首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a detailed study of the single pulses of the bright radio pulsar B0834+06, and offer evidence that the dominant periodic modulation in this pulsar's emission governs the occurrence of nulls. The nulls of B0834+06 constitute approximately 9 per cent of the total pulses and we demonstrate that they do not occur at random in the pulse sequence. On the contrary, they are found to occur preferentially close to the minimum of the pulsar's emission cycle, whose period jitters around a central value of P 3≈ 2.17 rotation periods. It is likely that the intrinsic duration of the nulls averages about 0.2 times the pulsar rotation period. Surprisingly, the clearly distinct population of nulls and partial nulls of B0834+06 exhibit a two-peak profile slightly broader than that of the normal emission. This is in contrast to the profile of extremely weak normal pulses, which is narrower than the overall profile. A flow/counterflow model for the pulsar's two components can reproduce the essential observed features of the emission in its dominant mode, with nulls occurring at the point where the minima of the two systems are aligned. This suggests that the observed nulling rate is determined by the chance positioning of our sightline with respect to the system. If the flow is interpreted as part of a circulating carousel, a fit yields a best estimate of 14 'sparks'.  相似文献   

2.
Analyses of multiple pulse sequences of the pulsar PSR B2303+30 reveal two distinct emission modes. One mode (B) follows a steady even–odd pattern and is more intense. The second mode (Q) is characteristically weak, but has intermittent drift bands with a periodicity of approximately 3 P 1/cycle, and nulls much more frequently than the B mode. Both modes occur with roughly equal frequency, and their profiles have a similar single-humped form with a slight asymmetry. Our observations and analyses strongly suggest that the subpulse drift rates in both modes are linked in a series of cycles, which can be modelled as relaxing oscillations in the underlying circulation rate.  相似文献   

3.
New Giant Metre-Wave Radio Telescope (GMRT) observations of the five-component pulsar B1857−26 provide detailed insight into its pulse-sequence modulation phenomena for the first time. The outer conal components exhibit a 7.4-rotation period, longitude-stationary modulation. Several lines of evidence indicate a carousel circulation time     of about 147 stellar rotations, characteristic of a pattern with 20 beamlets. The pulsar nulls some 20 per cent of the time, usually for only a single pulse, and these nulls show no discernible order or periodicity. Finally, the pulsar's polarization-angle traverse raises interesting issues: if most of its emission comprises a single polarization mode, the full traverse exceeds 180°; or if both polarization modes are present, then the leading and the trailing halves of the profiles exhibit two different modes. In either case, the rotating-vector model fails to fit the polarization-angle traverse of the core component.  相似文献   

4.
We present a geometric study of the radio and γ-ray pulsar B1055−52 based on recent observations at the Parkes radio telescope. We conclude that the pulsar's magnetic axis is inclined at an angle of 75° to its rotation axis and that both its radio main pulse and interpulse are emitted at the same height above their respective poles. This height is unlikely to be higher or much lower than 700 km, a typical value for radio pulsars.
It is argued that the radio interpulse arises from emission formed on open fieldlines close to the magnetic axis which do not pass through the magnetosphere's null (zero-charge) surface. However, the main pulse emission must originate from fieldlines lying well outside the polar cap boundary beyond the null surface, and farther away from the magnetic axis than those of the outer gap region where the single γ-ray peak is generated. This casts doubt on the common assumption that all pulsars have closed, quiescent, corotating regions stretching to the light cylinder.  相似文献   

5.
6.
7.
利用新疆天文台25 m射电望远镜2003—2009年对PSR B0329+54长达453 h的观测数据,研究了这颗源在1540 MHz上正常模式和反常模式的轮廓稳定性时标.通过不同时间的积分脉冲轮廓与参考轮廓交叉相关系数分析,发现随积分时间的增加,两种模式的轮廓先是以较快的速度趋于稳定,在积分时间增加到约(4±1) min时,轮廓趋稳速率放缓,当积分时间达到(140±60) min (正常模式)或达到(65±15) min (反常模式)时,轮廓趋稳速度再次变快.相关系数的结果显示两种模式的轮廓在绝大多数积分时标上都不是完全随机的涨落.如果以发生轮廓趋稳速率从快到慢转变所需的积分时间作为轮廓稳定时标的判据,两种模式的稳定时标均大约为5 min.轮廓中不同成分强度比例的涨落随积分时间的变化关系各不相同,由此可以推断3个成分强度涨落性质有差异.造成轮廓趋稳行为在不同时标上有明显差异的原因有观测噪声和星际闪烁等.  相似文献   

8.
9.
Pulsar nulling is not always a random process; most pulsars, in fact, null non-randomly. The Wald–Wolfowitz statistical runs test is a simple diagnostic that pulsar astronomers can use to identify pulsars that have non-random nulls. It is not clear at this point how the dichotomy in pulsar nulling randomness is related to the underlying nulling phenomenon, but its nature suggests that there are at least two distinct reasons that pulsars null.  相似文献   

10.
11.
12.
13.
14.
This paper reports new observations of pulsar B0943+10 carried out at the Pushchino Radio Astronomy Observatory (PRAO) at the low radio frequencies of 42, 62 and 112 MHz. B0943+10 is well known for its exquisitely regular burst-mode (B-mode) drifting subpulses as well as its weaker and chaotic quiescent mode. Earlier Arecibo investigations at 327 MHz have identified remarkable, continuous changes in its B-mode subpulse drift rate and integrated-profile shape with durations of several hours. These PRAO observations reveal that the changes in profile shape during the B-mode lifetime are strongly frequency dependent – namely the measured changes in the component amplitude ratio are more dramatic at 327 and 112 MHz as compared with those at 62 and 42 MHz. The differences, however, are most marked during the first several tens of minutes after B-mode onset; after an hour or so the profile shape changes tend to be more similar at all four frequencies. We also have found that the linear polarization of the integrated profile increases continuously throughout the lifetime of the B mode, going from hardly 10 per cent just after onset to some 40–50 per cent after several hours. Pulsar B0943+10's B mode thus provides a unique new opportunity to investigate continuous systematic changes in the plasma flow within the polar flux tube. While refraction in the pulsar's magnetosphere may well play some role, we find that the various frequency-dependent effects, both between and within the two modes, can largely be understood geometrically. If the modes and B-mode decay reflect systematic variations in the carousel-'spark' radius and emission height then a specific set of profile and linear polarization changes would be expected.  相似文献   

15.
16.
We calculate the high-energy (sub-GeV to TeV) prompt and afterglow emission of GRB 080319B that was distinguished by a naked-eye optical flash and by an unusual strong early X-ray afterglow. There are three possible sources for high-energy emission: the prompt optical and γ-ray photons IC scattered by the accelerated electrons, the prompt photons IC scattered by the early external reverse-forward shock electrons, and the higher band of the synchrotron and the synchrotron self-Compton emission of the external shock. There should have been in total hundreds of high-energy photons detectable for the Large Area Telescope onboard the Fermi satellite, and tens of photons of those with energy >10 GeV. The >10 GeV emission had a duration about twice that of the soft γ-rays. Astro-rivelatore Gamma a Immagini Leggero (AGILE) could have observed these energetic signals if it was not occulted by the Earth at that moment. The physical origins of the high-energy emission detected in GRB 080514B, GRB 080916C and GRB 081024B are also discussed. These observations seem to be consistent with the current high-energy emission models.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号