首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sixteen hundred stream sediments (<150 μm fraction) collected during regional geochemical surveys in central and SW Nigeria have high median and maximum concentrations of Zr that exceed corresponding Zr concentrations found in stream sediments collected from elsewhere in the World with similar bedrock geology. X-ray diffraction studies on a sub-set of the analysed stream sediments showed that Zr is predominantly found in detrital zircon grains. However, the main proximal source rocks (Pan-African ‘Older Granites’ of Nigeria and their Proterozoic migmatitic gneiss country rocks) are not enriched in zircon (or Zr). Nevertheless, U–Pb LA-ICP-MS dating with cathodoluminescence imaging on detrital zircons, both from stream sediment samples and underlying Pan-African ‘Older Granites’ confirms a local bedrock source for the stream sediment zircons. A combination of tropical/chemical weathering and continuous physical weathering, both by ‘wet season’ flash flooding and ‘dry season’ unidirectional winds are interpreted to have effectively broken down bedrock silicate minerals and removed much of the resultant clay phases, thereby increasing the Zr contents in stream sediments. The strong correlation between winnowing index (Th/Al) and Zr concentration across the study area support this interpretation. Therefore, ‘anomalous’ high values of Zr, as well as other elements concentrated in resistant ‘heavy’ minerals in Nigeria’s streams may not reflect proximal bedrock concentrations of these elements. This conclusion has important implications for using stream sediment chemistry as an exploration tool in Nigeria for primary metal deposits associated with heavy minerals.  相似文献   

2.
《Applied Geochemistry》2003,18(2):283-309
International agreements (e.g. OSPAR) on the release of hazardous substances into the marine environment and environmental assessments of shelf seas require that concentrations and bioavailability of metals from anthropogenic sources can be distinguished from those originating as a result of natural geological processes. The development of a methodology for distinguishing between anthropogenic and natural sources of metals entering the Irish Sea through river inputs is described. The geochemistry of stream, river and estuarine sediments has been used to identify background geochemical signatures, related to geology, and modifications to these signatures by anthropogenic activities. The British Geological Survey (BGS) geochemical database, based on stream sediments from 1 to 2 km2 catchments, was used to derive the background signatures. Where mining activity was present, the impact on the signature was estimated by comparison with the geochemistry of sediments from a geologically similar, but mining free, area. River sediment samples taken upstream and downstream of major towns were used respectively to test the validity of using stream sediments to estimate the chemistry of the major river sediment and to provide an indication of the anthropogenic impact related to urban and industrial development. The geochemistry of estuarine sediments from surface samples and cores was then compared with river and offshore sediment chemistry to assess the importance of riverine inputs to the Irish Sea. Studies were undertaken in the Solway, Ribble, Wyre and Mersey estuaries. The results verify that catchment averages of stream sediments and major river samples have comparable chemistry where anthropogenic influences are small. Major urban and industrial (including mining) development causes easily recognised departures from the natural multi-element geochemical signature in river sediment samples downstream of the development and enhanced metal levels are observed in sediments from estuaries with industrial catchments. Stream sediment chemistry coupled with limited river and estuarine sampling provides a cost-effective means of identifying anthropogenic metal inputs to the marine environment. Investigations of field and laboratory protocols to characterise biological impact (bioaccumulation) of metals in sediments of the Irish Sea and its estuaries show that useful assessments can be made by a combination of surveys with bioindicator species such as clams Scrobicularia plana, selective sediment measurements that mimic the ‘biologically available’ fractions, and laboratory (mesocosm) studies.  相似文献   

3.
《Applied Geochemistry》2002,17(4):475-492
Trace metal concentrations in soils and in stream and estuarine sediments from a subtropical urban watershed in Hawaii are presented. The results are placed in the context of historical studies of environmental quality (water, soils, and sediment) in Hawaii to elucidate sources of trace elements and the processes responsible for their distribution. This work builds on earlier studies on sediments of Ala Wai Canal of urban Honolulu by examining spatial and temporal variations in the trace elements throughout the watershed. Natural processes and anthropogenic activity in urban Honolulu contribute to spatial and temporal variations of trace element concentrations throughout the watershed. Enrichment of trace elements in watershed soils result, in some cases, from contributions attributed to the weathering of volcanic rocks, as well as to a more variable anthropogenic input that reflects changes in land use in Honolulu. Varying concentrations of As, Cd, Cu, Pb and Zn in sediments reflect about 60 a of anthropogenic activity in Honolulu. Land use has a strong impact on the spatial distribution and abundance of selected trace elements in soils and stream sediments. As noted in continental US settings, the phasing out of Pb-alkyl fuel additives has decreased Pb inputs to recently deposited estuarine sediments. Yet, a substantial historical anthropogenic Pb inventory remains in soils of the watershed and erosion of surface soils continues to contribute to its enrichment in estuarine sediments. Concentrations of other elements (e.g., Cu, Zn, Cd), however, have not decreased with time, suggesting continued active inputs. Concentrations of Ba, Co, Cr, Ni, V and U, although elevated in some cases, typically reflect greater proportions attributed to natural sources rather than anthropogenic input.  相似文献   

4.
In all geological scenarios, mineral water reactions will affect the water chemistry. As such, water resources in different rocks commonly involve different hydrogeological compartments. The aim of this work is to evaluate the influence of geology in the geochemistry signature of Itacolomi State Park waters. To do so, a survey of the geological units in the area was carried out, a geological/stratigraphic division was made, and its correlation with the main geological events was determined. Using the advantages of GIS, all the catchments were delimited. Based on this division, near 30 stream and lake segments were chosen for analyses. In each point, all physiochemical properties of the water were measured, and samples were collected to determine the concentrations of major and trace elements by ICP–OES. The dynamics of the Itacolomi State Park rock-soil and stream water solutions suggest that mixing of drainage waters from different bedrock and soil sources regulates stream water physical–chemical parameters and solute concentrations. The analytical data showed a clear correlation between the chemical compositions of the solute and the geological characteristics of the catchment. Units that are covered by iron oxide hardpan (Manso unit) and iron-banded formations (Custódio unit) show a large amount of soluble elements, including high values of Fe and Mn. On the other hand, the presence of high values of Al and K (Itacolomi unit) are a direct consequence of the presence of quartzite associated with low pH values.  相似文献   

5.
《Applied Geochemistry》2006,21(3):528-545
High mean As concentrations of up to 26.6 μmol/L (1990 μg/L) occur in ground water collected from a fractured-bedrock system composed of sulfidic schist with granitic to dioritic intrusions. Sulfides in the bedrock are the primary source of the As in the ground water, but the presence of arsenopyrite in rock core retrieved from a borehole with As concentrations in the ground water barely above the detection limit of 2.0 μmol/L, shows that there are complicating factors. Chemical analyses of water from 35 bedrock wells throughout a small watershed reveal spatial clustering of wells with high As concentrations. Stiff diagrams and box plots distinguish three distinct types; calcium-bicarbonate-dominated water with low As concentrations (CaHCO3 type), sodium-bicarbonate-dominated water with moderately high As concentrations (NaHCO3 type), and calcium-bicarbonate-dominated water with very high As concentrations (High-As type). It is proposed that differences in recharge area and ground-water evolution, and possible bedrock composition difference are responsible for the chemical distinctions within the watershed. Lack of correlation of As concentrations with pH indicates that desorption of As is an insignificant control on As concentration. Correlations of As concentrations with Fe and redox parameters indicates that reductive dissolution of Fe(III) oxyhydroxides may play a role in the occurrence of high As concentrations in the NaHCO3 and High-As type water. The oxidation of sulfide minerals occurs within the ground-water system and is ultimately responsible for the existence of As in the ground water, but there is no correlation between As and SO4 concentrations, probably due to precipitation of Fe(III) oxyhydroxides and adsorption of As under oxidizing conditions.  相似文献   

6.
Glauconite-bearing deposits are found worldwide, but As levels have been determined for relatively few. The As content of glauconites in sediments of the Inner Coastal Plain of New Jersey can exceed 100 mg/kg, and total As concentrations (up to 5.95 μg/L) found historically and recently in streamwaters exceed the State standard. In a major watershed of the Inner Coastal Plain, chemical “fingerprints” were developed for streambed sediments and groundwater to identify contributions of As to the watershed from geologic and anthropogenic sources. The fingerprint for streambed sediments, which included Be, Cr, Fe and V, indicated that As was predominantly of geologic origin. High concentrations of dissolved organic C, nutrients (and Cl) in shallow groundwater indicated anthropogenic inputs that provided an environment where microbial activity released As from minerals to groundwater discharging to the stream. Particulates in streamwater during high flow constituted most of the As load; the chemical patterns for these particulates resembled the geologic fingerprint of the streambed sediments. The As/Cr ratio of these suspended particles likely indicates they derived not only from runoff, but from groundwater inputs, because As contributed by groundwater is sequestered on streambed sediments. Agricultural inputs of As were not clearly identified, although chemical characteristics of some sediments indicated vehicle-related inputs of metals. Sediment sampling during dry and wet years showed that, under differing hydrologic conditions, local anthropogenic fingerprints could be obscured but the geologic fingerprint, indicating glauconitic sediments as an As source, was robust.  相似文献   

7.
The town of Salihli is situated in Gediz Graben in the western Anatolia. This region is important in terms of industry, mining, geothermal energy, water sources, and agricultural production. Geothermal flow and anthropogenic activities in Salihli threaten the surrounding environment due to the contamination of cold groundwater, surface water, and soil. The goal of the present study is to determine the environmental effects of the geothermal and anthropogenic activities in Salihli on soil, stream sediments, and water. Stream sediments and farm soil have been contaminated by substances derived from geothermal and industrial effluents. To this end, the quality review of the water was completed and the heavy metal levels in stream sediment samples were measured to determine the extent of contamination. The elements As, B, Br, Fe, and Ni are the major contaminants present in surface water and groundwater in the study area. The concentrations of these elements excess tolerance limits of international water standards. Gibbsite, K-mica, kaolinite, sepiolite, halite, sulfur, willemite, and Pb(OH)2 might be precipitated as scales at low temperatures on the soil; this could be interpreted as a resultant from soil contamination. The concentrations of 17 elements (As, Ba, B, Cd, Co, Cr, Cu, Fe, Hg, Li, Mo, Mn, Ni, Pb, Sb, Sr, and Zn) were measured in samples from stream sediments and surface soils. In the study area, especially geothermal and anthropogenic activities give rise to environmental pollution.  相似文献   

8.
The paper summarizes data on the geology, lithology, and geochemistry of petroliferous Riphean, Vendian, and Lower Cambrian rocks in the central parts of the Siberian Craton. The petrological-geological properties of these sediments have been assessed based on results of paleogeographic analysis of these rocks, discrimination of oil reservoirs and oil-source successions, determination of secondary alterations of the rocks, and sources of oil generation and regional migration of hydrocarbons into various traps in zones of possible oiland-gas accumulation.  相似文献   

9.
《Applied Geochemistry》2005,20(3):611-625
This paper presents new data on the baseline concentrations of U, Th and K in 2389 stream sediments over the whole Campania region. These data, based on systematic sampling and analysis, are compared with those obtained by gamma-ray spectrometry surveys.Variations in the U, Th and K concentration in the surficial environment of the Campania region appear to be related to bedrock lithology. Generally, high U, Th and K values in stream sediments correspond well with the occurrence of volcanic rocks in the central-western part of the region, whereas low values are found in areas characterized by silico-clastic and carbonate deposits, occurring mostly in the southern and eastern part of the region. Gamma-ray spectrometry maps show a similar pattern, although the distribution of the highest radioactivity levels define more restricted areas than the ones resulting from mapping stream sediment geochemistry. Particularly high 40K radioactivity levels delimit all the known eruptive centers (Roccamonfina, Campi Flegrei and Somma–Vesuvius), including the fissural sources of Campania Ignimbrites, much better than U and Th radioactivity. One of the concerns for human health in the Campania region is the total gamma radiation and Rn potential related mostly to alkaline volcanics of the Neapolitan volcanological province. In particular, geothermal activity occurring in all the Campanian volcanic areas represents a potential hazard for Rn gas.  相似文献   

10.
A number of rivers have been found to transport highly aged organic matter [OM]; however, the sources of this aged material remain a matter of debate. One potential source may be erosion and weathering of headwater lithologies rich in ancient sedimentary OM. In this study, waters, suspended particulates, streambed sediments, rocks and soils from fourteen small headwater watersheds of a mid-size, temperate, passive margin river were sampled and characterized by Δ14C, δ13C, and POC/TPN ratios to identify sources of particulate and dissolved OM delivered to the river mainstem. These headwater sites encompass a range in lithology (OM-rich shales, OM-lean carbonate/mudstone facies, and OM-free crystalline rocks) and land use types (forested and agricultural), and allow investigation of the influence of agriculture and bedrock types on stream OM characteristics. Streams draining large areas of both agricultural land use and OM-rich lithology contain particulate OM [POM] that is more 14C-depleted than streams draining forested, shale-free watersheds. However, this is not sufficient to account for the significantly lower Δ14C-POC measured in the river mainstem. Dissolved OM [DOM] Δ14C are in all cases enriched compared to POM from the same stream, but are otherwise highly variable and unrelated to either land use or lithology. POC/TPN ratios were likewise highly variable. POC and DOC δ13C signatures were similar across all watersheds. Based on isotope mass balance, 14C-free fossil OM sources contribute 0-12% of total stream POM. Although these results do not unequivocally separate the influences of land use and lithology, watershed coverage by shale and agriculture are both important controls on stream Δ14C-POC. Thus export of aged, particle-associated OM may be a feature of river systems along both passive and active continental margins.  相似文献   

11.
The distribution of trace metals in active stream sediments from the mineralized Lom Basin has been evaluated. Fifty-five bottom sediments were collected and the mineralogical composition of six pulverized samples determined by XRD. The fine fraction (<?150 µm) was subjected to total digestion (HClO4?+?HF?+?HCl) and analyzed for trace metals using a combination of ICP-MS and AAS analytical methods. Results show that the mineralogy of stream sediments is dominated by quartz (39–86%), phyllosilicates (0–45%) and feldspars (0–27%). Mean concentrations of the analyzed metals are low (e.g. As?=?99.40 µg/kg, Zn?=?573.24 µg/kg, V?=?963.14 µg/kg and Cr?=?763.93 µg/kg). Iron and Mn have significant average concentrations of 28.325 and 442 mg/kg, respectively. Background and threshold values of the trace metals were computed statistically to determine geochemical anomalies of geologic or anthropogenic origin, particularly mining activity. Factor analysis, applied on normalized data, identified three associations: Ni–Cr–V–Co–As–Se–pH, Cu–Zn–Hg–Pb–Cd–Sc and Fe–Mn. The first association is controlled by source geology and the neutral pH, the second by sulphide mineralization and the last by chemical weathering of ferromagnesian minerals. Spatial analysis reveals similar distribution trends for Co–Cr–V–Ni and Cu–Zn–Pb–Sc reflecting the lithology and sulphide mineralization in the basin. Relatively high levels of As were concordant with reported gold occurrences in the area while Fe and Mn distribution are consistent with their source from the Fe-bearing metamorphic rocks. These findings provide baseline geochemical values for common and parallel geological domains in the eastern region of Cameroon. Although this study shows that the stream sediments are not polluted, the evaluation of metal composition in environmental samples from abandoned and active mine sites for comparison and environmental health risk assessment is highly recommended.  相似文献   

12.
Geologic and geochemical variations across a 4200 km2 area of south-central Wisconsin (USA) were used to examine their relationship to phosphorus concentrations in groundwater from more than four hundred private water supply wells. Surficial geology in the study area ranged from Cambrian sandstones to Ordovician dolomites. Groundwater phosphorus concentrations were higher in aquifers of older Cambrian age compared to the concentrations in aquifers of younger Cambrian and Ordovician age. Because iron concentrations were relatively low in these waters and agricultural land use was similar in all geologic regions, we propose that the differences in bedrock phosphorus and anthropogenic geochemical impacts explain the differences in phosphorus concentrations between aquifers. Within the older Cambrian aquifers, groundwater phosphorus concentrations were elevated in groundwater with higher nitrate-nitrogen concentrations. This finding is consistent with the presence of phosphorus within sediment in these strata and geologic conditions that weakly buffered pH reduction from anthropogenic acidification. In contrast, groundwater phosphorus concentrations in younger Cambrian and Ordovician aquifers were not elevated in samples with higher nitrate. Anthropogenic acidification in these carbonate-rich aquifers was neutralized through increased carbonate weathering, which led to higher groundwater calcium and alkalinity and would limit the dissolution of phosphate-rich minerals, such as apatite, where present. Low iron concentrations observed in most samples suggest that the phosphorus release in the Cambrian strata occurs beyond the zone of secondary mineral retention in the soil. These results have important implications for the eutrophication of inland surface waters in areas with bedrock phosphorus and anthropogenic acidity that is not neutralized before it contacts phosphatic rock.  相似文献   

13.
高放废物地质处置库北山预选区地下水的形成和分布   总被引:1,自引:0,他引:1  
刘淑芬  郭永海  王驹  王志明  宗自华  周佳 《铀矿地质》2007,23(6):356-362,370
本文论述北山地区不同类型地下水的形成和赋存规律。松散岩类孔隙水主要分布于沟谷和洼地,主要为潜水。沟谷潜水的形成以基岩裂隙水的侧向补给及洪流渗漏补给为主,洼地潜水可由沟谷潜水、断裂带或基岩裂隙水、古洪积扇潜水侧向补给,也可由地表洪流渗入补给;碎屑岩类孔隙-裂隙水主要分布在由自垩系或第三系砂砾石构成的山间沉积盆地中,以承压水为主,洪水下渗和盆地周围基岩裂隙水的侧向径流是此类地下水的主要补给来源;基岩裂隙水主要赋存于变质岩、岩浆岩、碎屑岩、碳酸盐岩节理、裂隙中,以潜水为主。降水垂直渗入、侧向补给或洪流渗漏补给为其主要来源。  相似文献   

14.
Mineral magnetic measurements were carried out on sources and sediments from the Lake Paringa catchment, South Island, New Zealand. The Alpine Fault runs through the catchment area and rocks of different lithology and age outcrop on either side of it. The measurements indicate the sources from the east of the Alpine Fault (schist bedrock) are magnetically soft and magnetite rich, whereas the sources from the west of the fault, (greywacke bedrock) are magnetically hard and haematite/goethite rich. Comparison between the sources and sediments indicate post-depositional chemical alteration, namely the formation of greigite has occcured within the lake. A quantitative unmixing technique using only isothermal remanent magnetisation (IRM) data has been developed. It is possible to quantitatively unmix the sediments in terms of their sources and authigenic greigite, thus getting an indication of the varying contributions from east and west of the Alpine Fault to the different areas within the u-shaped lake.  相似文献   

15.
《Applied Geochemistry》2002,17(8):1115-1121
The extensive anthropogenic use of the platinum group elements (PGE: Ru, Rh, Pd, Os, Ir and Pt) is the main factor responsible for the widespread dispersion of these elements throughout the environment. Significant quantities of the PGE enter fluvial systems via road runoff, storm drains and wastewater and sewage treatment systems, and may accumulate in fluvial sediments by physical and chemical processes. A baseline survey of contemporary fluvial sediments in the Kentish Stour river, east Kent, England, has been undertaken to document the sources and distribution of anthropogenic PGE in an attempt to constrain some of the physical and chemical parameters that may influence the distribution of these elements. The geology of the catchment of the Kentish Stour is dominated by carbonate and silicate sedimentary rocks, and the river passes through urban and rural land and receives inputs of waste from sewage works. Nine sedimentary rocks, 4 motorway-runoff sediments and 22 river sediments were analysed for PGE by NiS fire assay preconcentration and ICP–MS. The highest element abundances occur in the motorway-runoff sediments (maximum total PGE content of 55 ng/g), whilst the lowest values were recorded in the sedimentary rocks, where some samples contain PGE at concentrations below the limit of detection. The total PGE content of the river sediments ranged from 0.4 to 10.8 ng/g. The distribution and variation in concentrations and ratios of the PGE in the contemporary fluvial sediments of the Kentish Stour correspond strongly with land-use changes (urban versus rural) and with points of discharge from sewage works. The absence of a pure catalytic converter signature in the river sediments, however, indicates that source signatures may be mixed in sewage works or that PGE may chemically fractionate in the fluvial environment.  相似文献   

16.
An elucidation of the background levels of heavy metals, including certain toxic elements, is very essential to accomplish an important environmental assessment. A regional geochemical mapping in Hokkaido, Japan was undertaken by the Geological Survey of Japan, AIST as part of a nationwide geochemical mapping for this purpose. There were 692 stream sediments collected from the active channel (1 sample) / (100 km2) in Hokkaido and the fine fraction sieved through a 180 μm screen was analyzed using the AAS, ICP-AES, and ICP-MS techniques. The regional geochemical maps for 51 elements were created as a 2000 m mesh map using the geographic information system software. Spatial distribution patterns of elemental concentrations in stream sediments, particularly Neogene–Quaternary volcanic and pyroclastic rocks, are primarily determined by surface geology. The correspondence of elemental concentrations in stream sediments to parent lithology is clearly indicated by ANOVA and a multiple comparison. Sediment samples supplied from mafic volcanic and felsic–mafic pyroclastic rocks are significantly rich in MgO, Al2O3, P2O5, CaO, Sc, TiO2, V, MnO, Total (T)-Fe2O3, Co, Zn, Sr, and heavy rare earth elements (REEs) (Y and Eu–Lu), but significantly lacking in alkali elements, Be, Nb, light REEs (La–Nd), Ta, Tl, Th, and U. Accretionary complexes with sedimentary rocks derived from sediments are in stark contrast to volcanic and pyroclastic rocks. Accretionary complexes with mafic–ultramafic rock have significantly elevated Nb, Ta, and Th abundances in sediments besides MgO, Cr, Ni, Co, and Cu. This inexplicable result is caused by the mixed distributions of granite and ultramafic–mafic rocks.The watersheds with mineral deposits relate to the high concentrations of certain elements such as Zn, As, and Hg. The geochemically anomalous pattern, which is a map of the regional anomalies, and a scatter diagram were applied to examine the contribution of mineral deposits to MnO, T-Fe2O3, Cr, Cu, Zn, As, Cd, Sb, Hg, Pb, and Bi concentrations. Consequently, they were grouped into four types: 1) Mineral deposits with no outliers resulting from mineralization (MnO, T-Fe2O3, and Cr), 2) sediments supplied from watersheds without metal deposits conceal high metal inputs from known mineral deposits (Cu), 3) deposits from a geochemically anomalous area that closely relates to the presence of mineral deposits (As, Sb, and Hg), and 4) deposits from the widely altered zone associated with the Kuroko as well as hydrothermal deposits corresponding to geochemically anomalous patterns (Zn, Cd, and Pb). This study provides an important regional geochemical database for a young island-arc setting and interpretational problems, such as complicated geology and active erosion, that are unique to Japan.  相似文献   

17.
The study area is located in the Ahar region, NW Iran. Volcanic rocks of Eocene cover major parts of the area, within which granitic-granodioritic intrusive bodies of Oligocene intruded and produced hydrothermal alterations and Cu-Au mineralization. This paper aims to explore anomalies of base metals and related elements across the region based on systematic sampling of stream sediments and using the secondary geochemical halos. In this regard, by taking into account factors such as stratigraphy, lithology, tectonics and the topologic center of the drainage system, 620 samples were taken from stream sediments and analyzed by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-OES) method.All the distinguished anomalies correlate well with Oligocene granitic-granodioritic rocks and the related hydrothermal alterations occurred within the Eocene andesitic-basaltic volcanics, especially at the NE part of the quadrangle, as well as with alterations within trachy-andesitic and andesitic volcanics of Pliocene at the SE part of the quadrangle, where epithermal gold and Pb-Zn mineralization is found. Most of he studied elements also show moderate to strong anomalies over the Sonajil porphyry-type Cu mineralization. Copper, and to some extent Mo, as well as Pb, Zn, Sn, W, As and Sb are the best examples of this association. Bismuth has more limited anomalies across the region, showing correlation with the granitoid intrusion at the east of Ahar and the hydrothermal alterations within the Pliocene andesitic and basaltic rocks at SE of Ahar quadrangle which, considering the presence of epithermal gold and Pb-Zn veins in both areas, can be attributed to epithermal processes. However, anthropogenic pollutions are also found for As, Fe, V, Ti, Ni and Co downstream the urban and rural areas. In this regard, besides the Sonajil area, where porphyry-type Cu mineralization is discovered, the NE and SE parts of the quadrangle present promising areas for further investigations.  相似文献   

18.
Detrital geochronology studies require a careful quantification of hydraulic sorting effects and of the variable abundance (fertility) of datable minerals in different parent rocks. Because the physical processes of settling and selective entrainment are well known, their effects in sediments can be easily detected and modeled mathematically. By contrast, mineral fertility in parent rocks depends on their full geological history. As a consequence, the relationships between bedrock geology and mineral fertility are hardly predictable, and a direct measurement of this latter parameter is thus required. In this review article, we describe the basic principles of hydraulic sorting, and illustrate a quantitative approach for mineral fertility determination that applies these basic principles to the analysis of modern sediments. Its application to the European Alps shows that apatite and zircon fertility values may range over three orders of magnitude. Variable mineral fertility in parent rocks thus represents, by far, the largest source of bias in detrital geochronology studies. Our study highlights an evident relationship between bedrock geology and mineral fertility, which confirms that the mineral concentration in modern sediments, in the lack of hydraulic sorting effects, is a good proxy of the mineral abundance in bedrock. Mineral fertility maps of the European Alps unravel that metamorphic and plutonic rocks generally have higher apatite and zircon fertility values than sedimentary rocks, but major variations are also observed between different tectonic units within the same paleogeographic domain. The impact of mineral fertility in detrital studies is eventually illustrated with examples from the Alpine region, based on alternative sampling strategies (i.e., the confluence sampling and the along-trunk sampling approaches). We show that geological interpretations are strongly improved when mineral fertility is properly taken into account, not only in modern settings, but also in ancient sedimentary successions.  相似文献   

19.
《Applied Geochemistry》1995,10(2):133-144
The effect of local geology and land-use practices on dissolved U was investigated by analysis of surface water and some springs in the Arkansas River valley of southeastern Colorado. Water samples were collected during a 2 week period in April, 1991. The rate of increase of U concentration with distance downriver increased markedly as the river flowed from predominantly undeveloped lands underlain by igneous and metamorphic rocks to agriculturally developed lands underlain by marine shale and limestone. An additional abrupt increase in dissolved U was observed along the section of river where discharge is often greatly reduced because of extensive diversions for irrigation and where remaining flow is largely composed of irrigation return water. Dissolved U in this last section of river and in most of its tributaries exceeded the proposed U.S. drinking water standard of 20 μ/L In water samples collected from agricultural areas dissolved U showed strong positive correlation with major dissolved constituents Na, Ca, Mg, and SO4 that increase as a result of sulfate mineral dissolution and clay mineral ion-exchange reactions in weathered shale bedrock and shaley soils. Highly soluble minor and trace elements Cl, Li, B, Sr, and Se that are not subject to strong sorptive uptake or precipitation in this setting also correlated positively with U. These combined observations indicate that natural leaching of U-bearing shale bedrock and derivative soils, additional leaching of rock and soil by irrigation water, and evaporative concentration in a semi-arid climate can produce concentrations of dissolved U in surface water and shallow ground water that may threaten nearby drinking water supplies. Other agriculturally developed areas of the semi-arid Western U.S. with similar geology are likely to contain high concentrations of U in irrigation drain water.  相似文献   

20.
In part of a large abandoned mining complex, electromagnetic geophysical surveys were used along with data derived from cores and monitoring wells to infer sources of contamination and subsurface hydrologic connections between acidic refuse deposits and adjacent undisturbed geologic materials.Electrical resistivity increases sharply along the boundary of an elevated deposit of pyritic coarse refuse, which is highly contaminated and electrically conductive, indicating poor subsurface hydrologic connections with surrounding deposits of fine refuse and undisturbed glacial material. Groundwater chemistry, as reflected in values of specific conductance, also differs markedly across the deposit's boundary, indicating that a widespread contaminant plume has not developed around the coarse refuse in more than 40 yr since the deposit was created. Most acidic drainage from the coarse refuse is by surface runoff and is concentrated around stream channels.Although most of the contaminated groundwater within the study area is concentrated within the surficial refuse deposits, transects of apparent resistivity and phase angle indicate the existence of an anomalous conductive layer at depth (>4 m) in thick alluvial sediments along the northern boundary of the mining complex. Based on knowledge of local geology, the anomaly is interpreted to represent a subsurface connection between the alluvium and a flooded abandoned underground mine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号