasma parameters. It is noteworthy that during 11 to 18 July 2005 the solar activity ranged from low to very active. Especially low levels occurred on 11, 15, and 17 July whereas high levels took place on 14 and 16 July 2005. The Sun is observed to be active during 11 to 18 July 2005, the interplanetary magnetic field intensity lies within 15 nT, and solar wind velocity was limited to ∼500 kms-1. The geomagnetic activity during this period remains very quiet, the Kp index did not exceed 5, the disturbance storm time Dst index remains ∼-70 nT and no sudden storm commencement has been detected during this period. It is noted that for the majority of the hours, the north/south component of the interplanetary magnetic field, Bz, remains negative, and the cosmic ray intensity increases and shows good/high correlation with Bz, as the polarity of Bz tends to shift from negative to positive values, the intensity decreases and shows good/high anti-correlation with Bz. The cosmic ray intensity tends to decrease with increase of interplanetary magnetic field strength (B) and shows anti-correlation for the majority of the days. Published in Astrofizika, Vol. 51, No. 2, pp. 255–265 (May 2008).  相似文献   

20.
We study the influence of the regular component of the Galactic magnetic field (GMF) on the arrival directions of ultra-high energy cosmic rays (UHECRs). We find that, if the angular resolution of current experiments has to be fully exploited, deflections in the GMF cannot be neglected even for E = 1020 eV protons, especially for trajectories along the Galactic plane or crossing the Galactic center region. On the other hand, the GMF could be used as a spectrograph to discriminate among different source models and/or primaries of UHECRs, if its structure would be known with sufficient precision. We compare several GMF models introduced in the literature and discuss for the example of the AGASA data set how the significance of small-scale clustering or correlations with given astrophysical sources are affected by the GMF. We point out that the non-uniform exposure to the extragalactic sky induced by the GMF should be taken into account estimating the significance of potential (auto-) correlation signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号