首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A shake-table experiment on pile foundations in liquefi able soils composed of liquefi able sand and overlying soft clay is studied. A three-dimensional(3D) effective stress fi nite element(FE) analysis is employed to simulate the experiment. A recently developed multi-surface elasto-plastic constitutive model and a fully coupled dynamic inelastic FE formulation(u-p) are used to model the liquefaction behavior of the sand. The soil domains are discretized using a solid-fl uid fully coupled(u-p) 20-8 noded brick element. The pile is simulated using beam-column elements. Upon careful calibration, very good agreement is obtained between the computed and the measured dynamic behavior of the ground and the pile. A parametric analysis is also conducted on the model to investigate the effect of pile-pinning, pile diameter, pile stiffness, ground inclination angle, superstructure mass and pile head restraints on the ground improvement. It is found that the pile foundation has a noticeable pinning effect that reduces the lateral soil displacement. It is observed that a larger pile diameter and fi xed pile head restraints contribute to decreasing the lateral pile deformation; however, a higher ground inclination angle tends to increase the lateral pile head displacements and pile stiffness, and superstructure mass seems to effectively infl uence the lateral pile displacements.  相似文献   

2.
In this paper a centrifuge model that is capable of realistically representing soil-structure systems subjected to earthquake-like excitation is used to create a data pool which demonstrates the influence of (i) the frequencies of the structure, (ii) the foundation embedment and (iii) the foundation shape on radiation damping and soil-structure interaction effects for a structure on a semi-infinite soil layer over bedrock. The centrifuge model used in this study was developed and validated by the authors in an earlier publication,1 and employs an internal method of earthquake simulation, and the clay-like material, Duxseal, to absorb wave reflections at the boundary of the soil sample. The results of the experimental study are used to compute damping and stiffness values of a two-degree-of-freedom piecewise-linear numerical model of the soil-structure systems. The experimental parameter values are then compared to the values computed using classical text book formulae. The analysis demonstrates the value of the experimental data in validating and developing soil-structure interaction theory, and confirms the accuracy of classical text book formulae in the linear range.  相似文献   

3.
This paper presents a centrifuge model that is capable of realistically representing soil-structure systems subjected to earthquake-like excitation. The model is validated by performing (i) free field soil tests, (ii) dynamic soil-structure interaction tests and (iii) a numerical analysis of the experimental results. The free field experiments show that the simulated earthquake, which is generated by the hammer-exciter plate method, is similar in amplitude and frequency content to a real earthquake. The experiments also demonstrate that a confined soil sample can satisfactorily model a horizontal soil stratum of infinite lateral extent when the containment walls are lined with an absorptive material to attenuate wave reflections that would otherwise occur. Measurements of the acceleration at different locations on the free soil surface indicate that the surface motion is fairly uniform over a relatively large area. This is further confirmed by a comparison made between the measured free and scattered field motions for a surface foundation. Next, a series of soil-structure interaction tests are performed which examine the dependence of radiation damping on the natural frequencies of the structure relative to the fundamental frequency of the soil stratum. The experimental results are shown to be consistent with established theories. Finally, the experimental results are used to compute the stiffness and damping parameters of a two degree of freedom numerical model of the soil-structure system. The experimental parameters are shown to be in good agreement with calssical text book formulae. This study demonstrates that the centrifuge model consistently behaves as expected for simple, but realistic, dynamic soil and soil-structure systems, and can, therefore, be used with confidence to examine more complicated systems that are not yet fully understood.  相似文献   

4.
A three-dimensional hybrid model for the analysis of soil-structure interaction under dynamic conditions is developed which takes advantage of the desirable features of the finite element and substructure methods and which minimizes their undesirable features. The modelling is achieved by partitioning the total soil-structure system into a near-field and a far-field with a hemispherical interface. The near-field, which consists of the structure to be analysed and a finite region of soil around it, is modelled by finite elements. The semi-infinite far-field is modelled by distributed impedance functions at the interface which are determined by system identification methods. Numerical results indicate that the proposed model makes possible realistic and economical assessment of three-dimensional soil-structure interaction for both surface and embedded structures.  相似文献   

5.
Forced vibration tests designed to isolate the effects of soil-structure interaction are described and the results obtained for the nine-storey reinforced concrete Millikan Library Building are analysed. It is shown that it is possible to determine experimentally the fixed-base natural frequencies and modal damping ratios of the superstructure. These values may be significantly different from the resonant frequencies and damping ratios of the complete structure-foundation-soil system. It is also shown that forced vibration tests can be used to obtain estimates of the foundation impedance functions. In the case of the Millikan Library it is found that during forced vibration tests the rigid-body motion associated with translation and rocking of the base accounts for more than 30 per cent of the total response on the roof and that the deformation of the superstructure at the fundamental frequencies of the system is almost entirely due to the inertial forces generated by translation and rocking of the base.  相似文献   

6.
考虑土-结构相互作用的高层建筑抗震分析   总被引:17,自引:0,他引:17  
本文采用通用有限元程序ANSYS,针对上海地区一例土-箱基-高层建筑结构进行了三维有限元分析,计算中土体的本构模型采用等效线性模型,利用粘一弹性人工边界作为土体的侧向边界,并研究了土体边界位置、土性、基础埋深、基础形式以及上部结构刚度等参数对动力相互作用体系动力特性及地震反应的影响。  相似文献   

7.
了国内外有关土-结构动力相互作用问题的研究概况,对国内外抗震设计规范中有关土-结构动力相互作用的条文进行了分析,指出了我国《89规范》第4、2、6条考虑土-结构动力相互作用中存在的问题;结合作者的研究成果和规范修订工作,重点讨论了考虑土-结构动力作用条件下水平地震作用折减系数的计算问题。  相似文献   

8.
本文通过对高层建筑结构-地基动力相互作用体系和刚性地基上高层建筑结构的振动台模型试验成果的对比分析,研究了相互作用对结构动力特性和地震反应的影响。结果-地基动力相互作用使结构频率减小,阻尼增大;相互作用体系的振型曲线与刚性地基上结构的振型曲线不同,基础处存在平动和转动;在地震动作用下考虑相互作用的结构加速度、层间剪力、弯矩以及应变通常比刚性地基上的情况小,而位移则比刚性地基上的情况大。  相似文献   

9.
The aim of the present study is twofold. Firstly, the paper investigates the undrained cyclic and post-cyclic behaviour of two silica sands by means of multi-stage cyclic triaxial tests. Secondly, based on the post-cyclic response observed in the element test, the authors formulate a simplified stress–strain relationship that can be conveniently used for the construction of p–y curves for liquefiable soils. The multi-stage loading condition consists of an initial cyclic loading applied to cause liquefaction, followed by undrained monotonic loading that aimed to investigate the post-cyclic response of the liquefied sample. It was found that due to the tendency of the liquefied soil to dilate upon undrained shearing, the post-liquefaction strain–stress response was characterised by a distinct strain–hardening behaviour. The latter is idealized by means of a bi-linear stress–strain model, which can be conveniently formulated in terms of three parameters, i.e.: (i) take-off shear strain, γto, i.e. shear strain required to mobilize 1 kPa of shear strength; (b) initial secant shear modulus, G1, defined as 1/γto; (c) post-liquefied shear modulus at large strain, G2 (γγto). Based on the experimental results, it is concluded that these parameters are strongly influenced by the initial relative density of the sample, whereby γto decreases with increasing relative density. Differently both shear moduli (G1 and G2) increases with increasing relative density. Lastly, the construction of new p–y curves for liquefiable soils based on the idealized bi-linear model is described.  相似文献   

10.
A dynamic full scale testing program was performed to quantitatively assess the effectiveness of prefabricated vertical drains as a liquefaction countermeasure. The testing program involved a new in situ liquefaction testing technique, which uses a large hydraulic vibrator to generate waves propagating through an embedded instrumentation area to measure the coupled soil-pore water response. The effectiveness of prefabricated vertical drains is assessed experimentally by comparing the pore pressure generation, pore pressure dissipation, and settlement from two reconstituted soil specimens; one without a drain in place and the other with a single drain installed. Because the prefabricated drain was installed during the specimen preparation process, no accompanying densification during installation occurred. Therefore, the effect of drainage alone was evaluated. The testing results show that the drainage provided by prefabricated drains can significantly reduce pore pressure generation, accelerate post-shaking pore pressure dissipation, and limit associated settlement. The outcome also shows that the new developed in situ liquefaction testing technique can be an alternative to quantitatively evaluate the effects of various liquefaction remediation techniques.  相似文献   

11.
Assessment of the attenuation of induced vibrations in the ground plays an important role in evaluating comfort and structural safety. Analytical and empirical wave attenuation relationships of increasing complexity and detail are presented in the paper, as well as a numerical model that accurately reproduces wave attenuation for a well-documented site, namely the one of the Tower of Pisa, Italy. A new source model is calibrated on near-field data and used as input for the dynamic coupled consolidation finite element analysis to achieve a satisfactory simulation. The accuracy of simpler analytical and empirical approaches is then comprehensively assessed through comparison with the validated numerical model and the field data obtained from geophones at various distances from the impact source.  相似文献   

12.
现有的基础隔震理论大多沿用刚性地基假定,忽略土-结构相互作用。由于地基土的柔性和无限性,土-结构相互作用会对基础隔震体系的隔震机理产生直接影响。因此,考虑土-结构动力相互作用对隔震结构体系隔震效果影响的研究十分必要。本文把地基土视为匀质、各向同性的黏弹性半空间,用等效双线型恢复力模型模拟铅芯橡胶支座的非线性,建立基础隔震体系单质点力学模型和运动方程。通过ANSYS软件进行数值模拟,用D-P材料考虑土的材料非线性,用接触单元模拟土与结构的接触非线性,分析土-结构动力相互作用对铅芯橡胶支座隔震效果的影响。  相似文献   

13.
Lateral spread of frozen ground crust over liquefied soil has caused extensive bridge foundation damage in the past winter earthquakes. A shake table experiment was conducted to investigate the performance of a model pile in this scenario and revealed unique pile failure mechanisms. The modelling results provided valuable data for validating numerical models. This paper presents analyses and results of this experiment using two numerical modeling approaches: solid-fluid coupled finite element (FE) modeling and the beam-on-nonlinear-Winkler-foundation (BNWF) method. A FE model was constructed based on the experiment configuration and subjected to earthquake loading. Soil and pile response results were presented and compared with experimental results to validate this model. The BNWF method was used to predict the pile response and failure mechanism. A p-y curve was presented for modelling the frozen ground crust with the free-field displacement from the experiment as loading. Pile responses were presented and compared with those of the experiment and FE model. It was concluded that the coupled FE model was effective in predicting formation of three plastic hinges at ground surface, ground crust-liquefiable soil interface and within the medium dense sand layer, while the BNWF method was only able to predict the latter two.  相似文献   

14.
液化条件下场地土大变形是造成工程结构失效的主要原因之一。文中以某高速公路特大桥的可液化岸坡近场场地为研究对象,基于PL-Finn液化本构模型,利用FLAC 3D程序对其在地震作用下的动响应全过程进行了数值模拟分析。结果表明,PL-Finn模型可较好地反映地震过程中孔隙水压、液化区的变化规律,并能较好的预测液化后场地土的变形规律。液化引起的地基土大变形对桥梁桩基的影响需引起重视。  相似文献   

15.
考虑相邻结构影响的土-结构动力相互作用研究综述   总被引:1,自引:0,他引:1  
对相邻结构动力相互作用(DCI)的研究历史与现状作了回顾和介绍,将其发展过程分为三个阶段,并对各时期发展的主要内容和特点进行了概述,最后对该领域今后的研究趋势作了分析。  相似文献   

16.
17.
The effect of the base mat flexibility on seismic soil-structure interaction is studied for an axisymmetric reactor building on a soft and a stiff soil. As a preliminary step, the dynamic response of a massless flexible circular plate with two rigid concentric walls, through which the plate is loaded, is analysed. The response of the plate is found to depend on the plate flexibility, the load distribution and the frequency of excitation. For practical, in-phase load distributions, the response of the flexible plate is close to that of a rigid plate at low frequencies, but deviates at high frequencies. Including the flexibility of the mat has hardly any effect on the frequencies and damping of the fundamental rocking and vertical modes of the reactor building. This is the case for soft and stiff soil conditions. However, the flexibility of the mat strongly affects the first and higher structural deformation modes. In both cases the amount of energy dissipated in the soil is a significant percentage of the total dissipation, and is essentially unaffected by the mat flexibility.  相似文献   

18.
An approximate solution of the classical eigenvalue problem governing the vibrations of a structure on an elastic soil is derived through the application of a perturbation analysis. For stiff soils, the full solution is obtained as the sum of the solution for a rigid-soil and small perturbing terms related to the inverse of the soil shear modulus. The procedure leads to approximate analytical expressions for the system frequencies, modal damping ratios and participation factors for all system modes that generalize those presented by other authors for the fundamental mode. The resulting approximate expressions for the system modal properties are validated by comparison with the corresponding quantities obtained by numerical solution of the eigenvalue problem for a nine-story building. The accuracy of the proposed approach and of the classical normal mode approach is assessed through comparison with the exact frequency response of the test structure.  相似文献   

19.
This paper presents the development, implementation, and application of a probabilistic framework for the pseudo-static analysis of pile foundations in liquefied and lateral spreading soils. The framework allows for rigorous consideration and propagation of the large uncertainties regarding quantification of seismic loads and soil–pile interaction relationships, which exist in the pseudo-static method. Building upon previous relationships proposed by others, the key features of the presented framework are outlined. In particular, the uncertainty estimation of the induced lateral soil displacements; superstructure inertia loads; and stiffness and strength of the liquefied soils are discussed in detail. The results of applying the pseudo-static method to a case study bridge structure are compared to that obtained using a rigorous seismic effective stress analysis within a similar framework. It is illustrated that the consideration of uncertainties in the pseudo-static framework provides enhanced communication of the foundation's seismic performance to end-users, and that the pseudo-static method provides seismic performance prediction consistent with that obtained using advanced seismic effective-stress analyses.  相似文献   

20.
This article demonstrates how system identification techniques can be successfully applied to a soil-structure interaction system in conjunction with the results of the forced vibration tests on the Hualien large-scale seismic test structure which was recently built in Taiwan for an international joint research. The parameters identified are the shear moduli of several near-field soil regions as well as Young's moduli of the shell sections of the structure. The soil-structure interaction system is represented by the finite element method combined with infinite element formulation for the unbounded layered soil medium. Preliminary investigations are carried out on the results of the static stress analysis for the soil medium and the results of the in-situ tests to divide the soil-structure system into several regions with homogeneous properties and to determine the lower and upper bounds of the parameters for the purpose of identification. Then two sets of parameters are identified for two principal directions based on the forced vibration test data by minimizing the estimation error using the constrained steepest descent method. The simulated responses for the forced vibration tests using the identified parameters show excellent agreement with the test data. The present estimated parameters are also found to be well compared with the average value of those by other researchers in the joint project.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号