首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The North China Craton (NCC) has been thinned from >200 km to <100 km in its eastern part. The ancient subcontinental lithospheric mantle (SCLM) has been replaced by the juvenile SCLM in the Meoszoic. During this period, the NCC was destructed as indicated by extensive magmatism in the Early Cretaceous. While there is a consensus on the thinning and destruction of cratonic lithosphere in North China, it has been hotly debated about the mechanism of cartonic destruction. This study attempts to provide a resolution to current debates in the view of Mesozoic mafic magmatism in North China. We made a compilation of geochemical data available for Mesozoic mafic igneous rocks in the NCC. The results indicate that these mafic igneous rocks can be categorized into two series, manifesting a dramatic change in the nature of mantle sources at ~121 Ma. Mafic igneous rocks emplaced at this age start to show both oceanic island basalts (OIB)-like trace element distribution patterns and depleted to weakly enriched Sr-Nd isotope compositions. In contrast, mafic igneous rocks emplaced before and after this age exhibit both island arc basalts (IAB)-like trace element distribution patterns and enriched Sr-Nd isotope compositions. This difference indicates a geochemical mutation in the SCLM of North China at ~121 Ma. Although mafic magmatism also took place in the Late Triassic, it was related to exhumation of the deeply subducted South China continental crust because the subduction of Paleo-Pacific slab was not operated at that time. Paleo-Pacific slab started to subduct beneath the eastern margin of Eruasian continent since the Jurrasic. The subducting slab and its overlying SCLM wedge were coupled in the Jurassic, and slab dehydration resulted in hydration and weakening of the cratonic mantle. The mantle sources of ancient IAB-like mafic igneous rocks are a kind of ultramafic metasomatites that were generated by reaction of the cratonic mantle wedge peridotite not only with aqueous solutions derived from dehydration of the subducting Paleo-Pacific oceanic crust in the Jurassic but also with hydrous melts derived from partial melting of the subducting South China continental crust in the Triassic. On the other hand, the mantle sources of juvenile OIB-like mafic igneous rocks are also a kind of ultramafic metasomatites that were generated by reaction of the asthenospheric mantle underneath the North China lithosphere with hydrous felsic melts derived from partial melting of the subducting Paleo-Pacific oceanic crust. The subducting Paleo-Pacific slab became rollback at ~144 Ma. Afterwards the SCLM base was heated by laterally filled asthenospheric mantle, leading to thinning of the hydrated and weakened cratonic mantle. There was extensive bimodal magmatism at 130 to 120 Ma, marking intensive destruction of the cratonic lithosphere. Not only the ultramafic metasomatites in the lower part of the cratonic mantle wedge underwent partial melting to produce mafic igneous rocks showing negative εNd(t) values, depletion in Nb and Ta but enrichment in Pb, but also the lower continent crust overlying the cratonic mantle wedge was heated for extensive felsic magmatism. At the same time, the rollback slab surface was heated by the laterally filled asthenospheric mantle, resulting in partial melting of the previously dehydrated rocks beyond rutile stability on the slab surface. This produce still hydrous felsic melts, which metasomatized the overlying asthenospheric mantle peridotite to generate the ultramafic metasomatites that show positive εNd(t) values, no depletion or even enrichment in Nb and Ta but depletion in Pb. Partial melting of such metasomatites started at ~121 Ma, giving rise to the mafic igneous rocks with juvenile OIB-like geochemical signatures. In this context, the age of ~121 Ma may terminate replacement of the ancient SCLM by the juvenile SCLM in North China. Paleo-Pacific slab was not subducted to the mantle transition zone in the Mesozoic as revealed by modern seismic tomography, and it was subducted at a low angle since the Jurassic, like the subduction of Nazca Plate beneath American continent. This flat subduction would not only chemically metasomatize the cratonic mantle but also physically erode the cratonic mantle. Therefore, the interaction between Paleo-Pacific slab and the cratonic mantle is the first-order geodynamic mechanism for the thinning and destruction of cratonic lithosphere in North China.  相似文献   

2.
Di  Zhou  Zhen  Sun  Han-zong  Chen  He-hua  Xu  Wan-yin  Wang  Xiong  Pang  Dong-sheng  Cai  Deng-ke  Hu 《Island Arc》2008,17(2):186-207
Abstract   During the Mesozoic era, the South China Sea and its environs were located at the south-eastern margin of the Eurasian continent. There has been hot debate on the influences of Tethyan and Paleo-Pacific tectonics to the Mesozoic evolution of the area. This paper compiles lithofacies maps of six time slices and discusses the paleogeographic and tectonic evolution of the area based on this compilation and other data on structural deformation and magmatism. In the Early Triassic, the Paleotethys Ocean extended eastward to the study area through the Song Da passage. Then a significant east–west differential evolution began. In the Late Triassic, the western area uplifted as a result of the collision between the Indosinian and South China blocks during the Indosinian orogeny, and the Song Da passage has closed since then. Meanwhile, a transgression of Paleo-Pacific waters occurred in the eastern and south-eastern portions of the area, forming the 'East Guangdong–North-west Borneo Sea'. In the Early Jurassic, seawater transgression was even more pronounced, resulting into the connection of this sea with the Mesotethys Ocean to the west. Large quantities of Tethyan water carrying Tethyan organisms entered the area. In the Middle Jurassic, a short-lived transgression occurred in the eastern Mesotethys and resulted in the formation of the 'Yunnan–Burma Sea'. The Late Jurassic to Early Cretaceous was the climax of the subduction of both the Mesotethys and Paleo-Pacific towards the Eurasian continent. This led to the formation of the great 'Circum South-east Asia Subduction–Accretion Zone' in the Middle or Late Cretaceous. This paper also presents various lines of evidence for a newly recognized segment of this Mesozoic subduction–accretion zone buried under Cenozoic sediments in the north-eastern South China Sea.  相似文献   

3.
Widespread Mesozoic magmatism occurs in the Korean Peninsula (KP). The status quo is poles apart between the northern and southern parts in characterizing its distribution and nature, with the nearly absence of any related information in North Korea. We have the opportunity to have conducted geological investigations in North Korea and South Korea during the past ten years through international cooperation programs. This led to the revelation of a number of granitoids and related volcanic rocks and thus facilitates the comparison with those in East China and Japan. Mesozoic granitoids in the KP can be divisible into three age groups: the Triassic group with a peak age of ~220 Ma, the Jurassic one of ~190–170 Ma and the late Early Cretaceous one of ~110 Ma. The Triassic intrusions include syenite, calc-alkaline to alkaline granite and minor kimberlite in the Pyeongnam Basin of North Korea. They have been considered to form in post-orogenic settings related to the Central Asian Orogenic Belt (CAOB) or the Dabie-Sulu Orogenic Belt (DSOB). The Jurassic granitoids constitute extensive occurrence in the KP and are termed as the Daebo-period magmatism. They correlate well with coeval counterparts in NE China encompassing the northeastern part of the North China Craton (NCC) and the eastern segment of the CAOB. They commonly consist of biotite or two-mica granites and granodiorites, with some containing small dark diorite enclaves. On one hand, Early Jurassic to early Middle Jurassic magmatic rocks are rare in most areas of the NCC, whilst Middle-Late Jurassic ones are not developed in the KP. On the other hand, both NCC and KP host abundant Cretaceous granites. However, the present data revealed contrasting age peaks, with ~130–125 Ma in the NCC and ~110–105 Ma in the KP. Cretaceous granites in the KP comprise the dominant biotite granites and a few amphibole granites. The former exhibit mildly fractionated REE patterns and zircon ε Hf(t) values from -15 to -25, whereas the latter feature strongly fractionated REE patterns and zircon ε Hf(t) values from -10 to -1. Both granites contain inherited zircons of ~1.8–1.9 or ~2.5 Ga. These geochemical characters testify to their derivation from re-melting distinct protoliths in ancient basement. Another Cretaceous magmatic sub-event has been entitled as the Gyeongsang volcanism, which is composed of bimodal calc-alkaline volcanic rocks of 94–55 Ma and granitic-hypabyssal granitic bodies of 72–70 Ma. Synthesizing the Mesozoic magmatic rocks across the KP, NCC and Japan can lead to the following highlights: (1) All Triassic granites in the NCC, KP and Japan have similar characteristics in petrology, chronology and geochemistry. Therefore, the NCC, KP and Japan tend to share the same tectonic setting during the Triassic, seemingly within the context of Indosinian orogensis. (2) Jurassic to earliest Cretaceous magmatic rocks in the NCC seem to define two episodes: episode A from 175 to 157 Ma and episode B from 157 to 135 Ma. Jurassic magmatic rocks in the KP span in age mainly from 190 to 170 Ma, whereas 160–135 Ma ones are rare. With the exception of ~197 Ma Funatsu granite, Jurassic magmatic rocks are absent in Japan. (3) Cretaceous granites in the KP have a peak age of ~110, ~20 Ma younger than those in the NCC, while Japan is exempt from ~130–100 Ma granites. (4) The spatial-temporal distribution and migratory characteristics of the Jurassic-Cretaceous magmatic rocks in Japan, KP, and NE China-North China indicate that the subduction of the Paleo-Pacific plate might not be operative before Late Cretaceous (~130–120 Ma). (5) Late Cretaceous magmatic rocks (~90–60 Ma) occur in the southwestern corner of the KP and also in Japan, coinciding with the metamorphic age of ~90–70 Ma in the Sanbagawa metamorphic belt of Japan. The magmatic-metamorphic rock associations and their spatial distribution demonstrate the affinities of sequentially subduction zone, island arc and back-arc basin from Japan to Korea, arguing for the Pacific plate subduction during Late Cretaceous. (6) This study raises another possibility that the Mesozoic cratonic destruction in the NCC, which mainly occurred during ~150–120 Ma, might not only be due to the subduction of the Paleo-Pacific Plate, but also owe much to the intraplate geodynamic forces triggered by other adjacent continental plates like the Eurasian and Indian plates.  相似文献   

4.
A broad zone of dominantly subaerial silicic volcanism associated with regional extensional faulting developed in southern South America during the Middle Jurassic, contemporaneously with the initiation of plutonism along the present Pacific continental margin. Stratigraphic variations observed in cross sections through the silicic Jurassic volcanics along the Pacific margin of southernmost South America indicate that this region of the rift zone developed as volcanism continued during faulting, subsidence and marine innundation. A deep, fault-bounded submarine trough formed near the Pacific margin of the southern part of the volcano-tectonic rift zone during the Late Jurassic. Tholeiitic magma intruded within the trough formed the mafic portion of the floor of this down-faulted basin. During the Early Cretaceous this basin separated an active calc-alkaline volcanic arc, founded on a sliver of continental crust, from the then volcanically quiescent South American continent. Geochemical data suggest that the Jurassic silicic volcanics along the Pacific margin of the volcano-tectonic rift zone were derived by crustal anatexis. Mafic lavas and sills which occur within the silicic volcanics have geochemical affinities with both the tholeiitic basalts forming the ophiolitic lenses which are the remnants of the mafic part of the back-arc basin floor, and also the calc-alkaline rocks of the adjacent Patagonian batholith and their flanking lavas which represent the eroded late Mesozoic calc-alkaline volcanic arc. The source of these tholeiitic and calc-alkaline igneous rocks was partially melted upper mantle material. The igneous and tectonic processes responsible for the development of the volcano-tectonic rift zone and the subsequent back-arc basin are attributed to diapirism in the upper mantle beneath southern South America. The tectonic setting and sequence of igneous and tectonic events suggest that diapirism may have been initiated in response to subduction.  相似文献   

5.
The North China Craton(NCC) experienced strong destruction(i.e., decratonization) during the Mesozoic, which triggered intensive magmatism, tectonism and thermal events and formed large-scale gold and other metal deposits in the eastern part of the craton. However, how the decratonization controls the formation and distribution of large-scale of gold and other metal deposits is not very clear. Based on a large number of published data and new results, this paper systematically summarizes all the data for the rock assemblages, chronology, geochemistry and petrogenesis of Mesozoic magmatic rocks, as well as for the mineralizing ages of gold and other metal deposits and the evolution of the Mesozoic basins in the eastern NCC. The results are used to restore the extensional rates of Mesozoic to Cenozoic basins and the strike-slip distance of the Tanlu Fault, to ascertain the location of the Paleo-Pacific plate subduction zones during the Mesozoic to Cenozoic, and to reconstruct the temporal and spatial distribution of Mesozoic gold and other metal deposits and magmatic rocks in the eastern NCC. It is obtained that the magmatism and mineralization in the eastern NCC westward migrate from east to west during the Early to Middle Jurassic, but they eastward migrate from west to east during the Early Cretaceous. The metallogenesis of these deposits is genetically related to magmatism, and the magmas provided some ore-forming materials and fluids for the generation of metal deposits. The geodynamic mechanism of decratonization and related magmatism and mineralization is proposed, i.e., the westward low-angle subduction of the Paleo-Pacific slab beneath the NCC formed continental magmatic arc with plenty of porphyry Cu-Mo-Au deposits in the Jurassic, similar to the Andean continental arc in South America. The mantle wedge was metasomatized by the fluids/melts derived from the subducting slab, laying a material foundation for hydrothermal mineralization in the Early Cretaceous. While the rollback of the subducting slab with gradually increasing subduction angle and the retreat of the subduction zones during the Early Cretaceous induced strong destruction of the craton and the formation of extensive magmatic rocks and large-scale gold and other metal deposits.  相似文献   

6.
The NE- to NNE-striking Tan-Lu Fault Zone (TLFZ) is the largest fault zone in East China, and a typical representative for the circum-Pacific tectonics. Its late Mesozoic evolution resulted from subduction of the Paleo-Pacific Plate, and can be used for indication to the subduction history. The TLFZ reactivated at the end of Middle Jurassic since its origination in Middle Triassic. This phase of sinistral motion can only be recognized along the eastern edge of the Dabie-Sulu orogenis, and indicates initiation of the Paleo-Pacific (Izanagi) Plate subduction beneath the East China continent. After the Late Jurassic standstill, the fault zone experienced intense sinistral faulting again at the beginning of Early Cretaceous under N-S compression that resulted from the NNW-ward, low-angle, high-speed subduction of the Izanagi Plate. It turned into normal faulting in the rest of Early Cretaceous, which was simultaneous with the peak destruction of the North China Craton caused by backarc extension that resulted from rollback of the subducting Izanagi Plate. The TLFZ was subjected to sinistral, transpressive displacement again at the end of Early Cretaceous. This shortening event led to termination of the North China Craton destruction. The fault zone suffered local normal faulting in Late Cretaceous due to the far-field, weak backarc extension. The late Mesozoic evolution of the TLFZ show repeated alternation between the transpressive strike-slip motion and normal faulting. Each of the sinistral faulting event took place in a relatively short period whereas every normal faulting event lasted in a longer period, which are related to the subduction way and history of the Paleo-Pacific Plates.  相似文献   

7.
The North China Craton (NCC) witnessed Mesozoic vigorous tectono-thermal activities and transition in the nature of deep lithosphere. These processes took place in three periods: (1) Late Paleozoic to Early Jurassic (~170 Ma); (2) Middle Jurassic to Early Cretaceous (160–140 Ma); (3) Early Cretaceous to Cenozoic (140 Ma to present). The last two stages saw the lithospheric mantle replacement and coupled basin-mountain response within the North China Craton due to subduction and retreating of the Paleo-Pacific plate, and is the emphasis in this paper. In the first period, the subduction and closure of the Paleo- Asian Ocean triggered the back-arc extension, syn-collisional compression and then post-collisional extension accompanied by ubiquitous magmatism along the northern margin of the NCC. Similar processes happened in the southern margin of the craton as the subduction of the Paleo-Tethys ocean and collision with the South China Block. These processes had caused the chemical modification and mechanical destruction of the cratonic margins. The margins could serve as conduits for the asthenosphere upwelling and had the priority for magmatism and deformation. The second period saw the closure of the Mongol-Okhotsk ocean and the shear deformation and magmatism induced by the drifting of the Paleo-Pacific slab. The former led to two pulse of N-S trending compression (Episodes A and B of the Yanshan Movement) and thus the pre-existing continental marginal basins were disintegrated into sporadically basin and range province by the Mesozoic magmatic plutons and NE-SW trending faults. With the anticlockwise rotation of the Paleo-Pacific moving direction, the subduction-related magmatism migrated into the inner part of the craton and the Tanlu fault became normal fault from a sinistral one. The NCC thus turned into a back-arc extension setting at the end of this period. In the third period, the refractory subcontinental lithospheric mantle (SCLM) was firstly remarkably eroded and thinned by the subduction-induced asthenospheric upwelling, especially those beneath the weak zones (i.e., cratonic margins and the lithospheric Tanlu fault zone). Then a slightly lithospheric thickening occurred when the upwelled asthenosphere got cool and transformed to be lithospheric mantle accreted (~125 Ma) beneath the thinned SCLM. Besides, the magmatism continuously moved southeastward and the extensional deformations preferentially developed in weak zones, which include the Early Cenozoic normal fault transformed from the Jurassic thrust in the Trans-North Orogenic Belt, the crustal detachment and the subsidence of Bohai basin caused by the continuous normal strike slip of the Tanlu fault, the Cenozoic graben basins originated from the fault depression in the Trans-North Orogenic Belt, the Bohai Basin and the Sulu Orogenic belt. With small block size, inner lithospheric weak zones and the surrounding subductions/collisions, the Mesozoic NCC was characterized by (1) lithospheric thinning and crustal detachment triggered by the subduction-induced asthenospheric upwelling. Local crustal contraction and orogenesis appeared in the Trans-North Orogenic Belt coupled with the crustal detachment; (2) then upwelled asthenosphere got cool to be newly-accreted lithospheric mantle and crustal grabens and basin subsidence happened, as a result of the subduction zone retreating. Therefore, the subduction and retreating of the western Pacific plate is the outside dynamics which resulted in mantle replacement and coupled basin-mountain respond within the North China Craton. We consider that the Mesozoic decratonization of the North China Craton, or the Yanshan Movement, is a comprehensive consequence of complex geological processes proceeding surrounding and within craton, involving both the deep lithospheric mantle and shallow continental crust.  相似文献   

8.
Yanbin  Zhang  Fuyuan  Wu  Simon A.  Wilde  Mingguo  Zhai  Xiaoping  Lu  Deyou  Sun 《Island Arc》2004,13(4):484-505
Abstract   The Yanbian area is located in the eastern part of the Central Asian Orogenic Belt (CAOB) of China and is characterized by widespread Phanerozoic granitic intrusions. It was previously thought that the Yanbian granitoids were mainly emplaced in the Early Paleozoic (so-called 'Caledonian' granitoids), extending east–west along the northern margin of the North China craton. However, few of them have been precisely dated; therefore, five typical 'Caledonian' granitic intrusions (the Huangniling, Dakai, Mengshan, Gaoling and Bailiping batholiths) were selected for U–Pb zircon isotopic study. New-age data show that emplacement of these granitoids extended from the Late Paleozoic to Late Mesozoic (285–116 Ma). This indicates that no 'Caledonian' granitic belt exists along the northern margin of the North China craton. The granitoids can be subdivided into four episodes based on our new data: Early Permian (285 ± 9 Ma), Early Triassic (249–245 Ma), Jurassic (192–168 Ma) and Cretaceous (119–116 Ma). The 285 ± 9 Ma tonalite was most likely related to subduction of the Paleo-Asian Oceanic Plate beneath the North China craton, followed by Triassic (249–245 Ma) syn-collisional monzogranites, representing the collision of the CAOB orogenic collage with the North China craton and final closure of the Paleo-Asian Ocean. The Jurassic granitoids resulted from subduction of the Paleo-Pacific plate and subsequent collision of the Jiamusi–Khanka Massif with the existing continent, assembled in the Triassic. The Early Cretaceous granitoids formed in an extensional setting along the eastern Asian continental margin.  相似文献   

9.
东北亚中生代火山岩的地球动力学意义   总被引:11,自引:0,他引:11  
东北亚中生代火山岩可划分为陆内环状火山岩带、纬向火山岩带和陆缘北北东向火山岩带,本文通过对俄罗斯、蒙古、中国东北、日本和朝鲜半岛在内的东北亚中生代火山岩分布图的编制,以及火山岩地球化学对比研究,认为东北亚中生代火山岩是古亚洲洋构造域向太平洋构造域转换时期,深部地幔地球化学过程以及东亚大陆与古太平洋板块相互作用的产物。在晚古生代至早中生代古亚洲构造域的闭合和欧亚大陆形成过程中,古亚洲域冷板块向地幔深部潜入而引发的热地幔柱的上升,是东北亚中生代大地构造演化和岩浆作用的重要控制因素。  相似文献   

10.
The opening of the Japan Sea separated southwest Japan from the Eurasian continent during the Early to Middle Miocene. Since then, diverse igneous activities have occurred in relation to the subduction of the Philippine Sea Plate beneath southwest Japan. The Okinawa Trough formed in the back-arc region of the Ryukyu Arc since the Late Miocene. In the Koshikijima Islands, off the west coast of Kyushu and near the northern end of the Okinawa Trough, felsic to intermediate igneous rocks with Middle to Late Miocene radiometric ages occur as granitic intrusions and dikes. We obtained zircon U–Pb ages and whole-rock major- and trace-element compositions of Koshikijima granitic rocks to elucidate their magmagenesis. The U–Pb ages of granitic rocks in Kamikoshikijima and Shimokoshikijima and a dacite dike are about 10 Ma, suggesting that most magmatism on the Koshikijima Islands was coeval with early rifting in the Okinawa Trough. We infer that magmagenesis occurred via melting of lower crustal mafic rocks related to rifting in the Okinawa Trough based on the arc-like trace-element compositions of these I-type granites. Andesitic dikes preceded felsic igneous activity on the Koshikijima Islands, and their ages and petrochemistry will help elucidate the magmatism and tectonics in this area throughout the Miocene.  相似文献   

11.
The Dabie-Sulu orogenic belt was formed by the Triassic continental collision between the South China Block and the North China Block. There is a large area of Mesozoic magmatic rocks along this orogenic belt, with emplacement ages mainly at Late Triassic, Late Jurassic and Early Cretaceous. The Late Triassic alkaline rocks and the Late Jurassic granitoids only crop out in the eastern part of the Sulu orogen, whereas the Early Cretaceous magmatic rocks occur as massive granitoids, sporadic intermedi- ate-ma...  相似文献   

12.
Terrane analysis and accretion in North-East Asia   总被引:2,自引:0,他引:2  
Abstract A terrane map of North-East Asia at 1:5 000 000 scale has been compiled. The map shows terranes of different types and ages accreted to the North-Asian craton in the Mesozoic–Cenozoic, sub-and superterranes, together with post-amalgamation and post-accretion assemblages. The great Kolyma-Omolon superterrane adjoins the north-east craton margin. It is composed of large angular terranes of continental affinity: craton fragments and fragments of the passive continental margin of Siberia, and island arc, oceanic and turbidite terranes that are unconformably overlain by shallow marine Middle-Upper Jurassic deposits. The superterrane resulted from a long subduction of the Paleo-Pacific oceanic crust beneath the Alazeya arc. Its south-west boundary is defined by the Late Jurassic Uyandina-Yasachnaya marginal volcanic arc which was brought about by subduction of the oceanic crust that separated the superterrane from Siberia. According to paleomagnetic evidence the width of the basin is estimated to be 1500–2000 km. Accretion of the superterrane to Siberia is dated to the late Late Jurassic-Neocomian. The north-east superterrane boundary is defined by the Lyakhov-South Anyui suture which extends across southern Chukotka up to Alaska. Collision of the superterrane with the Chukotka shelf terrane is dated to the middle of the Cretaceous. The Okhotsk-Chukotka belt, composed of Albian-Late Cretaceous undeformed continental volcan-ites, defines the Cretaceous margin of North Asia. Terranes eastward of the belt are mainly of oceanic affinity: island arc upon oceanic crust, accretion wedge and turbidite terranes, as well as cratonic terranes and fragments of magmatic arcs on the continental crust and metamorphic terranes of unclear origin and age. The time of their accretion is constrained by post-accretionary volcanic belts that extend parallel to the Okhotsk-Chukotka belt but are displaced to the east: the Maastrichtian-Miocene Kamchatka-Koryak belt and the Eocene-Quaternary Central Kamchatka belt which mark active margins of the continent of corresponding ages.  相似文献   

13.
The Cretaceous tectonic and geodynamic settings of the southeastern Russian continental margin are discussed using data generated during several recent geological studies. The structural patterns of the East Asian Cretaceous continental margin are the result of the influence of global and regional processes. The interaction and reorganization of the Eurasian, Pacific and other related plates induced intraplate tectonic processes such as rifting, subduction, collision, transform faulting, and basin formation. Three major basin types are recognized in this area: (i) mainly marine active continental margins associated with shear components (Sangjian–Middle Amur Basin); (ii) passive continental margins (Bureya, Partizansk, and Razdolny basins); (iii) intracontinental basins (Amur–Zeya Basin). The evolution of the biota in this region allows the examination of Early and Late Cretaceous biostratigraphy, faunal and floral changes, and the phytogeography of the southeastern Russian continental margin.  相似文献   

14.
This paper summarizes the geochronological, geochemical and zircon Hf isotopic data for Mesozoic granitoids within the Erguna Massif, NE China, and discusses the spatial-temporal variation of zircon Hf isotopic compositions, with the aim of constraining the accretion and reworking processes of continental crust within the Erguna Massif, and shedding light on the crustal evolution of the eastern segment of the Central Asian Orogenic Belt. Based on the zircon U-Pb dating results, the Mesozoic granitic magmatisms within the Erguna Massif can be subdivided into five stages: Early-Middle Triassic(249–237 Ma), Late Triassic(229–201 Ma), Early-Middle Jurassic(199–171 Ma), Late Jurassic(155–149 Ma), and Early Cretaceous(145–125 Ma).The Triassic to Early-Middle Jurassic granitoids are mainly I-type granites and minor adakitic rocks, whereas the Late Jurassic to Early Cretaceous granitoids are mainly A-type granites. This change in magmatism is consistent with the southward subduction of the Mongol-Okhotsk oceanic plate and subsequent collision and crustal thickening, followed by post-collision extension. Zircon Hf isotopic data indicate that crustal accretion of the Erguna Massif occurred in the Mesoproterozoic and Neoproterozoic. ZirconεHf(t) values increase gradually over time, whereas two-stage model(TDM2) ages decrease throughout the Mesozoic. The latter result indicates a change in the source of granitic magmas from the melting of ancient crust to more juvenile crust. Zircon εHf(t)values also exhibit spatial variations, with values decreasing northwards, whereas TDM2 ages increase. This pattern suggests that,moving from south to north, there is an increasing component of ancient crustal material within the lower continental crust of the Erguna Massif. Even if at the same latitude, the zircon Hf isotopic compositions are also inconsistent. These results reveal lateral and vertical heterogeneities in the lower continental crust of the Erguna Massif during the Mesozoic, which we use as the basis of a structural and tectonic model for this region.  相似文献   

15.
Abstract   The development of voluminous granitic magmatism and widespread high-grade metamorphism in Mid-Cretaceous southwest Japan have been explained by the subduction of a spreading ridge (Kula–Pacific or Farallon–Izanagi plate boundaries) beneath the Eurasian continent and the formation of a slab window. In the present study, the thermal consequences of the formation of a slab window beneath a continental margin are evaluated through a 2-D numerical simulation. The model results are evaluated by comparison with the Mid-Cretaceous geology of southwest Japan. Of particular interest are the absence of an amphibolite- to granulite-facies metamorphic belt near the Wadati–Benioff plane, and significant melting of the lower crustal-mafic rocks sufficient to form a large amount of granitic magma. Because none of the model results simultaneously satisfied these two geological interpretations, it is suggested that subduction of plate boundaries in Mid-Cretaceous southwest Japan was not associated with the opening of a slab window. According to previous studies, and the results of the present study, two different tectonic scenarios could reasonably explain the geological interpretations for Mid-Cretaceous southwest Japan: (i) The spreading ridge did not subduct beneath the Eurasian continent, but was located off the continental margin, implying the continuous subduction of very young oceanic lithosphere; (ii) ridge subduction beneath the continental margin occurred after active spreading had ceased. Consequently, in both tectonic scenarios, the subduction of plate boundaries at the Mid-Cretaceous southwest Japan was not associated with a slab window, but very young (hot) oceanic lithosphere.  相似文献   

16.
The timing of the "Yanshanian Movement" and the tectonic setting that controlled the Yanshan fold-and-thrust belt during Jurassic time in China are still matters of controversy. Sediments that filled the intramontane basins in the Yanshan belt perfectly record the history of "Yanshanian Movement" and the tectonic background of these basins. Recognizing syn-tectonic sedimentation, clarifying its relationship with structures, and accurately defining strata ages to build up a correct chronostratigraphic framework are the key points to further reveal the timing and kinematics of tectonic deformation in the Yanshan belt from the Jurassic to the Early Cretaceous. This paper applies both tectonic and sedimentary methods on the fold-and-thrust belt and intramontane basins in the Zhangjiakou area, which is located at the intersection between the western Yanshan and northern Taihangshan. Our work suggests that the pre-defined "Jurassic strata" should be re-dated and sub-divided into three strata units: a Late Triassic to Early Jurassic unit, a Middle Jurassic unit, and a Late Jurassic to early Early Cretaceous unit. Under the control of growth fold-and-thrust structures, five types of growth strata developed in different growth structures: fold-belt foredeep type,thrust-belt foredeep type, fault-propagation fold-thrust structure type, fault-bend fold-thrust structure type, and fault-bend foldthrust plus fault-propagation fold composite type. The reconstructed "source-to-sink" systems of Late Triassic to Early Jurassic,Middle Jurassic and Late Jurassic to early Early Cretaceous times, which are composed of a fold-and-thrust belt and flexure basins, imply that the "Yanshanian Movement" in our study area started in the Middle Jurassic. During Middle Jurassic to early Early Cretaceous times, there have been at least three stages of fold-thrust events that developed "Laramide-type" basementinvolved fold-thrust structures and small-scale intramontane broken "axial basins". The westward migration of a "pair" of basement-involved fold-thrust belt and flexure basins might have been controlled by flat subduction of the western Paleo-Pacific slab from the Jurassic to the Early Cretaceous.  相似文献   

17.
For the Triassic continental collision, subduction and orogenesis in the Dabie-Sulu belt, a lot of data on petrology, geochemistry and chronology have been published[1]. However, so far no depositional records on the Triassic syn-collisional orogenesis of…  相似文献   

18.
Cretaceous episodic growth of the Japanese Islands   总被引:1,自引:0,他引:1  
G. Kimura 《Island Arc》1997,6(1):52-68
Abstract The Japanese Islands formed rapidly in situ along the eastern Asian continental margin in the Cretaceous due to both tectonic and magmatic processes. In the Early Cretaceous, huge oceanic plateaus created by the mid-Panthalassa super plume accreted with the continental margin. This tectonic interaction of oceanic plateau with continental crust is one of the significant tectonic processes responsible for continental growth in subduction zones. In the Japanese Islands, Late Cretaceous-Early Paleogene continental growth is much more episodic and drastic. At this time the continental margin uplifted regionally, and intra-continent collision tectonics took place in the northern part of the Asian continent. The uplifting event appears to have been caused by the subduction of very young oceanic crust (i.e. the Izanagi-Kula Plate) along the continental margin. Magmatism was also very active, and melting of the young oceanic slab appears to have resulted in ubiquitous plutons in the continental margin. Regional uplift of the continental margin and intra-continent collision tectonics promoted erosion of the uplifted area, and a large amount of terrigenous sediment was abruptly supplied to the trench. As a result of the rapid supply of terrigenous detritus, the accretionary complexes (the Hidaka Belt in Hokkaido and the Shimanto Belt in Southwest Japan) grew rapidly in the subduction zone. The rapid growth of the accretionary complexes and the subduction of very young, buoyant oceanic crust caused the extrusion of a high-P/T metamorphic wedge from the deep levels of the subduction zone. Episodic growth of the Late Cretaceous Japanese Islands suggests that subduction of very young oceanic crust and/or ridge subduction are very significant for the formation of new continental crust in subduction zones.  相似文献   

19.
History and modes of Mesozoic accretion in Southeastern Russia   总被引:8,自引:1,他引:8  
Boris  Natal'in 《Island Arc》1993,2(1):15-34
Abstract The history of Mesozoic accretion and growth of the Asia eastern margin, occupied by Southeastern Russia, includes five main events; two main tectonic regimes were responsible for the growth of the continent. In the Triassic-Jurassic, Early Cretaceous and Late Cretaceous-Paleogene, the subduction of the oceanic lithosphere resulted in the formation of wide accretionary wedges of the Mongol-Okhotsk, Khingan-Okhotsk and Eastern Sikhote-Alin active continental margins, respectively. These stages of the comparatively slow growth of the continent were broken by stages of rapid growth and drastic changes in the shape of the continent, since at these stages large terranes of various tectonic nature collided with active continental margins. At the end of the Early-Middle Jurassic, the Bureya terranes collided with the Mongol-Okhotsk active margin, and at the beginning of the Late Cretaceous there was collision of the Central and Southern Sikhote-Alin terranes with the Khingan-Okhotsk active margin.
Collision-related structural styles in all cases are indicative of oblique collision and great strike-slip motions along the main sutures. The peculiarities of the terrane's geological structure show that prior to collision with the Mongol-Okhotsk and Khingan-Okhotsk active margins, they had already accreted to Asia and then migrated along its margins along the strike-slip faults. The Bureya terranes were squeezed out of the compression zone between Siberia and North China. This compression zone originated after the Paleozoic oceans which divided these cratons had closed. The Khanka terranes and Mesozoic accretionary wedge terranes of the Sikhote-Alin shifted along the strike-slip faults subparallel to the Asia Pacific margin. Strike-slip motions resulted in duplication of the primary tectonic zonation.  相似文献   

20.
K–Ar ages of the Cenozoic basaltic rocks from the Far East region of Russia (comprising Sikhote-Alin and Sakhalin) are determined to obtain constraints on the tectono-magmatic evolution of the Eurasian margin by comparison with the Japanese Islands, Northeast China, and the formation of the back-arc basin. In the early Tertiary stage (54–26 Ma), the northwestward subduction of the Pacific Plate produced the active continental margin volcanism of Sikhote-Alin and Sakhalin, whereas the rift-type volcanism of Northeast China, inland part of the continent began to develop under a northeast–southwest-trending deep fault system. In the early Neogene (24–17 Ma), a large number of subduction-related volcanic rocks were erupted in connection with the Japan Sea opening. After an inactive interval of the volcanism ∼ 20–13 Ma ago, the late Neogene (12–5 Ma) volcanism of Sikhote-Alin and Sakhalin became distinct from those of the preceding stages and indicated within-plate geochemical features similar to those of Northeast China, in contrast to the Japan Arc which produces island arc volcanism. During the Japan Sea opening, the northeastern Eurasian margin detached and became a continental island arc system, and an integral part of continental eastern Asia comprising Sikhote-Alin, Sakhalin and Northeast China, and the Japan Arc with a back-arc basin. The convergence between the Eurasian Plate, the Pacific Plate and the Indian Plate may have contributed to the Cenozoic tectono-magmatism of the northeastern Eurasian continent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号