首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rivers link terrestrial ecosystems and marine ecosystems, and they transport large amounts of substances into oceans each year, including several forms of silicon(Si), carbon(C), and other nutrients. However, river damming affects the water flow and biogeochemical cycles of Si, C, and other nutrients through biogeochemical interacting processes. In this review, we first summarize the current understanding of the effects of river damming on the processes of biogeochemical Si cycle, especially the source, composition, and recycling process of biogenic silica(BSi). Then, we introduce dam impacts on the cycles of C and some other nutrients. Dissolved silicon in rivers is mainly released from phytolith dissolution and silicate weathering. BSi in suspended matter or sediments in most rivers mainly consists of phytoliths and mainly originates from soil erosion. However, diatom growth and deposition in many reservoirs formed by river interception may significantly increase the contribution of diatom Si to total BSi, and thus significantly influence the biogeochemical Si,C, and nutrient cycles. Yet the turnover of phytoliths and diatoms in different rivers formed by river damming is still poorly quantified. Thus, they should be further investigated to enhance our understanding about the effects of river damming on global biogeochemical Si, C and nutrient cycles.  相似文献   

2.
Today's disturbance of the global carbon cycle induced by anthropogenic processes has raised new interest in the history of the global carbon cycle and its relationship to climate and other geochemical cycles. Carbon-isotope stratigraphy proves to be most useful as a monitor of the history of the carbon-cycle during the last 200 million years. In the introductory paragraphs of this review the mode of functioning of the global carbon-cycle is summarized and the connection between carbon-cycle and carbon isotope geochemistry is documented. A case study on the disturbance of the global carbon cycle during the Aptian-Albian is presented. The disturbance of the carbon cycle lasting up to millions of years is recorded in the carbon-isotope stratigraphy of pelagic sediments. It is superimposed on high frequency sedimentological cycles, related to climate and oceanographic cycles of 20, 40 or 100 ky duration. The data reviewed suggest that the change in the global carbon system was linked to a global acceleration of geochemical cycles triggered by a long-term change in atmospheric CO2 controlled by the rate of sea-floor formation and by volcanic activity. Increased accumulation rates of terrestrial material and terrestrial organic matter in marine sediments may be used as an indicator of an intensified hydrological cycling resulting in higher water-discharge rates. An intensification of the Aptian-Albian water cycle is further reflected in continental sediments monitoring a period of elevated humidity. An increase in water discharge rates should have affected the transfer rate of dissolved nutrients from continents to oceans. Elevated concentrations of phosphorus may have led to an increase in Aptian-Albian oceanic productivity enhancing the transfer of marine organic matter from the oceanic into the sedimentary reservoir. Increased productivity, increased bulk sedimentation rates and poorly oxygenated deep-water led to increased preservation of marine and terrestrial organic matter in marine sediments. The accelerated output of marine organic carbon from the oceanic reservoir is ultimately registered in the positive carbon-isotope excursion of the marine carbonate carbon-isotope stratigraphy.  相似文献   

3.
Yoshitaka  Kakuwa 《Island Arc》1996,5(2):194-202
Abstract Stratigraphic productivity variations of radiolarians below the Permian-Triassic boundary are examined with Ishiga Diagrams in bedded chert sequences of southwest Japan. The diagrams of two different outcrops, drawn from the thickness variation of chert beds, show common stratigraphic variation, which indicates the diagram is a useful tool for correlation of bedded chert sequence. The common stratigraphic productivity variation is also well correlated to a compiled δ13C excursion of shallow carbonate sequences. Bedded chert records a dramatic extinction event in a shallow surface zone of oceans below the Permian-Triassic boundary. The Permian-Triassic mass extinction is divided into three intervals based on the Ishiga Diagrams, the stratigraphic lithological variation of bedded chert sequences, and the δ13C curve. The preceding extinction interval in the late Djulfian stage was not as serious an event and the biosphere soon recovered. The event of the main extinction interval commenced in the Dorashamian stage and caused a serious destruction of the biosphere. An event of the aftermath interval during the Early Triassic caused a delay in the recovery from the main extinction interval.  相似文献   

4.
Thirty species of 10 ostracod genera were identified from 440 fossil specimens isolated through the hot acetolysis of the rock samples collected across the Permian-Triassic boundary at Chongyang section. Twenty species of 6 genera are found to occur in the limestone of Changxing Formation, and 11 species of 7 genera above the main faunal mass extinction horizon. The os-tracod assemblages identified at the Chongyang section are obviously different from those previously reported in the contem-poraneous microb...  相似文献   

5.
Ocean anoxia has been widely implicated in the Permian-Triassic extinction.However,the duration and distribution of the ocean anoxia remains controversial.In this study,the detailed redox changes across the Permian-Triassic boundary(PTB)in the shallow platform interior at Great Bank of Guizhou(GBG)has been reconstructed based on the high-resolution microfossil composition and multiple paleo-redox proxies.The shallow platform is characterized by low sulfur(total sulfur(TS)and pyrite sulfur(Spy))concentrations,low Spy/TOC ratios,and low DOP values before the mass extinction,representing oxic conditions well.Following the mass extinction,the shift of multiple geochemical proxies,including high Spy/TOC ratios and DOP values,indicates dysoxic-anoxic conditions in shallow ocean.Furthermore,we reconstruct the transition of the redox conditions of Nanpanjiang Basin:the intense volcanic eruptions,which release huge CO2 and SO2 before the mass extinction,provoke the temperature rising and the collapse of terrestrial ecosystem.As a result,the increased weathering influx causes the carbon isotopic negative excursion and the expansion of the ocean oxygen minimum zone(OMZ).When the OMZ expanded into the photic zone,the episodic H2S release events enhance the pyrite burial at Dajiang section.Thus,intense volcanic eruptions,temperature increase,and oceanic hypoxia together lead to the PTB extinction.Recent studies show high temperature might be the key mechanism of the PTB extinction.In addition,this study confirms that the microbialites were formed in the dysoxicanoxic shallow water.  相似文献   

6.
The 3D hydrodynamic Model for Applications at Regional Scale (MARS3D) was coupled with a biogeochemical model developed with the Ecological Modular Mechanistic Modelling (Eco3M) numerical tool. The three-dimensional coupled model was applied to the NW Mediterranean Sea to study the dynamics of the key biogeochemical processes in the area in relation with hydrodynamic constraints. In particular, we focused on the temporal and spatial variability of intracellular contents of living and non-living compartments. The conceptual scheme of the biogeochemical model accounts for the complex food web of the NW Mediterranean Sea (34 state variables), using flexible plankton stoichiometry. We used mechanistic formulations to describe most of the biogeochemical processes involved in the dynamics of marine pelagic ecosystems. Simulations covered the period from September 1, 2009 to January 31, 2011 (17 months), which enabled comparison of model outputs with situ measurements made during two oceanographic cruises in the region (Costeau-4: April 27–May 2, 2010 and Costeau-6: January 23–January 27, 2011).  相似文献   

7.
Climate warming, one of the main features of global change, has exerted indelible impacts on the environment, among which the impact on the transport and fate of pollutants has aroused widespread concern. Persistent organic pollutants (POPs) are a class of pollutants that are transported worldwide. Determining the impact of climate warming on the global cycling of POPs is important for understanding POP cycling processes and formulating relevant environmental policies. In this review, the main research findings in this field over the past ten years are summarized and the effects of climate warming on emissions, transport, storage, degradation and toxicity of POPs are reviewed. This review also summarizes the primary POP fate models and their application. Additionally, research gaps and future research directions are identified and suggested. Under the influence of climate change, global cycling of POPs mainly shows the following responses. (1) Global warming directly promotes the secondary emission of POPs; for example, temperature rise will cause POPs to be re-released from soils and oceans, and melting glaciers and permafrost can re-release POPs into freshwater ecosystems. (2) Global extreme weather events, such as droughts and floods, result in the redistribution of POPs through intense soil erosion. (3) The changes in atmospheric circulation and ocean currents have significantly influenced the global transport of POPs. (4) Climate warming has altered marine biological productivity, which has changed the POP storage capacity of the ocean. (5) Aquatic and terrestrial food-chain structures have undergone significant changes, which could lead to amplification of POP toxicity in ecosystems. (6) Overall, warming accelerates the POP volatilization process and increases the amount of POPs in the environment, although global warming facilitates their degradation at the same time. (7) Various models have predicted the future environmental behaviors of POPs. These models are used to assist governments in comprehensively considering the impact of global warming on the environmental fate of POPs and therefore controlling POPs effectively. Future studies should focus on the synergistic effects of global changes on the cycling of POPs. Additionally, the interactions among global carbon cycling, water cycling and POP cycling will be a new research direction for better understanding the adaptation of ecosystems to climate change.  相似文献   

8.
The greatest Phanerozoic mass extinction happened at the end-Permian to earliest Triassic.About 95%species,82%genera,and more than half families became extinct,constituting the sole macro-mass extinction in geological history.This event not only caused the great extinction but also destroyed the 200 Myr-long Paleozoic marine ecosystem,prompted its transition to Mesozoic ecosystem,and induced coal gap on land as well as reef gap and chert gap in ocean.The biotic crisis during the Paleozoic-Mesozoic transition was a long process of co-evolution between geospheres and biosphere.The event sequence at the Permian-Triassic boundary(PTB)reveals two-episodic pattern of rapidly deteriorating global changes and biotic mass extinction and the intimate relationship between them.The severe global changes coupling multiple geospheres may have affected the Pangea integration on the Earth’s surface spheres,which include:the Pangea integration→enhanced mountain height and basin depth,changes of wind and ocean current systems;enhanced ocean basin depth→the greatest Phanerozoic regression at PTB,disappearance of epeiric seas and subsequent rapid transgression;the Pangea integration→thermal isolation effect of continental lithosphere and decrease of mid-ocean ridges→development of continental volcanism;two-episode volcanism causing LIPs of the Emeishan Basalt and the Siberian Trap(259–251 Ma)→global warming and mass extinction;continental aridification and replacement of monsoon system by latitudinal wind system→destruction of vegetation;enhanced weathering and CH4emission→negative excursion ofδ13C;mantle plume→crust doming→regression;possible relation between the Illawarra magnetic reversal and the PTB extinction,and so on.Mantle plume produced the Late Permian LIPs and mantle convection may have caused the process of the Pangea integration.Subduction,delamination,and accumulation of the earth’s cool lithospheric material at the"D"layer of CMB started mantle plume by heat compensation and disturbed the outer core thermo-convection,and the latter in turn would generate the mid-Permian geomagnetic reversal.These core and mantle perturbations may have caused the Pangea integration and two successive LIPs in the Permian,and probably finally the mass extinction at the PTB.  相似文献   

9.
The Late Permian to Early Triassic transition represents one of the most important Phanerozoic mass extinction episodes. The cause of this event is still in debate between catastrophic and gradual mechanisms. This study uses the U-Pb method on zircons from the uppermost Permian/lowermost Triassic clay deposits at Chahe (Guizhou Province, SW China) to examine time constraints for this event. The results of both this and previous studies show that the ages of Bed 68a and 68c (the upper clay bed of the terrestrial Permian-Triassic boundary (PTB)) respectively are 252.6±2.8 and 247.5±2.8 Ma. This age (within the margin of error) almost accords with the upper clay bed (Bed 28) age of Meishan and the eruption age of Tunguss Basalt, and is so far the most accurate age obtained from terrestrial PTB. The claystone of Bed 68 was formed in the earliest Triassic. The biotic crisis occurred at nearly the same time in terrestrial and marine environments during Permian-Triassic interval; however the extinction patterns and processes are different. The extinction pattern of the terrestrial plants shows a major decline at the PTB after long-term evolution, followed by a retarded extinction of the relicts in the earliest Triassic.  相似文献   

10.
Wang  Dongxiao  Wang  Qiang  Cai  Shuqun  Shang  Xiaodong  Peng  Shiqiu  Shu  Yeqiang  Xiao  Jingen  Xie  Xiaohui  Zhang  Zhiwei  Liu  Zhiqiang  Lan  Jian  Chen  Dake  Xue  Huijie  Wang  Guihua  Gan  Jianping  Xie  Xinong  Zhang  Rui  Chen  Hui  Yang  Qingxuan 《中国科学:地球科学(英文版)》2019,62(12):1992-2004
The South China Sea(SCS) is a large marginal sea connecting the Indian and Pacific oceans.Under the factors of monsoons,strait transport,and varied bathymetry,the SCS presents a three-layer structure and strong diapycnal mixing which is far greater than that in the open ocean.Theoretical analysis and observations reveal that internal tides,internal solitary waves,and strong winds are the sources of the strong mixing in the northern SCS.A major consequence of the strong mixing is an active mid-deep circulation system.This system promotes exchange of water between the SCS and adjacent oceans,and also regulates the upper layer of wind-driven circulation,making the 3 dimensional SCS circulation clearly different from that in other tropical and subtropical marginal seas.The mass transport capacity of the mid-deep circulation has a substantial impact on marine sedimentation,the biogeochemical cycle,and other processes in the SCS.This paper summarizes the recent advances in middeep sea circulation dynamics of the SCS,and discusses the opportunities and challenges in this area.  相似文献   

11.
Siberian gas venting and the end-Permian environmental crisis   总被引:1,自引:0,他引:1  
The end of the Permian period is marked by global warming and the biggest known mass extinction on Earth. The crisis is commonly attributed to the formation of the Siberian Traps Large Igneous Province although the causal mechanisms remain disputed. We show that heating of Tunguska Basin sediments by the ascending magma played a key role in triggering the crisis. Our conclusions are based on extensive field work in Siberia in 2004 and 2006. Heating of organic-rich shale and petroleum bearing evaporites around sill intrusions led to greenhouse gas and halocarbon generation in sufficient volumes to cause global warming and atmospheric ozone depletion. Basin scale gas production potential estimates show that metamorphism of organic matter and petroleum could have generated > 100,000 Gt CO2. The gases were released to the end-Permian atmosphere partly through spectacular pipe structures with kilometre-sized craters. Dating of a sill intrusion by the U–Pb method shows that the gas release occurred at 252.0 ± 0.4 million years ago, overlapping in time with the end-Permian global warming and mass extinction. Heating experiments to 275 °C on petroleum-bearing rock salt from Siberia suggests that methyl chloride and methyl bromide were significant components of the erupted gases. The results indicate that global warming and ozone depletion were the two main drivers for the end-Permian environmental crisis. We demonstrate that the composition of the heated sedimentary rocks below the flood basalts is the most important factor in controlling whether a Large Igneous Provinces causes an environmental crisis or not. We propose that a similar mechanism could have been responsible for the Triassic-Jurassic (~ 200 Ma) global warming and mass extinction, based on the presence of thick sill intrusions in the evaporite deposits of the Amazon Basin in Brazil.  相似文献   

12.
The global warming potential of methane (CH4) is about 30 times stronger than that of carbon dioxide (CO2) over a century timescale. Methane emission is hypothesized to have contributed to global climate change events and mass extinctions during Earth’s history. Therefore, the study of CH4 production processes is critically important to the understanding of global climate change. It has been a dogma that biogenic CH4 detectable in the oceans originates exclusively from the anaerobic metabolic activity of methanogenic archaea in hypoxic and anoxic environments, despite reports that many oxic surface and near-surface waters of the world’s oceans are CH4-supersaturated, thereby rendering net sea-to-air emissions of CH4. The phenomenon of CH4 production in oxic marine waters is referred to as the “ocean methane paradox”. Although still not totally resolved, recent studies have generated several hypotheses regarding the sources of CH4 production in oxic seawater. This review will summarize our current understanding of the importance of CH4 in the global climate and analyze the biological processes and their underpinning mechanisms that lead to the production of CH4 in oxic seawater environments. We will also tentatively explore the relationships of these microbial metabolic processes with global changes in climate and environment.  相似文献   

13.
The three important greenhouse gases, namely CO2, CH4 and N2O[1,2], participate in the process of carbon and nitrogen cycling in the paddy field simultaneously. CO2 is assimilated by rice through photosynthesis, which means the paddy field is the sink of …  相似文献   

14.
Marine biodiversity in almost all oceans is being threatened at the genetic, species, and ecosystem levels. The marine ecosystem is being degraded and the extinction rate of marine organisms has accelerated. In this paper, the potential causes of fishery resource exhaustion in the East China Sea are analyzed, including the change in the stoichiometric composition of seawater with regard to the concentrations of N and P, toxic effects of marine pollution, marine habitat destruction, increased seawater temperatures caused by climate warming, ocean acidification, pressure from overfishing, and the spread of marine pathogenic bacteria. It is believed that the factors mentioned above have significant impact on the exhaustion of fishery resources in the East China Sea. However, considering the cumulative, synergistic, and superimposed effects as well as the amplification effects resulting from their interactions, the actual risk of ecological extinction of marine organisms might be even more severe than that previously estimated. Hence, ecosystem management and research focused on a single risk factor or influencing factor is not enough to prevent marine ecosystem degradation and fishery resource exhaustion. A comprehensive, systematic, effective, and ecosystem-based management policy is imperative for healthy and sustainable fishery development in the East China Sea.  相似文献   

15.
Effects of global warming on animal distribution and performance become visible in many marine ecosystems. The present study was designed to develop a concept for a cause and effect understanding with respect to temperature changes and to explain ecological findings based on physiological processes. The concept is based on a wide comparison of invertebrate and fish species with a special focus on recent data obtained in two model species of fish. These fish species are both characterized by northern and southern distribution limits in the North Atlantic: eelpout (Zoarces viviparus), as a typical non-migrating inhabitant of the coastal zone and the cod (Gadus morhua), as a typical inhabitant of the continental shelf with a high importance for fisheries.Mathematical modelling demonstrates a clear significant correlation between climate induced temperature fluctuations and the recruitment of cod stocks. Growth performance in cod is optimal at temperatures close to 10°C, regardless of the population investigated in a latitudinal cline. However, temperature specific growth rates decrease at higher latitudes. Also, fecundity is less in White Sea than in North and Baltic Sea cod or eelpout populations. These findings suggest that a cold-induced shift in energy budget occurs which is unfavorable for growth performance and fecundity. Thermal tolerance limits shift depending on latitude and are characterized by oxygen limitation at both low or high temperatures. Oxygen supply to tissues is optimized at low temperature by a shift in hemoglobin isoforms and oxygen binding properties to lower affinities and higher unloading potential. Protective stimulation of heat shock protein synthesis was not observed.According to a recent model of thermal tolerance the downward shift of tolerance limits during cold adaptation is associated with rising mitochondrial densities and, thus, aerobic capacity and performance in the cold, especially in eurythermal species. At the same time the costs of mitochondrial maintenance reflected by mitochondrial proton leakage should rise leaving a lower energy fraction for growth and reproduction. The preliminary conclusion can be drawn that warming will cause a northern shift of distribution limits for both species with a rise in growth performance and fecundity larger than expected from the Q10 effect in the north and lower growth or even extinction of the species in the south. Such a shift may heavily affect fishing activities in the North Sea.  相似文献   

16.
The end-Permian mass extinction not only severely distressed the Paleozoic ecosystems but also dramatically changed the sedimentary systems, resulting in a peculiar Early Triassic ecosystem and submarine environment during the recovery time following the mass extinction. The Lower Triassic is characteristic of the wide occurrence of various distinctive sediments and related sedimentary structures, such as flatpebble conglomerates, vermicular limestone, subtidal wrinkle structures, microbialite, carbonate seafloor fans, thin-bedded limestone and zebra limestone-mudstone. These sediments were common in the Precambrian to Early Ordovician marine settings, and then they occurred only in some extreme and unusual environments with the expansion of metazoan faunas. However, the Early Triassic witnessed an "anachronistic" reappearance of some distinctive sedimentary records in normal shallow marine settings. The study of these anachronistic facies should be of great importance for the understanding of the unique ecosystem and marine environment through the great Paleozoic-Mesozoic transition. The anachronistic facies characterized by vermicular limestone have been documented in many localities in South China and occur at various horizons of the Lower Triassic. Most types of re- ported distinctive sediments over the world have been observed in the Lower Triassic of South China. This provides an excellent opportunity for understanding the Early Triassic environment and its co- evolution with the biotic recovery. Among the anachronistic facies the vermicular limestone is the most characteristic and common distinctive sediments in the Lower Triassic of South China but has received relatively few investigations. Taking it as a case study, we will detail the variation of vermicular limestone and its stratigraphic distribution in the Three Gorges area, Hubei Province. The investigation on the vermicular limestone and other distinctive sediments from the Lower Triassic of South China further indicates that the appearance of anachronistic facies immediately following the mass extinction and the elimination from normal shallow marine facies with the radiation of Mesozoic marine faunas imply the natural response of the sedimentary systems and ecosystems to the great Paleozoic-Mesozoic transitional events and their induced harsh environments. Therefore, the ups and downs of the anachronistic facies may act as a proxy for the evolution of ecosystems independent of fossil analyses.  相似文献   

17.
The oceans are the largest carbon pools on Earth, and play the role of a "buffer" in climate change. Blue carbon, the carbon(mainly organic carbon) captured by marine ecosystems, is one of the important mechanisms of marine carbon storage.Blue carbon was initially recognized only in the form of visible coastal plant carbon sequestration. In fact, microorganisms(phytoplankton, bacteria, archaea, viruses, and protozoa), which did not receive much attention in the past, account for more than 90% of the total marine biomass and are the main contributors to blue carbon. Chinese coastal seas, equivalent to 1/3 of China's total land area, have a huge carbon sink potential needing urgently research and development. In this paper, we focus on the processes and mechanisms of coastal ocean's carbon sequestration and the approaches for increasing that sequestration. We discuss the structures of coastal ecosystems, the processes of carbon cycle, and the mechanisms of carbon sequestration. Using the evolution of coastal ocean's carbon sinks in sedimentary records over geologic times, we also discuss the possible effects of natural processes and anthropogenic activities on marine carbon sinks. Finally, we discuss the prospect of using carbon sequestration engineering for increasing coastal ocean's carbon storage capacity.  相似文献   

18.
Terminal Mesozoic “catastrophe”-type extinction models that advocate synchronous marine and terrestrial extinctions spanning short time intervals (a few days up to a few millennia) have a common foundation: the simultaneous terminations of geological ranges of some taxa of marine CaCO3-producing microplankton (and possibly the dinosaurs) at the end of the Cretaceous. Gartner and McGuirk [1] propose a new catastrophe theory that at the end of the Cretaceous fresh-brackish water from the Arctic Ocean spread over the surface of the world's oceans, causing global cooling, aridity, and the extinctions. Like other catastrophe models, this one also fails to address the possibility of hiatus control of ranges at the end of the Cretaceous; a well documented, seemingly nearly universal hiatus of variable and unknown duration separates Cretaceous and Tertiary strata. Documented terminal Cretaceous marine regression (perhaps 10 times more rapid than a typical regression according to Cooper [8] would have caused terrestrial erosion and stripping away of the latest Cretaceous stratigraphic record, thus truncating geological ranges along a seemingly planar datum. The terminal Cretaceous marine CaCO3 dissolution event would have had the same effect on ranges of marine planktonic CaCO3-producing microplankton (the event was a shallow-water phenomenon). The simultaneous terminations of geological ranges is thus possibly the result of hiatus control, and the terminal Cretaceous “catastrophe” an illusion. Attempts to use Cretaceous-Tertiary transition floras to support global cooling at the time of the extinctions are not based on sound stratigraphic foundations; realistic paleobotanical-climatic inferences can only be based on the precise correlation of the Cretaceous-Tertiary contact in marine and terrestrial stratigraphic sections, and these correlations have not been made with sufficient precision to support catastrophe theory. The much used “across the Cretaceous-Tertiary boundary” glosses over ignorance of the true terminal Cretaceous scenario, lost forever in most places by the destruction of the terminal Cretaceous stratigraphic record. For now, stable isotope paleotemperature data from marine strata that can be dated radiometrically provide the most reliable estimates of the Cretaceous-Tertiary transition climate; Boersma et al. [5] indicate global warming of deep and shallow oceans “across” the contact (and not surficial cooling only as is required by the spillover model). Older much-cited climate inferences based on leaf physiognomy are suspect in light of Dolph and Dilcher's [23] work that shows little correlation between leaf physiognomy and climate.  相似文献   

19.
Geobiology is a new discipline on the crossing interface between earth science and life science,and aims to understand the interaction and co-evolution between organisms and environments.On the basis of the latest international achievements,the new data presented in the Beijing geobiology forum sponsored by Chinese Academy of Sciences in 2013,and the papers in this special issue,here we present an overview of the progress and perspectives on three important frontiers,including geobiology of the critical periods in Earth history,geomicrobes and their responses and feedbacks to global environmental changes,and geobiology in extreme environments.Knowledge is greatly improved about the close relationship of some significant biotic events such as origin,radiation,extinction,and recovery of organisms with the deep Earth processes and the resultant environmental processes among oceans,land,and atmosphere in the critical periods,although the specific dynamics of the co-evolution between ancient life and paleoenvironments is still largely unknown.A variety of geomicrobial functional groups were found to respond sensitively to paleoenvironmental changes,which enable the establishment of proxies for paleoenvironmental reconstruction,and to play active roles on the Earth environmental changes via elemental biogeochemical cycles and mineral bio-transformations,but to be deciphered are the mechanisms of these functional groups that change paleoenvironmental conditions.Microbes of potential geobiology significance were found and isolated from some extreme environments with their biological properties partly understood,but little is known about their geobiological functions to change Earth environments.The biotic processes to alter or modify the environments are thus proposed to be the very issue geobiology aims to decipher in the future.Geobiology will greatly extend the temporal and spatial scope of biotic research on Earth and beyond.It has great potential of application in the domains of resource exploration and global change.To achieve these aims needs coordinative multidisciplinary studies concerning geomicrobiology and related themes,database and modeling of biogeochemical cycles,typical geological environments,and coupling of biological,physical,and chemical processes.  相似文献   

20.
Sulfur cycling in the biosphere is tightly interwoven with the cycling of carbon and nitrogen, through various biological and geochemical processes. Marine microorganisms, due to their high abundance, diverse metabolic activities, and tremendous adaptation potential, play an essential role in the functioning of global biogeochemical cycles and linking sulfur transformation to the cycling of carbon and nitrogen. Currently many coastal regions are severely stressed by hypoxic or anoxic conditions, leading to the accumulation of toxic sulfide. A number of recent studies have demonstrated that dissimilatory sulfur oxidation by heterotrophic bacteria can protect marine ecosystems from sulfide toxicity. Sulfur-oxidizing bacteria have evolved diverse phylogenetic and metabolic characteristics to fill an array of ecological niches in various marine habitats. Here, we review the recent findings on the microbial communities that are involved in the oxidation of inorganic sulfur compounds and address how the two elements of sulfur and carbon are interlinked and influence the ecology and biogeochemistry in the ocean. Delineating the metabolic enzymes and pathways of sulfur-oxidizing bacteria not only provides an insight into the microbial sulfur metabolism, but also helps us understand the effects of changing environmental conditions on marine sulfur cycling and reinforces the close connection between sulfur and carbon cycling in the ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号