首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Weiwei Fu 《Ocean Dynamics》2018,68(10):1311-1319
Ocean heat content (OHC) plays an important role in ocean carbon uptake (OCU). However, the changes of OHC and OCU are model-dependent and have large bias compared with observations. This makes it difficult to quantify their relationship. Here, we propose a new metric to measure the uncertainty of the relationship between OHC and OCU. The new metric can link the uncertainty with different OCU processes and allow direct comparison of the impact of OHC on the OCU in different simulations. The metric is illustrated in different simulations of the Coupled Model Intercomparison Project phase 5 (CMIP5) in which atmospheric CO2 is increased by 1%/year. Results show that OHC in 0–500 m plays a dominant role in the OCU for the radiatively coupled (RAD) experiment because warming intensifies the carbon loss in the upper ocean. Relatively, OHC in the intermediate waters (500–2000 m) are crucial for the fully coupled and biogeochemically coupled experiment because this layer largely regulates the OCU. For different ocean basins, the intermediate Southern Ocean and deep North Atlantic are more important for the OCU in the RAD simulation. The metric also suggests the importance of global overturning circulation and the Southern Ocean in the OCU.  相似文献   

2.
It is uncertain whether the solar cycle 24 will have a high or a low sunspot maximum number. In its last revision the Solar Cycle 24 Prediction Panel indicates that the low prediction is the most likely. Also, solar cycle 25 is considered to present an equal or lower activity than cycle 24. In order to assess the possible effect of the solar activity on temperature, in the present work we attempt to model the tendency of the Northern Hemisphere temperature for the years 2009–2029, corresponding to solar cycles 24 and 25, using a thermodynamic climate model. We include as forcings the atmospheric carbon dioxide (CO2) and the solar activity by means of the total solar irradiance, considering that the latter has not only a direct effect on climate, but also an indirect one through the modulation of the low cloud cover. We use two IPCC-2007 CO2 scenarios, one with a high fossil consumption and other with a low use of fossil sources. Also we consider higher and lower solar activity conditions. We found that in all the performed experiments the inclusion of the solar activity produces a noticeable reduction in warming respect to the IPCC-2007 CO2 scenarios. Such reduction goes between ~14% and ~44%. In order to evaluate the efficiency of the TCM, we use the root mean square (RMS) between the observed and model temperatures for the period 1980–2003. We find that the RMS for the experiment using the CO2 as the only forcing is 0.06 °C,while for the experiment that includes also the solar activity it is higher, 0.13 °C.  相似文献   

3.
Soil erosion has been identified as a potential global carbon sink since eroded organic matter is replaced at source and eroded material is readily buried. However, this argument has relied on poor estimates of the total fate of in‐transit particulates and could erroneously imply soil erosion could be encouraged to generate carbon stores. These previous estimates have not considered that organic matter can also be released to the atmosphere as a range of greenhouse gases, not only carbon dioxide (CO2), but also the more powerful greenhouse gases methane (CH4) and nitrous oxide (N2O). As soil carbon lost by erosion is only replaced by uptake of CO2, this could represent a considerable imbalance in greenhouse gas warming potential, even if it is not significant in terms of overall carbon flux. This work therefore considers the flux of particulate organic matter through UK rivers with respect to both carbon fluxes and greenhouse gas emissions. The results show that, although emissions to the atmosphere are dominated by CO2, there are also considerable fluxes of CH4 and N2O. The results suggest that soil erosion is a net source of greenhouse gases with median emission factors of 5.5, 4.4 and 0.3 tonnes CO2eq/yr for one tonne of fluvial carbon, gross carbon erosion and gross soil erosion, respectively. This study concludes that gross soil erosion would therefore only be a net sink of both carbon and greenhouse gases if all the following criteria are met: the gross soil erosion rate were very low (<91 tonnes/km2/yr); the eroded carbon were completely replaced by new soil organic matter; and if less than half of the gross erosion made it into the stream network. By establishing the emission factor for soil erosion, it becomes possible to properly account for the benefits of good soil management in minimizing losses of greenhouse gases to the atmosphere as a by‐product of soil erosion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The global warming potential of methane (CH4) is about 30 times stronger than that of carbon dioxide (CO2) over a century timescale. Methane emission is hypothesized to have contributed to global climate change events and mass extinctions during Earth’s history. Therefore, the study of CH4 production processes is critically important to the understanding of global climate change. It has been a dogma that biogenic CH4 detectable in the oceans originates exclusively from the anaerobic metabolic activity of methanogenic archaea in hypoxic and anoxic environments, despite reports that many oxic surface and near-surface waters of the world’s oceans are CH4-supersaturated, thereby rendering net sea-to-air emissions of CH4. The phenomenon of CH4 production in oxic marine waters is referred to as the “ocean methane paradox”. Although still not totally resolved, recent studies have generated several hypotheses regarding the sources of CH4 production in oxic seawater. This review will summarize our current understanding of the importance of CH4 in the global climate and analyze the biological processes and their underpinning mechanisms that lead to the production of CH4 in oxic seawater environments. We will also tentatively explore the relationships of these microbial metabolic processes with global changes in climate and environment.  相似文献   

5.
Climate models project a significant shoaling of the thermocline over the western equatorial Pacific Ocean under global warming, which has been generally regarded as a direct response to surface wind change. This study investigates the formation processes for the equatorial Pacific thermocline response to CO2 quadrupling using the Community Earth System Model version 1 (CESM1). In particular, an overriding method is applied to isolate and quantify the wind stress effect and the direct radiative effect of CO2 emissions. Results show that both effects of the wind stress and direct radiative forcing are equally important for shoaling the equatorial thermocline, with the former responsible for its upper portion change and the latter for its lower portion change. Further passive tracer experiments with the ocean component of the CESM1 verify the role of ocean surface warming in shoaling the equatorial thermocline and identify the ocean circulation change in response to the surface warming as its dynamic cause of formation.  相似文献   

6.
Reservoirs are man‐made lakes that severely impact on river ecosystems, and in addition, the new lake ecosystem can be damaged by several processes. Thus, the benefits of a reservoir, including energy production and flood control, must be measured against their impact on nature. New investigations point out that shallow and tropical reservoirs have high emission rates of the greenhouse gases CO2 and CH4. The methane emissions contribute strongly to climate change because CH4 has a 25 times higher global warming potential than CO2. The pathways for its production include ebullition, diffuse emission via the water‐air interface, and degassing in turbines and downstream of the reservoir in the spillway and the initial river stretch. Greenhouse gas emissions are promoted by a eutrophic state of the reservoir, and, with higher trophic levels, anaerobic conditions occur with the emission of CH4. This means that a qualitative and quantitative jump in greenhouse gas emissions takes place. Available data from Petit Saut, French Guinea, provides a first quantification of these pathways. A simple evaluation of the global warming potential of a reservoir can be undertaken using the energy density, the ratio of the reservoir surface and the hydropower capacity; this parameter is mainly determined by the reservoir's morphometry but not by the hydropower capacity. Energy densities of some reservoirs are given and it is clearly seen that some reservoirs have a global warming potential higher than that of coal use for energy production.  相似文献   

7.
Data on the content of the 14C cosmogenic isotope in tree rings, which were obtained as a result of laboratory measurements, are often used when solar activity (SA) is reconstructed for previous epochs, in which direct observations are absent. However, these data contain information not only about SA variations but also about changes in the Earth climatic parameters, such as the global temperature and the CO2 content in the Earth’s atmosphere. The effect of these variations on the 14C isotope content in different natural reservoirs after the last glacial termination to the middle of the Holocene is considered. The global temperature and the CO2 content increased on this time interval. In this case the 14C absolute content in the atmosphere increased on this time interval, even though the 14С to 12С isotope concentration ratio (as described by the Δ14С parameter) decreased. These variations in the radiocarbon absolute content can be caused by its redistribution between natural reservoirs. It has been indicated that such a redistribution is possible only when the rate of carbon exchange between the ocean and atmosphere depends on temperature. The values of the corresponding temperature coefficient for the 17–10 ka BC time interval, which make it possible to describe the carbon redistribution between the ocean and atmosphere, have been obtained.  相似文献   

8.
河流作为连接陆地和海洋碳库之间的通道,是全球内陆水体碳排放最主要的载体,在全球碳循环中发挥着至关重要的作用。全球河流水-气界面二氧化碳(CO2)脱气显著的时间异质性特征研究有助于深入理解其碳循环过程与机制,也为准确评估碳通量以及完善碳循环模型提供了科学支撑。本文系统梳理了国内外的相关研究成果,总结了目前河流CO2脱气通量在昼夜、季节以及多年尺度上的动态变化及其影响因素,指出其昼夜变化与季节变化存在一定的周期性,并对不同空间尺度上CO2脱气通量的时间差异进行讨论。同时分析当前研究中的不足,认为缺乏河流二氧化碳分压(pCO2)与CO2脱气系数(k)高分辨率且长期连续的直接测量,限制了河流CO2脱气通量时间尺度变化的周期性及相互之间关系的厘定,使得气候变化与人类活动对河流CO2脱气时间动态的影响仍然难以量化与预测。最后,根据目前存在的问题,展望了未来的研究重点,为全球河流水-气界面碳循环过程与机制、模型研究提供新的思路与方向,以及可以更准确地评估和预测未来河流碳排放的变化趋势。  相似文献   

9.
植被类型及淹水带来的干湿交替过程是影响温室气体排放的重要因素.本文通过原状土柱模拟实验,模拟西洞庭湖水文节律变化对不同土壤—植被系统温室气体排放的影响.利用静态箱—气相色谱法研究不同植被—土壤类型(芦苇湿地、灰化苔草湿地和刚砍伐的杨树林湿地)在季节性淹水条件下的CO2、CH4和N2O的排放通量变化,并探讨了在水位变化的情况下,不同植被—土壤类型对全球增温潜势的贡献.结果表明:在不同的水文条件下,芦苇湿地的CO2排放通量均显著高于苔草和杨树林湿地;淹水过程导致3种植被类型覆盖湿地CO2排放通量显著降低,甲烷排放通量升高,其中芦苇湿地CH4排放通量升高显著,苔草和杨树林湿地CH4排放通量升高不明显;水文变化及植被类型对N2O排放通量的影响不显著;不同植被类型湿地对全球增温潜势的贡献为:芦苇>杨树林>苔草,分别为16191.3、3405.6和1883.1 kg/hm2.本研究结果表明在...  相似文献   

10.
A simulation was undertaken within a climatic chamber to investigate limestone dissolution under varied carbonic acid (H2CO3) strengths as a possible analogue for future increases in atmospheric CO2 arising from global warming. Twenty‐eight samples cut from a block of Bath (Box Hill) limestone from Somerville College, Oxford, which had been removed during restoration after 150 years in an urban environment, were weighed and placed in closed bottles of thin plastic containing varying concentrations of H2CO3. Half of the stone samples were derived from exposed surfaces of the stone block (weathered) while the others were obtained from the centre of the block on unexposed surfaces (unweathered). The purpose of this was to compare dissolution of previously weathered versus unweathered surfaces in strong (pH 4·73) versus weak (pH 6·43) solutions of H2CO3. A temperature of c. 19 °C was maintained within the chamber representing a plausible future temperature in Oxford for the year 2200 given current warming scenarios. The simulation lasted 25 days with a few stone samples being removed midway. Stone samples show reduced weight in all cases but one. There was greater dissolution of stone samples in a strong H2CO3 solution as conveyed by higher concentrations of total hardness and Ca2+ in the water samples as well as enhanced microscopic dissolution features identified using SEM. The simulation confirms that enhanced atmospheric CO2 under global warming, given adequate moisture, will accelerate dissolution rates particularly of newly replaced limestone building stones. However, previously weathered surfaces, such as those on historical stone exposed for a century or more, appear to be less susceptible to the effects of such increased rainfall acidity. Conservation techniques which remove weathered surfaces, such as stone cleaning, may accelerate future decay of historical limestone structures by increasing their susceptibility to dissolution. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
The ocean has been shielding the earth from the worst effects of rapid climate change by absorbing excess carbon dioxide from the atmosphere. This absorption of CO2 is driving the ocean along the pH gradient towards more acidic conditions. At the same time ocean warming is having pronounced impacts on the composition, structure and functions of marine ecosystems. Warming, freshening (in some areas) and associated stratification are driving a trend in ocean deoxygenation, which is being enhanced in parts of the coastal zone by upwelling of hypoxic deep water. The combined impact of warming, acidification and deoxygenation are already having a dramatic effect on the flora and fauna of the oceans with significant changes in distribution of populations, and decline of sensitive species. In many cases, the impacts of warming, acidification and deoxygenation are increased by the effects of other human impacts, such as pollution, eutrophication and overfishing.  相似文献   

12.
Ocean Drilling Program Leg 199 Site 1220 provides a continuous sedimentary section across the Paleocene/Eocene (P/E) transition in the carbonate‐bearing sediments on 56–57 Ma oceanic crust. The large negative δ13C shift in seawater is likely due to the disintegration of methane hydrate, which is expected to be rapidly changed to carbon dioxide in the atmosphere and well‐oxygenated seawater, leading to a reduction in deep‐sea pH. A pH decrease was very likely responsible for the emergence of agglutinated foraminiferal fauna as calcareous fauna was eliminated by acidification at the P/E transition at Site 1220. The absence of the more resistant calcareous benthic foraminifera and the presence of the planktonic foraminifera at Site 1220 is interesting and unique, which indicates that calcareous benthic foraminifera suffered greatly from living on the seafloor. Box model calculation demonstrates that, assuming the same mean alkalinity as today, pCO2 must increase from 280 ppm to about 410 ppm for the calcite undersaturation in the deep ocean and for the oversaturation in the surface ocean during the P/E transition. The calculated increased pCO2 coincides with paleo‐botanical evidence. The current global emission rate (~7.3 peta (1015) gC/y) of anthropogenic carbon input is approximately 30 times of the estimate at the P/E transition. The results at the P/E transition give an implication that the deep sea benthic fauna will be threatened in future in combination with ocean acidification, increased sea surface temperature and more stratified surface water.  相似文献   

13.
A study of the contribution to global climate change from China’s CO2 emission is conducted using the FIO-ESM v1.0 climate model. A series of sensitivity experiments are performed to identify two kinds of contributions to global climate change of China’s CO2 emission due to fossil fuel combustion: one is the pure contribution which is the historical climate response from the sensitivity experiment forced only by China’s CO2 emission, the other is the accumulative contribution which is proposed in this research and defined as the difference of historical climate responses between the experiments forced by all countries’ CO2 emission and other countries’ CO2 emission excluding China. The pure contribution approach considers the total CO2 discharged by China, while the accumulative contribution approach considers not only the discharge amount of China but also the discharge order of China and other countries. The latter is a more realistic approach to quantify the contribution of CO2 emission to the historical change of atmospheric CO2 concentration, surface air temperature (SAT), sea surface temperature (SST) and sea ice coverage in the Arctic. Model results show that from the accumulative perspective, the ratio of the contribution of CO2 emission from China for the increase of atmospheric CO2 concentration, SAT and SST, and the decrease of the sea ice coverage in the Arctic to that from all other countries excluding China varies from 8% to 92%, 5% to 95%, 9% to 91% and 18% to 82%, respectively. Here we take the contribution of China’s CO2 emission as an example, the contribution of CO2 emission from any other country or area can be evaluated by the same approach.  相似文献   

14.
内陆水域二氧化碳(CO2)排放是全球碳平衡的重要组成部分,全球CO2排放通量估算通常有很大不确定性,一方面源于CO2排放数据观测的时空离散性,另一方面也是缺少水文情景与CO2排放通量关联性的研究.本文观测了2018年洪泽湖不同水文情景表层水体CO2排放通量特征,并探讨其影响因素.结果表明,洪泽湖CO2排放通量为丰水期((106.9±73.4) mmol/(m2·d))>枯水期((18.7±13.6) mmol/(m2·d))>平水期((5.2±15.5) mmol/(m2·d)),且碳通量由丰(310.2~32.0 mmol/(m2·d))、枯(50.8~2.2 mmol/(m2·d))、平(-17.3~39.8 mmol/(m2·d))3种水文情景的交替表现出湖泊碳源到弱碳汇的转变,空间上CO2排放通量总体呈现北部成子湖区低、南部过水湖区高的分布趋势.洪泽湖CO2排放对水文情景响应敏感,特别是上游淮河流域来水量的改变,是主导该湖CO2排放时空分异的重要因子.丰水期湖泊接纳了淮河更多有机和无机碳的输入,外源碳基质的降解和矿化显著促进了水体CO2的生产与排放,同时氮、磷等营养物质的大量输入,加剧了水体营养化程度,进一步提高CO2排放量,间接反映出人类活动对洪泽湖CO2变化的深刻影响.平、枯水期随着上游淮河来水量的减少,驱动水体CO2排放的因素逐渐由外源输入转变为水体有机质的呼吸降解.此外,上游河口区DOM中陆源类腐殖质的累积与矿化能够促进CO2的排放,而内源有机质组分似乎并没有直接参与CO2的排放过程.研究结果揭示了水文情景交替对湖库CO2排放的重要影响,同时有必要进行高频观测以进一步明晰湖泊的碳通量变化及其控制因素.  相似文献   

15.
Soils release more carbon, primarily as carbon dioxide (CO2), per annum than current global anthropogenic emissions. Soils emit CO2 through mineralization and decomposition of organic matter and respiration of roots and soil organisms. Given this, the evaluation of the effects of abiotic factors on microbial activity is of major importance when considering the mitigation of greenhouse gases emissions. Previous studies demonstrate that soil CO2 emission is significantly affected by temperature and soil water content. A limited number of studies have illustrated the importance of bulk density and soil surface characteristics as a result of exposure to rain on CO2 emission, however, none examine their relative importance. Therefore, this study investigated the effects of soil compaction and exposure of the soil surface to rainfall and their interaction on CO2 release. We conducted a factorial laboratory experiment with three soil types after sieving (clay, silt and sand soil), three different bulk densities (1·1 g cm–3, 1·3 g cm–3, 1·5 g cm–3) and three different exposures to rainfall (no rain, 30 minutes and 90 minutes of rainfall). The results demonstrated CO2 release varied significantly with bulk density, exposure to rain and time. The relationship between rain exposure and CO2 is positive: CO2 emission was 53% and 42% greater for the 90 minutes and 30 minutes rainfall exposure, respectively, compared to those not exposed to rain. Bulk density exhibited a negative relationship with CO2 emission: soil compacted to a bulk density of 1·1 g cm–3 emitted 32% more CO2 than soil compacted to 1·5 g cm–3. Furthermore we found that the magnitude of CO2 effluxes depended on the interaction of these two abiotic factors. Given these results, understanding the influence of soil compaction and raindrop impact on CO2 emission could lead to modified soil management practices which promote carbon sequestration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Increase in the nighttime high-latitude nonthermal emissions in the mesosphere and lower thermosphere in the 4.3 and 15 μm CO2 bands during solar proton events has been estimated for the first time. The estimations have been performed for protons with energies not lower than 1 MeV precipitating into the atmosphere. A strong increase in the 4.3 μm emission can be anticipated during the above events; however, a substantial increase in the 15 μm emission is improbable. The 4.3 μm emission can increase only above approximately 80 km regardless of the energy of precipitating protons. The excitation of CO2 vibrational states, transitions from which generate the 4.3 μm emission, is caused by the vibrational excitation of N2 molecules due to collisions with secondary electrons, produced during solar proton events, and the following transfer of this excitation to CO2(0001) molecules during N2-CO2 collisions. Original Russian Text ? V.P. Ogibalov, S.N. Khvorostovskii, G.M. Shved, 2006, published in Geomagnetizm i Aeronomiya, 2006, Vol. 46, No. 2, pp. 159–167.  相似文献   

17.
The Bay of Biscay is part of the North Atlantic Ocean, the most important sink of CO2, and a subduction zone of mode waters that favours the entry of carbon to the ocean interior. To investigate the seasonal and interannual variability of CO2 uptake, continuous underway measurements of the partial pressure of CO2 at sea surface were performed along a commercial route between Vigo (Spain) and St. Nazaire (France). An unattended measuring system of CO2 fugacity (fCO2), with meteorological station, and temperature, salinity, oxygen and fluorescence sensors, was installed on board of ships of opportunity (RO-RO LAudace and RO-RO Surprise).  相似文献   

18.
The southern Yellow Sea (SYS), located to the north of the East China Sea (ECS), was considered part of the ECS when Tsunogai et al. (1999) proposed the “continental shelf pump” (CSP) hypothesis. However, the original CSP carbon dioxide (CO2) uptake flux (2.9 mol C m−2 yr−1) appears to have been overestimated, primarily due to the differences between the SYS and the ECS in terms of their CO2 system. In this paper, we estimated air-sea CO2 fluxes in the SYS using the surface water partial pressure of CO2 (pCO2) measured in winter, spring, and summer, as well as that estimated in fall via the relationship of pCO2 with salinity, temperature, and chlorophyll a. The results indicate that overall, the entire investigated area was a net source of atmospheric CO2 during summer, winter, and fall, whereas it was a net sink during spring. Spatially, the nearshore area was almost a permanent CO2 source, while the central SYS shifted from being a CO2 sink in spring to a source in the other seasons of the year. Overall, the SYS is a net source of atmospheric CO2 on an annual scale, releasing ∼7.38 Tg C (1 Tg=1012 g) to the atmosphere annually. Thus, the updated CO2 uptake flux in the combined SYS and ECS is reduced to ∼0.86 mol C m−2 yr−1. If this value is extrapolated globally following Tsunogai et al. (1999), the global continental shelf would be a sink of ∼0.29 Pg C yr−1, instead of 1 Pg C yr−1 (1 Pg=1015 g).The SYS as a net annual source of atmospheric CO2 is in sharp contrast to most mid- and high-latitude continental shelves, which are CO2 sinks. We argue that unlike the ECS and the North Sea where carbon on the shelf could be exported to the open ocean, the SYS lacks the physical conditions required by the CSP to transport carbon off the shelf effectively. The global validity of the CSP theory is thus questionable.  相似文献   

19.
Echinoderms play crucial roles in the structure of marine macrobenthic communities. They are sensitive to excess absorption of CO2 by the ocean, which induces ocean acidification and ocean warming. In the shelf seas of China, the mean sea surface temperature has a faster warming rate compared with the mean rate of the global ocean, and the apparent decrease in pH is due not only to the increased CO2 absorption in seawater, but also eutrophication. However, little is known about the associated changes in the diversity of echinoderms and their roles in macrobenthic communities in the seas of China. In this study, we conducted a meta-analysis of 77 case studies in 51 papers to examine the changes in the contribution of echinoderm species richness to the macrobenthos in the shelf seas of China since the 1980s. The relative species richness (RSR) was considered as the metric to evaluate these changes. Trends analysis revealed significant declines in RSR in the shelf seas of China, the Yellow Sea, and the East China Sea from 1997 to 2009. Compared with the RSR before 1997, no significant changes in mean RSR were found after 1997, except in the Bohai Sea. In addition, relative change in the RSR of echinoderms and species richness of macrobenthos led to more changes (decrease or increase) in their respective biomasses. Our results imply that changes in species richness may alter the macrobenthic productivity of the marine benthic ecosystem.  相似文献   

20.
湖泊、河流等内陆水体是连接陆地生态系统和海洋的“长程碳环路”的重要节点,也是温室气体二氧化碳(CO2)排放源,在调节陆地、海洋间的碳迁移转换中发挥着重要作用。相对于自然水体,城市水体因面积小、水深浅且受监测方法限制,水-气界面碳通量经常被忽略。为探讨我国亚热带城市水体温室气体排放特征,本研究以湖南省长沙市典型城市水体,包括洋湖、西湖、松雅湖、月湖4个湖泊和湘江长沙段为研究对象,分别于2022年4和10月采用光化学反馈-腔增强吸收光谱法(OF-CEAS)和扩散模型法对水-气界面CO2通量进行对比测定。结果表明,长沙城市湖泊与河流春季为CO2排放源,秋季为吸收汇,河流水-气界面CO2通量呈显著季节差异。河湖之间CO2通量在春季表现为显著差异,秋季差异不显著。CO2通量与水体溶解氧、水体总氮浓度等呈显著正相关。2种方法的CO2通量对比测定在湖泊上显著相关,但对河流而言相关性不显著。研究揭示的城市湖泊与河流CO2气体的排放特征有利于深入探究城市水体碳的迁移转化,可对全面了解全球气候变化过程和河湖湿地温室气体减排和调控提供科学支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号