首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Contradictory results are reported for the behaviour of quaternary ammonium compounds (QACs) in sewage treatment plants (STPs). QACs may sorb onto activated sludge. Only little information is available with respect to effects of QACs against bacteria in STPs. Only 5 to 15 % of bacteria present in sewage sludge can be detected by means of culture dependent microbiological methods. The shift of the bacterial populations due to effects of test compounds have not been studied up to now with culture independent methods. The microbial populations shift was studied in situ using culture independent chemotaxonomy profiling ubiquinones and polyamines. Additionally, toxic effects of QACs against bacteria present in the test vessels of the Zahn‐Wellens test (OECD 302 B) were assessed with a toxicity control in the test. The ubiquinone profiles representing changes in Gram‐negative populations mainly showed that the activated sludge was affected only in test vessels containing benzalkonium chloride. According to chemotaxonomy Acinetobacter or/and some members of Pseudomonas spp. have been selected by benzalkonium chloride after some adaptation period (8 to 12 days).  相似文献   

2.
Hexavalent chromium Cr(VI) has emerged as a contaminant of prime concern for the environmentalists because of its improper disposal by tannery, dye, and electroplating industries. Adsorption is the most exploited method for its removal from industrial wastewater because of its high removal efficiency even at low Cr(VI) concentration, minimal sludge, and ease of regeneration. In recent years, several adsorbents of biological origin such as plants, algae, fungi, and bacteria have been explored for Cr(VI) remediation. This review comprehends the recent studies involving usage of biopolymer-based nano-composites with respect to its adsorption mechanisms, adsorption capacities, isotherms, and kinetics. The conventional abiotic and biotic techniques for removal of Cr(VI) are also discussed with a comparative insight of their adsorption capacity and removal efficiency. Nano-biocomposites integrate the functional properties of both nanoparticles and biopolymers, which make them efficient biosorbents. Nano-biocomposites offer a large surface area, reduced particle loss, minimal particle agglomeration on the surface, and high stability. Common kinetic models among the nano-biocomposites,  and various equilibrium models are also analyzed to understand the mode of adsorption and associated factors. These materials are mostly found to follow monolayer adsorption with ion exchange, electrostatic interaction, and surface complexation as major players in the process.  相似文献   

3.
Aerobic granular sludge was successfully cultivated in a sequencing batch reactor (SBR) treating wastewater from the malting process with a high content of particulate organic matter. At an organic loading rate of 3.2 kg/(m3 d) CODtotal and an influent particle concentration of 0.95 g/L MLSS an average removal of 50% in CODtotal and 80% in CODdissolved could be achieved. A comparison of granular and flocculent sludge grown under the same operating conditions showed no significant difference in removal efficiency although granules exhibited a higher metabolic activity in terms of specific oxygen uptake rate (rO2, X). Two distinct mechanisms of particle removal were observed for granular sludge: during initial granule formation, particles were incorporated into the biofilm matrix. For mature granules, a high level of protozoa growth on the granule surface accounted for the ability to remove particulate COD. Combined evaluation of the development in MLSS content and sludge bed settling rate (i.e., mean derivative of the normalized sludge volume) was found to be an adequate method for monitoring the characteristic settling properties of a granulizing sludge bed. By means of this method, a distinct substrate gradient out of several operating conditions was concluded to have the biggest impact on the formation of aerobic granular sludge.  相似文献   

4.
Sorption of Heavy Metals from Acetic Acid Extracts by Ferric Phosphate Colloids A conceivable procedure to remedy heavy metal contaminated soil materials is given with extraction of organic acids, i. e. by the use of a biological degradable extraction agent. The following concentration step of heavy metal extracts should be carried out to a great extent without a change of the low pH values. A conventional precipitation of the heavy metals by rising the pH should be avoided in order to introduce no large amounts of salts into the wastewaters of the process and furthermore, to reduce the amount of sludge to be deposited. The process scheme developed with the objective of heavy metals recycling consists of the following steps: the extraction of the heavy metal contaminated soils with weak organic acids like acetic acid or citric acid, the electrolysis of the extract, and a concentration step in order to treat metal concentrations not fully removed by electrolysis. This third step, e.g. could contain sorption on iron phosphate colloids and precipitation within the acidic environment. It has been examined whether a removal of the heavy metals Pb, Cd, Cu, Sb, Cr, Ni and Zn from acetic aqueous solutions of pH between 2 and 3 can be carried out.  相似文献   

5.
Scum formation is a widespread problem in activated sludge nutrient removal plants. It often comes along with an excessive development of the filamentous bacterium “Microthrix parvicella” stabilizing the flotation process. As “M. parvicella” was found to depend on long‐chain fatty acids (LCFA) as sole carbon source not only in vitro but also in situ, some options of in‐situ substrate supply are discussed. Wastewater concentrations of fatty acids in the range of 2 to 15 mg L‐1 and homologue concentrations from synthetic surfactant degradation below 10 mg L‐1 rule out these substrates as source for excessive biomass production. They might, however, well be suitable for start‐up of a “M. parvicella” population. Build‐up of excessive biomass might rely on fatty acid supply originating in cell walls of lysed stationary phase bacteria of long residence time sludge fractions such as scum layers. Moreover, biogenic surfactants such as rhamnolipids have been proved to be an excellent carbon source for excessive biomass production in vitro.  相似文献   

6.
Limestone defluoridation by fixed bed reactor has been studied with water pre‐acidified with edible organic acids, viz. acetic acid (AA) and citric acid (CA). The study has been carried out by varying acid concentration, contact time (t), number of repeated use of the same limestone bed (n), and chip size of the crushed limestone using fixed fluoride concentration of 10 mg/L in distilled water and groundwater amended to that concentration of fluoride. The presence of both the acids considerably improved the fluoride removal and the removal increased with increase in the acid concentration. Fluoride removal to less than 0.5 and 1.0 mg/L from initial 5 and 10 mg/L, respectively, have been achieved by the method on treatment with single reactor. The mechanism of fluoride removal in the process thought to be the increase in Ca2+ activity by dissolution of limestone, which precipitates as CaF2. XPS analysis reveals that adsorption also contribute to the fluoride removal along with precipitation. The final pH of water remained within acceptable range for drinking water. Initial concentration of fluoride, effects the removal ability of the limestone particles only to some extent. The influence of other anions on fluoride removal process has a little influence which follows the order phosphate > sulfate > bromide > chloride > nitrate.  相似文献   

7.
The recovery of phosphorus will become almost as important as its removal for preventing eutrophication. In this connection, the biological techniques for the elimination of P are of a special importance. The fundamentals and the process technologies of the “phostrip” technique and the anaerobic/aerobic technique are described. The biological P-removal is more susceptible to interference than the normal activated sludge process is. The most important sources of troubles are discussed. For a stable process it is necessary at the anaerobic stage that neither molecular oxygen nor nitrate oxygen are present and that the organic substances contained in the waste water are partly hydrolyzed in order to use up the intracellular energy reserves in the form of polyphosphates to a considerable degree. Moreover, at the aerobic stage there have to be guaranteed high rates of growth of the P-storing bacteria and the formation of polyphosphates as well as only a low degree of nitrification. From this results an increased expenditure for the process control especially for the oxygen and nitrate concentrations at the aerobic stage. The results from two model plants are represented.  相似文献   

8.
In this study, batch experiments were carried out to investigate simultaneous growth of Spirulina platensis and removal of hardness in the Van Lake Water (VLW). Laboratory‐scale studies showed ample Spirulina growth observed in VLW when exposed to light. Spirulina was the only algal specimen inoculated in the water during the study. VLW percentages were varied between 0.1 and 100% while pH values were 8.7–10.42 in the flasks. On a dry‐weight basis the biomass concentration was 1.18 g L?1 at pH 10 after 17 days of incubation in the VLW. The increase of pH to above 10.38 associated with Spirulina growth resulted in the precipitation of hardness causing compounds while providing 70% hardness removal from the VLW medium. Experimental results indicated that the proposed method can be used to design batch systems for producing S. platensis and removal of hardness from the VLW.  相似文献   

9.
Removal of Al, As, Cd, total Cr (Tot. Cr), Cu, Total Fe (Tot. Fe), Mn, Ni, Pb, Sb, Sn, and Zn from urban effluent by wastewater treatment plants (WWTPs) operated under five‐stage Bardenpho® process were investigated and water soluble metals in the dewatered sludge were quantified. Samples were collected from two WWTPs on a weekly basis over an approximately 2.5‐year time span. Tot. Fe and Al were the most abundant, As, Pb, Ni, Cu, and Cd were the least abundant metals in the influents of both WWTPs. Removal efficiencies above 75% were achieved for Tot. Cr, Tot. Fe, Al, and Cu, whereas, no significant removal was observed for As, Cd, Pb, Sb, and Sn. Removal of Tot. Cr, Cu, Tot. Fe, Zn, Al, Mn, and Ni were influenced by influent suspended solids concentrations, and of Tot. Cr, Zn, and Cd were influenced by their initial content in the influent. Zn removal efficiency of biological nutrient removal (BNR) system in this study was higher and Cd removal efficiency was lower than that of conventional activated sludge reported in the literature. No remarkable difference for metals such as Cu, Mn, Ni, and Pb was observed between the removal efficiencies of conventional system and BNR system.  相似文献   

10.
Excessive scum production is a widespread phenomenon in present activated sludge wastewater treatment. The question how foaming is initiated and stabilized is still unanswered. Hydrophobic wastewater ingredients and surface active material such as synthetic surfactants are discussed among others as major causative agents for scum production. Focusing on biological impacts non‐filamentous bacteria isolated from scum turned out to contribute to flotation by both cell surface hydrophobicity and emulsification activity, depending on the prevailing substrate and milieu conditions. The biological characterization of scum based on microscopic sludge investigation of conspicuous microorganisms resulted in a significant shift of filamentous and non‐filamentous organism populations with Gram‐positive bacteria prevailing in present nutrient removal plants as compared to the situation ten years ago. Their hydrophobic cell surface is supposed to support adherence and stabilization of interfaces and thus promote sludge flotation. In scum six types of filamentous bacteria turned out to be numerous: Microthrix parvicella and nocardioform actinomycetes, both of them being enriched in the scum fraction, moreover Nostocoida limicola and Eikelboom types 0041/0675, 1851, and 0092. Possible interactive mechanisms between non‐filamentous and filamentous scum bacteria and their selection factors are discussed in order to contribute to a better understanding of scum formation and to provide efficient troubleshooting measures.  相似文献   

11.
Flocculation and sedimentation of particles are essential to many environmental and industrial processes. Solid–liquid separation in olive‐oil mill wastewater treatment by means of Fenton system is the key to work continuously and maintain a constant outlet flow of clarified water at the end of the oxidation process. Natural sedimentation is not capable to eliminate the sludge formed. The efficiency of flocculation operation using different flocculants as QG‐2001, QG‐2002, DQGALFLOC‐130H, and Nalco‐77171 was investigated. The optimum dosage of each flocculant, 150, 2.5, 66, and 6 mg dm?3, respectively, was determined. The results revealed that the best flocculant was Nalco‐77171, which determined 13.5% v/v final sludge separation and 86.5% v/v final clarified water obtained. Kinetics of sludge removal in the transition zone was adjusted to power law, v/v0 = Ktε, where the exponent, ε, varied in the range 0.141–0.670.  相似文献   

12.
Variation of wind speed and the physico-chemical parameters, such as dissolved phosphate, ferrous and manganese in lake water were observed on site. Together with the chemistry analysis and simulated experiment in lab, the change of phosphate concentration in lake water was analyzed. The variation of ferrous/phosphate ratio explained that along with the enhancement of wind-wave effect and the oxidation ability of lake water, the effects of co-precipitation and removal of dissolved phosphate and iron in the lake water were reinforced. The ferrous/phosphate ratio in pore water was less than 2.0, demonstrating that the dissolved phosphate can be released into the overlying water. But, in the lake water, the stability of phosphate was controlled by the water dynamics. The phosphate release experiment showed that molecular release was only part of the whole and the direct discharge of phosphate in the pore water was also a part. The mineralization and biological process of suspended particulates in the water may be another important reason for the whole phosphate loadings.  相似文献   

13.
Hydrophobic Al monostearate was tested as a low-solubility denitrification substrate for anaerobic bacteria and a source of aluminum for phosphate precipitation. Flow-through laboratory columns at 25 ± 2°C were used with O2-saturated solutions containing 1x, 2x, 8x, and 16x concentrations of 2.26 mg/L NO3-N and 3.26 mg/L PO4-P. Denitrification was exponential, approximating first-order reaction kinetics with the rate constant being a function of the initial nitrate concentration. The half life in minutes can be approximated by 5.29 (mg/L NO3- N°)1/2 where NO3-N° was the initial input nitrate concentration. The reaction times were significantly shorter than those required using Ca distearate as a carbon source and much shorter than those using cellulose (white pine shavings) as a carbon source. Al stearate has potential for use in a flow-through container for denitrification of oxidized effluent from home sewage systems.
Aqueous phosphate removal with Al stearate depended upon dissolution of the Al stearate followed by precipitation of Al phosphate. Only 5% to 10% of the phosphate was removed from the solution. The amounts removed were similar to those obtained using bauxite grains as an aluminum source, following saturation of sorption sites with phosphate on bauxite. Aqueous phosphate removal with Ca stearate was insignificant, as the released calcium was apparently precipitated as calcite rather than as hydroxyapatite.  相似文献   

14.
Variation of wind speed and the physico-chemical parameters, such as dissolved phosphate, ferrous and manganese in lake water were observed on site. Together with the chemistry analysis and simulated experiment in lab, the change of phosphate concentration in lake water was analyzed. The variation of ferrous/phosphate ratio explained that along with the enhancement of wind-wave effect and the oxidation ability of lake water, the effects of co-precipitation and removal of dissolved phosphate and iron in the lake water were reinforced. The ferrous/phosphate ratio in pore water was less than 2.0, demonstrating that the dissolved phosphate can be released into the overlying water. But, in the lake water, the stability of phosphate was controlled by the water dynamics. The phosphate release experiment showed that molecular release was only part of the whole and the direct discharge of phosphate in the pore water was also a part. The mineralization and biological process of suspended particulates in the water may be another important reason for the whole phosphate loadings.  相似文献   

15.
The automotive industry plays a major role in the worldwide economy and represents an opportunity to increase the performance of the Turkish economy. Phosphating units in the automotive manufacturing plants generate phosphate sludge as waste, which is classified as hazardous waste in the European Waste Catalogue. Phosphate sludge must be disposed of in licensed disposal plants according to the current environmental regulations. Solidification/stabilization (S/S) is a widely used treatment technology for the disposal of hazardous wastes. Portland cement is used for the solidification and stabilization processes to immobilize Ni and Zn in the phosphate sludge as well as to create construction material to be used as cobble stone for pavement. Examination of products obtained by S/S processes is performed for two points: to determine the quality and to assess the environmental impacts. The phosphate sludge samples are subjected to chemical characterization and a size distribution analysis leaching test. Concrete for cobble stone was produced by the S/S process with the addition of phosphate sludge to replace sand. Tests for the quality of the product were carried out to determine compressive strength, permeability, and elasticity. At the end of the leaching test, elution concentrations of Zn and Ni while using water with pH values of 4.0, 5.4, and 9.0 were determined to be under the limit of inert material properties. Use of phosphate sludge should be considered as a sand replacement in the proportion of 1% of phosphate sludge to cement in concrete production, such as for cobble stone for pavement, without any adverse environmental impacts.  相似文献   

16.
A mathematical model has been produced to examine the impact of sewage sludge and fertilizer application to arable land and the effect of different crop regimes on the amount of nitrate leached to chalk groundwater. Previous work on nitrate leaching has concentrated on either a soil science or a hydrogeological approach with little overlap between the two. This study considered both fields to obtain an overall picture of the nitrate leaching process. IMPACT is a layered deterministic N-leaching model which predicts the nitrogen loads entering groundwater daily from arable land, and can be used as a management tool in development of sludge application and agricultural policy. The model relates nitrogen species movement resulting from the application of sewage sludge and fertilizer to differing vegetation-soil-hydrogeological conditions. Field data collected at three sites on the unconfined chalk aquifer of East Anglia, England over a two and a half year period was used to produce an initial conceptual model and to constrain the mathematical model during development. IMPACT simulates nitrogen and transport processes in the soil and unsaturated zone of the chalk. The nitrogen processes include: mineralisation of soil organic-N and sewage sludge organic-N, nitrification; crop uptake; volatilization; denitrification; and N inputs from fertilizers and precipitation. A mixing cell method is used to model solute transport in both the soil and chalk. Matrix flow and combined fissure-matrix flow are considered for the chalk. The model enables examination of the relationship between the arable/hydrogeological systems and the environmental implications of sludge application and of different arable regimes. Results are of use in developing strategies for arable farming and sludge application in areas sensitive to nitrate leaching. This Part 1 paper describes the model development approach. Results of associated modelling scenarios are presented separately in the associated Part 2 paper.  相似文献   

17.
Anaerobically stabilized sludge from wastewater treatment is always a challenge from the environmental aspect of management. The agrarian environmental surroundings present a possibility for swift and efficient utilization of compost from anaerobically stabilized sludge in order to increase the quality of the biological product. With intensification of the composting procedure by means of the microbiological consortium Geocell‐1 (Cellvibrio sp., Pseudomonas fluorescens with the addition of micro‐ and macro‐elements), the results show that the compost obtained from stabilized sludge after inoculation is significantly improved in terms of moisture reduction (39–43%), while in the control compost, this value is significantly higher with 61%. The results of the pathogenic effect show a significant reduction in the number of fecal coliform (<1 × 103) and Enterococcus bacteria (<1 × 104) in the inoculated (treated) compost. With a slight decrease in the concentration of limiting factors such as As, Cd, Cu, a quality biological product can be achieved, which can be safely deposited on soil. The phytotoxicological germination test with white mustard (Sinapis alba) shows a higher number of sprouting plants with a mixture of treated compost and standard soil for flowers 1:1 and 1:4 compared to the control group.  相似文献   

18.
Study of the Biological Degradation of Polycyclic Aromatic Hydrocarbons in a Laboratory-scale Plant A one-stage laboratory-scale wastewater treatment plant composed of a bubble column reactor with sedimentor and sludge recycle is fed with an oil/water emulsion from a contaminated site. The oil phase is highly contaminated with polycyclic aromatic hydrocarbons (PAH). The samples are taken regularly at defined points of the treatment plant (influent, reactor, return sludge, effluent). The analysis of PAH is performed by HPLC. We can show that all analysed PAH including the poorly degradable carcinogenic substances such as benzo[a]pyrene are biologically transformed. Additional measurements of the toxic and mutagenic potential of the wastewater show that in the laboratory-scale plant full removal of the carcinogenic potential is not achieved. This is due to the fact that during the biological transformation of higher condensated PAH mutagenic dead-end metabolites are produced.  相似文献   

19.
The P-uptake by Acinetobacter calcoaceticus, Pseudomonas aeruginosa and Escherichia coli is determined in batch culture with peptone/glucose/sodium chloride or peptone/acetate/sodium chloride as substrate at 60 to 120 mg/1 orthophosphate for 20 h with cell densities of 2 · 107/ml (Acinetobacter) or 1.2 · 109. The measurements were carried out by means of an Na2HPO4 (32P) addition of 95 to 420 kBq. During the stationary phase the bacteria achieved the following P-contents in the biomass in fg/g bacterium: Acinetobacter 6 to 13, Pseudomonas 0.2 to 0.6, Escherichia 0.04 to 0.09; during the phase of growth Acinetobacter achieved 40 to 100 fg/bacterium. Acetate as the substrate did not result in any increase of the P-uptake. The maximum accumulation with Acinetobacter was 13 % P in the dry substance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号