首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The timing of the extinction of the Australian Megafauna and whether it was simultaneous and widespread has been a much researched topic in Quaternary geoscience. The Black Creek Swamp Megafauna site on Kangaroo Island was thought to be a refugium for Megafauna; however, recent and multidiscipline age determinations have established that the fossils are considerably older than the well-quoted extinction age of 45 kyr. Further radiocarbon age determinations, δ13C isotope analysis and 13C-NMR spectroscopy of the fossil containing organic matter demonstrates that it is highly soluble and accumulated as recently as 31–18 cal. kyr BP. These radiocarbon ages are much younger than the 100–50 kyr age bracket ascertained for the fossil material itself, implying separate episodes of death, deposition and burial. The soluble nature of the organic matter and increasing radiocarbon ages with depth suggests lateral accumulation, probably transported by subsurface waters from elevated areas proximal to the low-lying swamp. Such depositional conditions and 14C age range implies that the site may have experienced an unusually wet Last Glacial Maximum, due maybe to its proximity to the continental shelf and thus to maritime conditions. C3 vegetation dominates the Black Creek Swamp and its organic matter (δ13C; −30‰ and −23‰); however, variations in δ13C may indicate climatic shifts. 13C-enrichment and an abundance of salt-tolerant gastropods within the site's final phase of sediment accumulation (<6 cal. kyr BP) suggest that conditions during this most recent period were not as wet as those of the Last Glacial Maximum.  相似文献   

2.
ABSTRACT This work presents a detailed 87Sr/86Sr isotope curve for the interval 7.5–9.7 Ma obtained by a high-resolution analysis (sampling spacing of about 40 kyr) of an astronomically calibrated land-based sedimentary sequence exposed in the central Mediterranean area (Gibliscemi section, southern Sicily). The main aim is to verify a synchronous response of the Mediterranean seawater Sr isotope record to the oceanic forcing on the basis of multiple comparisons of the Gibliscemi record with published coeval 87Sr/86Sr curves. A good correlation with the 87Sr/86Sr data from the ODP site 926 (equatorial Atlantic ocean), considered to be the Sr chemostratigraphic reference section for the Late Miocene, and from the Pacific DSDP site 590B was registered. Conversely, the comparison of the Gibliscemi Sr isotope data with 87Sr/86Sr ratios from the coeval segment of the land-based Sardella section (eastern Mediterranean) shows important differences highlighting a local control on the seawater Sr isotope changes in semi-isolated subbasins within the Late Miocene Mediterranean.  相似文献   

3.
Zachariah 《地学学报》1998,10(6):312-316
A marble band in the ≈ 2.75 Gyr old Ramagiri schist belt in the Dharwar craton of south India gave a Pb–Pb age of 3.075 ± 0.095 Gyr. The geochemical data, including high Sr and low Ba and Mn indicate seawater origin for the parent rock, and that there was insignificant geochemical exchange between the marble and the surrounding rocks. The calculated initial Nd isotopic composition and μ1 indicate an older continental crustal source for the Nd and Pb. The initial 87Sr/86Sr of the marble is 0.70128, which is higher than the calculated mantle value at ≈ 3 Ga. Although pre-3 Gyr old marine carbonate rocks are thought to be buffered by mantle Sr, the Ramagiri marble contains evolved, crustal Sr. Despite this, the marble has the lowest measured 87Sr/86Sr among carbonates and represents one of the least radiogenic periods in seawater Sr isotope composition.  相似文献   

4.
M.J. Bickle 《地学学报》1996,8(3):270-276
The seawater 87Sr/86Sr curve implies a 50–100 Myr episodicity in weathering rate which requires a corresponding variation in CO2 degassing from the solid earth to the atmosphere. It is proposed that this is caused by orogenesis, which both produces CO2 as a result of metamorphic decarbonation reactions, and consumes extra CO2 as a consequence of erosion-enhanced weathering. Global climate on the geological time-scale is therefore contTolled by the difference between the relatively large and variable orogenic-moderated degassing and weathering CO2 fluxes.  相似文献   

5.
C.J. Eastoe  & T. Peryt 《地学学报》1999,11(2-3):118-131
Routine trace-element geochemistry suggests that components in putative marine halite evaporites may be partly of nonmarine origin, but such interpretations are commonly ambiguous. Stable chlorine isotopes may provide a less-ambiguous marker of chloride origin where δ37Cl departs from the range predicted for evaporite formation from seawater. Bedded halite with primary sedimentary textures preserves original δ37Cl values. Measurable change in δ37Cl can be generated by incongruent dissolution of halite, but only if less than half the original halite remains. Badenian (middle Miocene) halite from the Forecarpathian and from the East Slovakian and Transcarpathian basins has a δ37Cl range of – 0.2 to 0.8‰. Two phenomena cannot be explained by simple evaporation of 0.0‰ seawater. At Wieliczka, the Shaft Salt has distinctive δ37Cl values (– 0.2 to 0.0‰) relative to neighbouring salt beds (0.2 to  0.6‰), requiring a large, abrupt input of brine with negative δ37Cl. Halite with high (0.6 – 0.8‰) δ37Cl near the base of the East Slovakian and Transcarpathian evaporites requires a large input of chloride with positive δ37Cl into the basins. Expulsion of basin brine with non-0‰δ37Cl into the evaporite basins may account for the nonmarine chloride sources.  相似文献   

6.
Calcium Isotopic Composition of Various Reference Materials and Seawater   总被引:1,自引:0,他引:1  
A compilation of δ44/40Ca (δ44/40Ca) data sets of different calcium reference materials is presented, based on measurements in three different laboratories (Institute of Geological Sciences, Bern; Centre de Géochimie de la Surface, Strasbourg; GEOMAR, Kiel) to support the establishment of a calcium isotope reference standard. Samples include a series of international and internal Ca reference materials, including NIST SRM 915a, seawater, two calcium carbonates and a CaF2 reference sample. The deviations in δ44/40Ca for selected pairs of reference samples have been defined and are consistent within statistical uncertainties in all three laboratories. Emphasis has been placed on characterising both NIST SRM 915a as an internationally available high purity Ca reference sample and seawater as representative of an important and widely available geological reservoir. The difference between δ44/40Ca of NIST SRM 915a and seawater is defined as -1.88 O.O4%o (δ44/42CaNISTSRM915a/Sw= -0.94 0.07%o). The conversion of values referenced to NIST SRM 915a to seawater can be described by the simplified equation δ44/40CaSa/Sw44/40CaSa/NIST SRM 915a - 1.88 (δ44/42CaSa/Sw44/42CaSa/NIST SRM 915a - 0.94). We propose the use of NIST SRM 915a as general Ca isotope reference standard, with seawater being defined as the major reservoir with respect to oceanographic studies.  相似文献   

7.
This contribution describes the field geometry, petrography and geochemistry of a well-exposed dolomitization front in Upper Jurassic carbonates, and attempts to highlight the sedimentological, structural and relative sea-level controls on multiphase dolomitization and related diagenetic events. The data presented reflect the superposition of various diagenetic phases which have resulted in a single dolostone body, whose dimensions are well defined in the field. Local microbial intraclastic dolomites of Late Tithonian age accumulated in a hypersaline lagoon during relative sea-level fall. These pre-date beige hydrothermal dolostones (51 to 55 mol% CaCO3; δ 18O: −9·3 to −4·0‰ V-PDB; δ 13C: −1·5 to +2·1‰ V-PDB; 87Sr/86Sr: 0·70742; matrix porosity: ≈6%; Klinkenberg permeability: ≈0·5 mD), whose dolomitizing fluid circulated along faults and invaded the nearby facies. First, the burrows were dolomitized, then the bulk rocks, resulting in the investigated 'tongue'-shaped dolomite body. Upon Late Jurassic–Early Cretaceous uplift, near-surface water percolated through – and altered – the underlying beige dolostones. This event was followed by a ferroan dolomite cement phase, which occurred during further burial. This contribution, featuring a well-defined geometric pattern of a dolomitization front with a large petrographic and geochemical data set, may also serve as a case study illustrating the complexity of superimposed diagenetic processes which have to be taken into account in modelling exercises of multiphase hydrothermal dolomitization.  相似文献   

8.
We present an approach for tracing the fate of anthropogenic CO2, compiling a large data set of stable organic carbon isotope ratios from surface sediments, plankton, and sinking matter in the Atlantic Ocean. The δ13C values of sinking matter are generally lower by 0.5–4.6‰ compared to the surface sediments. This difference increases with increasing latitude, which is explained by a stronger modern increase in surface water [CO2 (aq)] in the Southern Ocean relative to the Tropical/Subtropical Ocean. Preindustrial dissolved CO2 concentrations in Atlantic surface waters, estimated from the δ13Corg of surface sediments, are compared to recently measured surface water [CO2 (aq)] values taken from literature. We obtain only a slight increase in [CO2 (aq)] at lower latitudes but a significant change of about 7 ± 2 μ m in high latitudinal surface waters which we attribute to anthropogenic perturbation. Our results suggest that CO2 released by human activities has been stored in Southern Ocean surface waters.  相似文献   

9.
ABSTRACT
The mineralogy and isotope geochemistry of carbonate minerals in the Coorong area are determined by the water chemistry of different depositional environments ranging from seawater to evaporitically modified continental water. The different isotopic compositions of coexisting calcite and dolomite suggest that each of the above two minerals was formed from water of composition and origin unique to that specific mineral. In addition, the dolomite was not formed by simple solid state cation exchange.
The occurrence of two types of dolomite was shown by isotope analysis and SEM observations. The dolomite, which is isotopically light (δ13C = -1 to -2% 0 ; δ18O=+3 to +5%0) and of fine grain size (˜ 0·5 μm) probably precipitated under the influence of evaporitically modified continental water. Coarser grained dolomite (up to 4 μm) is isotopically heavier (δ13C=+3 to +4%0; δ18O=+5 to + 6%0) contains Mg in excess of Ca and was formed in or close to equilibrium with atmospheric CO2 probably by the dolomitization of aragonite.  相似文献   

10.
Garnet peridotites occur as lenses, blocks or layers within granulite–amphibolite facies gneiss in the Dabie-Sulu ultra-high-pressure (UHP) terrane and contain coesite-bearing eclogite. Two distinct types of garnet peridotite were identified based on mode of occurrence and petrochemical characteristics. Type A mantle-derived peridotites originated from either: (1) the mantle wedge above a subduction zone, (2) the footwall mantle of the subducted slab, or (3) were ancient mantle fragments emplaced at crustal depths prior to UHP metamorphism, whereas type B crustal peridotite and pyroxenite are a portion of mafic–ultramafic complexes that were intruded into the continental crust as magmas prior to subduction. Most type A peridotites were derived from a depleted mantle and exhibit petrochemical characteristics of mantle rocks; however, Sr and Nd isotope compositions of some peridotites have been modified by crustal contamination during subduction and/or exhumation. Type B peridotite and pyroxenite show cumulate structure, and some have experienced crustal metasomatism and contamination documented by high 87Sr/86Sr ratios (0.707–0.708), low εNd( t ) values (−6 to −9) and low δ18O values of minerals (+2.92 to +4.52). Garnet peridotites of both types experienced multi-stage recrystallization; some of them record prograde histories. High- P–T  estimates (760–970 °C and 4.0–6.5±0.2 GPa) of peak metamorphism indicate that both mantle-derived and crustal ultramafic rocks were subducted to profound depths >100 km (the deepest may be ≥180–200 km) and experienced UHP metamorphism in a subduction zone with an extremely low geothermal gradient of <5 °C km−1.  相似文献   

11.
Carbon isotope measurements carried out on 201 carbonate samples from the early Proterozoic of the Kola Peninsula, N. Karelia and Norway yield δ13C (PDB) spanning - 20.5% to + 11%. A general δ13C secular trend shows that prior to 2.33 Ga values are typically 'normal' marine, averaging around - 3%0. Between 2.33 and 2.06 Ga, in Jatulian time, there follows a rapid excursion to positive δ13C of around + 6%. Post-Jatulian time is characterized by δ13C of sedimentary carbonates fluctuating between - 5% and +3%; also it is remarkable for the first pronounced development of diagenetic carbonates, which have δ13C between - 14 % and - 6% . The c. 6% positive δ13C shift with a duration of about 270 Myr coincides with a maximum in the diversity and abundance of stromatolites, and with widespread development of 'red beds', but does not coincide with the maximum of buried Corg mass. The Fennoscandian Shield represents the largest isotoically anomalous carbonate province yet reported, and the positive δ13C excursion together with a series of major global palaeoenviromental changes seems to be more intense than the Precambrian/Cambrian transition events. However, it is still not clear what kind of mechanism this phenomenon could be attributed to. An increase of the 'Ronov ratio', and/or 'Broecker ratio' and other possible models are discussed as the target for future investigations.  相似文献   

12.
The Fairholme carbonate complex is part of the extensively dolomitized Upper Devonian carbonate reefs in west-central Alberta. The studied formations contain moulds (up to 10 cm in diameter), which are filled partially with (saddle) dolomite, quartz and calcite cements. These cements precipitated from a mixture of brines that acquired high salinity by dissolution of halite and brines derived from evaporated sea water. The fluids were warm (homogenization temperature of primary fluid inclusions of 76 to 200 °C) and saline (20 to 25 wt% NaCl equivalent) and testify to thermochemical sulphate reduction processes. The latter is deduced from S in solid inclusions, CO2 and H2S in volatile-rich aqueous inclusions and depleted δ13C values down to −26‰ Vienna Pee Dee Belemnite. High 87Sr/86Sr values (0·7094 to 0·7110) of the cements also indicate interaction of the fluids with siliciclastic sequences. The thermochemical sulphate reduction-related cements probably formed during early Laramide burial. Another (younger) calcite phase, characterized by depleted δ18O values (−23·9‰ to −13·9‰ Vienna Pee Dee Belemnite), low Na (27 to 37 p.p.m.) and Sr (39 to 150 p.p.m.) concentrations and non-saline (∼0 wt% NaCl equivalent) fluid inclusions, is attributed to post-Laramide meteoric water.  相似文献   

13.
Two sections of the Upper Cenomanian and Lower Turonian in central and south-east Poland were investigated for foraminifers, CaCO3content, carbon content insoluble in HCl (Corg) and in the carbonates (Ccarb), carbon and oxygen isotopic composition of bulk-rock carbonates and elemental abundances. The Cenomanian/Turonian boundary interval is characterized by the appearance of more marly facies, a δ13C and δ18O stable isotope anomaly, a considerable increase in Corg content and decrease in Ccarb content and substantial changes in the foraminiferal assemblages. A major carbon stable isotope excursion with a shift of +2 (PDB) occurs in the lowermost Whiteinella archaeocretacea Zone. The late Cenomanian δ13C anomaly is associated with heavy δ18O values. The peak value of δ13C corresponds to the minima in P/B ratio and in diversity of foraminiferal assemblages. A late Cenomanian anoxic event is thought to be responsible for changes in foraminiferal assemblages. However, elemental abundance analyses do not show changes in the concentrations of trace elements. This may be explained by the long distance between studied area and a source of enrichment which was probably located in the western hemisphere.  相似文献   

14.
Heeremans  & Wijbrans 《地学学报》1999,11(5):216-222
The post-Svecofennian tectonic development of southern Finland is controlled by intrusion of rapakivi granites (and associated rocks), reactivation of Svecofennian wrench zones, formation of sedimentary basins and successive intrusion of olivine dolerite dykes and sills. Relative age determinations have revealed that fault reactivation acted before, simultaneously and after intrusion of the rapakivi granites. Results of 40Ar/39Ar geochronometry of the Porkkala–Mäntsälä fault (30 km west of Helsinki) reveal ages predominantly in the range 950–1300 Myr. These ages are all significantly younger than the intrusion age of the rapakivi granites. It is suggested that these ages represent tectonic events related to the intrusion of olivine dolerite dykes and sills in SW Finland and the Sveconorwegian Orogeny active further west. 40Ar/39Ar ages of a sample taken from the Obbnäs granite (U–Pb zircon ages of 1645 ± 5 Myr) show ages predom-inantly in the range of 1400–1550 Myr. These ages are suggested to represent either cooling ages of the granite or ages associated with the formation of the sedimentary grabens.  相似文献   

15.
Abstract. The Jecheon granitoids, having an elongated shape of NE-SW 27 km and NW-SE 13 km (190 km2), are composed mostly of magnetite-series hornblende-biotite granodiorite and biotite granite, which intrude into the Neoproterozoic metamor-phic and Paleozoic sedimentary rocks of the Ogcheon Belt. The granitoids have Triassic-Jurassic age of 202.7 ±1.9 Ma with very high 87Sr/86Sr initial ratio of 0.7140. The granodiorite has 63–69 % SiO2, 15.1–17.3 % Al2O3, <1.6 % MgO, 6–15 ppm Y and Sr/Y ratios of 24–76, and is depleted in HREE. Biotite granite together, the Jecheon pluton has adakitic characteristics, which are unique in a continental tectonic setting. The granitoids may have been generated by partial melting of an older adakitic granitoid of I-type basement, or by separation of early crystallized garnet and hornblende from an anatectic melt.  相似文献   

16.
A. Gerdes 《地学学报》2001,13(4):305-312
Recent studies have shown that melts and residues may not equilibrate during anatexis, and uncertainty exists about the scale on which magmas can be homogenized. This study of elemental and isotopic homogeneity of the South Bohemian Weinsberg granites (˜ 5000 km2) identifies three voluminous, relatively homogeneous magma batches. Each batch has different 87Sr/86Srinit (0.7080, 0.7093 and 0.7106), but all equilibrated at ˜ 327–329 Ma, very similar to the time of monazite crystallization. The data cannot entirely prove melt/residue equilibration during anatexis. However, elemental and isotopic compositions imply magma generation by partial melting of heterogeneous South Bohemian crust and chemical differentiation subsequent to Sr-isotope equilibration. Assuming relatively rapid ascent and solidification rates, magma homogenization must have occurred mostly just after partial melting, during melt segregation and accumulation in the deeper crust with slow prograde heating. Models of rapid crustal heating and instantaneous melt extraction are incompatible with the data.  相似文献   

17.
Abstract. The Onsen site is an active submarine hydrothermal system hosted by the Desmos caldera in the Eastern Manus Basin, Papua New Guinea. The hydrothermal fluid is very acidic (pH=1.5) and abundant native sulfur is deposited around the vent. The δ34S values of native sulfur range from -6.5 to -9.3 %o. δ34S values of H2S and SO4 in the hydrothermal fluid are -4.3 to -9.9 %o and +18.6 to +20.0 %o, respectively. These δ34S values are significantly lower than those of the other hydrothermal systems so far reported. These low δ34S values and the acidic nature of the vent fluids suggest that volcanic SO2 gas plays an important role on the sulfur isotope systematic of the Onsen hydrothermal system. Relationship among the δ34S values of S-bearing species can be successively explained by the model based on the disproportionation reaction starting from the volcanic SO2 gas. The predicted δ34S values of SO2 agree with the measured whole rock δ34S values. δD and δ18O values of clay minerals separated from the altered rock samples also suggest the contribution of the magmatic fluid to the hydrothermal system. Present stable isotopic study strongly suggests that the Onsen hydrothermal site in the Desmos caldera is a magmatic submarine hydrothermal system.  相似文献   

18.
Determinations of the absolute age of cleavage formation can provide fundamental information about the evolution of orogenic belts. However, when applied to cleavages in slates and phyllites, conventional dating methods are complicated by problems related to mineral separation and the presence of multiple cleavage generations. In situ high-spatial-resolution 40Ar/39Ar laser microprobe geochronology and microstructural observations indicate that the age of cleavage formation in slates and phyllites can be constrained by analysing zones of tightly packed cleavage domains. Three regionally developed cleavages (S2, S3, and S4) are present in the northern Taconic Allochthon of Vermont and New York. Representative samples were studied from a variety of localities where these cleavages, which are defined by white micas, are well developed. In the suite of samples, only S3 and S4 are expressed as domains that are sufficiently wide and spatially isolated in thin section to permit quantitative 40Ar/39Ar geochronology. Mean 40Ar/39Ar laser microprobe ages for these domains are 370.7 ± 1.0 Myr for S3 and 345.5 ± 1.7 Myr for S4. Because estimates of the Ar closure temperature for white micas are substantially higher than the inferred growth temperatures of the micas defining S3 and S4, these values are interpreted as periods since cleavage formation. This interpretation is consistent with independent geochronological constraints on the age of the Acadian orogeny in the region.  相似文献   

19.
We report silicon isotopic determinations for USGS rock reference materials BHVO-1 and BHVO-2 using a Nu Plasma multi-collector (MC)-ICP-MS, upgraded with a new adjustable entrance slit, to obtain medium resolution, as well as a stronger primary pump and newly designed sampler and skimmer cones ("B" cones). These settings, combined with the use of collector slits, allowed a resolution to be reached that was sufficient to overcome the 14N16O and 14N2 interferences overlying the 30Si and the 28Si peaks, respectively, in an earlier set-up. This enabled accurate measurement of both δ30Si and δ29Si. The δ value is expressed in per mil variation relative to the NBS 28 quartz reference material. Based on data acquired from numerous sessions spread over a period of six months, we propose a recommended average δ30Si of −0.33 ± 0.05‰ and −0.29 ± 0.11‰ (2se) for BHVO-1 and BHVO-2, respectively. Our BHVO grand mean silicon isotope composition (δ30Si =−0.31 ± 0.06‰) is significantly more negative than the only published value for BHVO-2, but is in very good agreement with the recently established average value of ocean island basalts (OIB), confirming the conclusion that the OIB reservoir has a distinct isotopic composition from the solar reservoir as sampled by chondrites.  相似文献   

20.
We report a new approach to conduct fast and accurate lithium isotope ratio measurements by MC-ICP mass spectrometry after wet chemical sample preparation. In contrast to most previously published methods our MC-ICP-MS set-up did not use a desolvating system to achieve appropriate ion beam intensities and, therefore, was less affected by matrix-induced shifts of the instrumental mass bias. As the total lithium background and build-up in the sample introduction system was low, previous sample residues could be washed out by an extended uptake of the new sample. Elimination of a nitric acid rinse step increased the sample throughput by a factor of two and allowed the instrumental mass bias drift to be tracked more precisely. δ7Li values of powdered silicate rock reference materials and seawater obtained in this study revealed good accuracy and an overall analytical uncertainty of typically 0.5‰ (2s). On the basis of a comparison between our lithium isotope data and compiled literature data, we recommend preliminary average δ7Li values for seawater (+30.8‰) and several silicate rock reference materials (BHVO-1: +5.0‰; JA-1: +5.6‰; JB-2: +4.8‰). The compilation of published δ7Li values for seawater suggests that the observed large lithium isotope differences are due to inter-method and/or interlaboratory bias. Most recently published δ7Li values for seawater show little variation and confirm a constant lithium isotope composition (at the sub ‰ level) of seawater in well mixed ocean basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号