首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Travertine is present at 20% of the ca 60 hot springs that discharge on Loburu delta plain on the western margin of saline, alkaline Lake Bogoria in the Kenya Rift. Much of the travertine, which forms mounds, low terraces and pool‐rim dams, is sub‐fossil (relict) and undergoing erosion, but calcite‐encrusted artefacts show that carbonate is actively precipitating at several springs. Most of the springs discharge alkaline (pH: 8·3 to 8·9), Na‐HCO3 waters containing little Ca (<2 mg l?1) at temperatures of 94 to 97·5°C. These travertines are unusual because most probably precipitated at temperatures of >80°C. The travertines are composed mainly of dendritic and platy calcite, with minor Mg‐silicates, aragonite, fluorite and opaline silica. Calcite precipitation is attributed mainly to rapid CO2 degassing, which led to high‐disequilibrium crystal morphologies. Stratigraphic evidence shows that the travertine formed during several stages separated by intervals of non‐deposition. Radiometric ages imply that the main phase of travertine formation occurred during the late Pleistocene (ca 32 to 35 ka). Periods of precipitation were influenced strongly by fluctuations in lake level, mostly under climate control, and by related changes in the depth of boiling. During relatively arid phases, meteoric recharge of ground water declines, the lake is low and becomes hypersaline, and the reduced hydrostatic pressure lowers the level of boiling in the plumbing system of the hot springs. Any carbonate precipitation then occurs below the land surface. During humid phases, the dilute meteoric recharge increases, enhancing geothermal circulation, but the rising lake waters, which become relatively dilute, flood most spring vents. Much of the aqueous Ca2+ then precipitates as lacustrine stromatolites on shallow firm substrates, including submerged older travertines. Optimal conditions for subaerial travertine precipitation at Loburu occur when the lake is at intermediate levels, and may be favoured during transitions from humid to drier conditions.  相似文献   

2.
Calcite dendrite crystals are important but poorly understood components of calcite travertine that forms around many hot springs. The Lýsuhóll hot-spring deposits, located in western Iceland, are formed primarily of siliceous sinters that were precipitated around numerous springs that are now inactive. Calcite travertine formed around the vent and on the discharge apron of one of the springs at the northern edge of the area. The travertine is formed largely of two types (I and II) of complex calcite dendrite crystals, up to 1 cm high, that grew through the gradual addition of trilete sub-crystals. The morphology of the dendrite crystals was controlled by flow direction and the competition for growth space with neighbouring crystals. Densely crowded dendrites with limited branching characterize the rimstone dams whereas widely spaced dendrites with open branching are found in the pools. Many dendrite bushes in the pools nucleated around plant stems. Growth of the dendrite crystals was seasonal and incremental. Calcite precipitation was driven by rapid CO2 degassing of CO2-rich spring waters during the spring and summer. During winter, when snow covered the ground and temperatures were low, opal-A precipitated on the exposed surfaces of the dendrites. Segmentation of dendrite branches by discontinuities coated with opal-A and overgrowth development around sub-crystals resulted from this seasonal growth cycle. The calcite dendrite crystals in the Lýsuhóll travertine differ in morphology from those at other hot springs, such as those at Lake Bogoria, Kenya, and Waikite in New Zealand. Comparison with the calcite dendrite crystals found at those sites shows that dendrite morphology is site-specific and probably controlled by carbonate saturation levels that, in turn, are controlled by the rate of CO2 degassing and location in the spring outflow system.  相似文献   

3.
Organic and inorganic precipitates are both characteristic in the active hypogenic karst area of Buda Thermal Karst in Hungary. As an active system, it is a good natural laboratory to study ongoing precipitation processes. Because of anthropogenic influence and the complexity of spring environments, it is challenging to reveal all the governing factors in the process of precipitation. In situ experiments, i.e. artificially controlled natural systems simplify the complexity by adding, excluding or stabilizing influencing parameters during the experiment. CO2 degassing drives changes in the physicochemical parameters of spring waters from the discharge along their flow path. The rate and spatial extension of these changes depend on local hydrogeological, geological, climatic, topographical etc. factors, affecting precipitation processes. In this study, two one-day-long in situ experiments were executed to examine the physicochemical parameter changes of thermal water in a tunnel. The integration of the results with reactive transport models revealed the physicochemical processes of ingassing and degassing and predicted CaCO3 precipitation along the flow path. Small-scale roughness of the channel surface seemed to further influence pH and concentration of HCO3?. After 6 weeks of thermal water flowing, organic precipitate (biofilm) formed close to the discharge and then, with a sharp change, inorganic precipitate (calcite) dominates a bit further from the discharge. In situ experiments and connected numerical simulations revealed the role of CO2 degassing and calcite precipitation in the changes of physicochemical parameters, but organic precipitates also have to be considered near the discharge.  相似文献   

4.
Large pisoliths from the Laguna Pastos Grandes playa in the Bolivian Altiplano have a wide diversity of cortical fabrics and variable mineralogical composition. The cortical laminae are composed of radial calcite bundles, spar calcite, micrite, amorphous silica, mixed micrite-amorphous silica, quartz, gypsum and halite. Diatoms are common in the outer parts of some radial calcite laminae and amorphous silica laminae, but cyanobacterial filaments are rare. Although the organization of the cortical laminae is highly variable, some repetitive sequences of different laminae are present. Cavities in and between pisoliths contain micrite, detrital grains, calcite bundles and peloids morphologically similar to those found in marine reefs. The pisoliths grow in shallow ephemeral pools fed by hot springs. Radial bundles of calcite precipitate rapidly by degassing and photosynthetic removal of CO2 following spring snowmelt. Conditions for micrite precipitation are unclear, but there is evidence to suggest formation in partially stagnant waters, some of elevated salinity. Amorphous silica laminae precipitate mainly by evaporative concentration; quartz may precipitate from warm silica-rich spring waters that remain below amorphous silica saturation. The evaporite minerals form during desiccation of the pools or from spray. The peloids in cavities are probably primary precipitates. Different types of laminae may form simultaneously in different pools because of the highly variable conditions across the playa. Lateral migration of spring locations through time has created a complex carbonate-silica pavement. Large spherical pisoliths form in outflow channels near spring orifices and across discharge aprons where waters are several decimetres deep. With mineral precipitation, channels are filled and become shallow, producing discoid pisoliths and crusts. In shallow waters and on distal aprons only small pisolith gravels form. As spring pools fill with deposits, their locations shift laterally; new pisoliths form elsewhere or precipitation may recommence on older abandoned pisoliths.  相似文献   

5.
The Jifei hot spring emerges in the form of a spring group in the Tibet–Yunnan geothermal zone, southwest of Yunnan Province, China. The temperatures of spring waters range from 35 to 81°C and are mainly of HCO3–Na·Ca type. The total discharge of the hot spring is about 10 L/s. The spring is characterized by its huge travertine terrace with an area of about 4,000 m2 and as many as 18 travertine cones of different sizes. The tallest travertine cone is as high as 7.1 m. The travertine formation and evolution can be divided into three periods: travertine terrace deposition period, travertine cone formation period and death period. The hydrochemical characteristics of the Jifei hot spring was analyzed and compared with a local non-travertine hot spring and six other famous travertine springs. The results indicate that the necessary hydrochemical conditions of travertine and travertine cones deposition in the Jifei area are (1) high concentration of HCO3 and CO2; (2) about 52.9% deep source CO2 with significantly high value; (3) very high milliequivalent percentage of HCO3 (97.4%) with not very high milliequivalent percentage of Ca2+ (24.4%); and (4) a large saturation index of calcite and aragonite of the hot water.  相似文献   

6.
The relict Fairmont Hot Springs deposit, formed largely of carbonates, covers an area of 0·5 km2, and is up to 16 m thick. The triangle‐shaped discharge apron, which broadens down‐valley, is divided into a proximal part with beds dipping at <10° and a distal part with beds dipping at 10° to 15°. The deposit is formed of the: (1) Basal Macrophyte; (2) Lower Carbonate; (3) Middle Clastic; (4) Upper Carbonate; and (5) Upper Clastic Sequences. Two charcoal samples embedded in the Lower Carbonate Sequence yielded dates of 8690 ± 90 and 8270 ± 70 cal yr bp , indicating that much of the deposit formed post‐glacially during the Early to Mid‐Holocene. Deposit aggradation ceased in the Mid to Late Holocene when the Fairmont Creek valley was incised. The Lower and Upper Carbonate Sequences, which are the thickest sequences, are composed of nearly equal parts of travertine (abiotic) and tufa (biotic), with feather dendrite travertine, radiating dendrite travertine and stromatolite tufa dominating. Competition between calcite precipitation rates and biotic growth rates controlled the distribution of tufa and travertine across the discharge apron. Calcite and biotic growth rates were controlled largely by flow velocity across the apron which, in turn, was controlled by topography and regular fluctuations in spring water discharge volume. During times of high spring discharge, slow sheet flow over the proximal part of the apron promoted stromatolite growth, whereas fast, turbulent flow on the distal part of the apron induced rapid feather dendrite formation. During times of low spring discharge, quiescent, shallow evaporative pools, conducive to radiating dendrite formation, formed on the proximal part of the apron, whereas slow flow on the distal part promoted stromatolite growth. Facies with high calcite supersaturation experienced rapid abiotic dendrite growth that precluded most biotic growth.  相似文献   

7.
Analysis of water and associated carbonate precipitates from a small, warm-spring travertine system in SW Colorado, USA, provide an example of the: (i) great variability of the geochemical parameters within these dynamic systems, and (ii) significance of the microenvironment in controlling mineralogy and morphology of carbonate precipitates. Waters emerged from the springs highly charged in CO2, with an initial pCO2 of 1.2 × 105 Pa. Degassing of the CO2 from the waters decreased the pH from 6.1 to 8.0, resulting in an increase of 8%‰ in δ13C values downflow in the total CO2 in solution and an increase in the ISAT from 2.1 to as high as 63 times supersaturation with respect to calcite. Due to changes in the stable isotopic composition of the waters downflow as well as changes in the degree of supersaturation, stable isotopic analyses range greatly from locale to locale within this small system. Near the spring vents, at relatively low ISAT levels, well-developed rhombohedra of calcite formed as biotically induced precipitates around diatom stalks and other algae as well as abiotic crusts. In contrast, near the distal end of the system, very high ISAT levels were reached and resulted in the precipitation of skeletal-dendritic crystals of calcite on copper substrates, floating rafts of laterally linked hemispheres of aragonite crystals, and bimineralic carbonate-encrusted bubbles. Microenvironmental parameters control the mineralogy and habit of these precipitates.  相似文献   

8.
Bands of large (up to 4 cm long) three-dimensional crystallographic dendrites form the terrace fronts in an old travertine mound exposed near Clinton, British Columbia. The dendrites, with their long axes perpendicular to the terrace front, are characterized by numerous levels of branching. Each branch is formed of multitudes of skeletal rhombs, four- and six(?)-sided bipyramidal crystals, or prismatic hexagonal crystals that are precisely aligned along crystallographic precepts. Although individual branches are formed of one type of subcrystal, neighbouring branches may be formed of different subcrystal types.Highly supersaturated waters that were generated by rapid CO2 degassing of the spring water during its turbulent flow over the steep terrace fronts probably drove dendrite precipitation. The presence of growth lines indicates that growth was episodic. Type I growth lines probably formed annually in response to seasonal climate changes whereas Type II growth lines, which formed less frequently, may reflect changes in the flow velocity and/or flow patterns of the spring waters.Early diagenetic modification of the dendrites involved crystal face enlargement, cements formed of trigonal prisms or needle-fiber crystals, microbial infestation that mediated substrate dissolution, and/or deposition of detrital calcite crystals that formed in the water column. Much of the diagenetic modification may have taken place during the periods when the dendrites had temporarily stopped growing.The dendrites in the Clinton travertine are an excellent example of complex, episodic calcite crystal growth that was extensively modified by early diagenetic processes in a surface environment. The same spring waters from which the dendrites were precipitated mediated much of the early diagenesis.  相似文献   

9.
人类活动影响下娘子关岩溶水系统地球化学演化   总被引:17,自引:5,他引:12  
王焰新  高旭波 《中国岩溶》2009,28(2):103-102
娘子关泉是我国北方最大的岩溶泉之一,也是阳泉市工农业生产和人民生活的重要供水水源。地下水地球化学演化分析表明,在地下水由补给区向排泄区运移过程中,除固有的水岩相互作用外,由于受采矿活动和地表水入渗补给的影响,岩溶水由低离子含量的HCO3-SO4或HCO3型水逐渐成为SO4型、SO4-HCO3型和SO4-HCO3-Cl型水。在泉群集中排泄区,区域流动系统与局部流动系统的地下水发生混合作用,最终形成了水质相对良好的HCO3-SO4型或SO4-HCO3型岩溶泉水。在此过程中,地下水对方解石和白云石也由最初的溶解作用演变为沉淀再结晶。尽管石膏呈持续溶解现象,但在采煤活动严重影响区域,石膏的沉淀也可能出现。地球化学模拟表明,在岩溶含水层中,地下水首先以方解石(白云石)的溶解为主;随着石膏溶解数量的增加,方解石(白云石)的溶解开始受到抑制,进而发生沉淀,石膏的溶解成为控制地下水水化学的主导过程。当矿坑水混入时,地下水相对石膏过饱和,地下水对碳酸盐岩含水介质的溶蚀能力得到增强。随着水岩反应的演进,铁氢氧化物大量沉淀,通过共沉淀和吸附作用去除了地下水中的重金属类污染物。   相似文献   

10.
The Diyadin Geothermal area, located in the eastern part of Anatolia (Turkey) where there has been recent volcanic activity, is favorable for the formation of geothermal systems. Indeed, the Diyadin geothermal system is located in an active geodynamic zone, where strike-slip faults and tensional cracks have developed due to N–S regional compression. The area is characterized by closely spaced thermal and mineralized springs, with temperatures in the range 30–64 °C, and flowrates 0.5–10 L/s. Thermal spring waters are mainly of Ca(Na)-HCO3 and Ca(Mg)-SO4 types, with high salinity, while cold groundwater is mostly of Ca(Na, Mg)-HCO3 type, with lower salinity. High contents of some minor elements in thermal waters, such as F, B, Li, Rb, Sr and Cs probably derive from enhanced water–rock interaction.Thermal water samples collected from Diyadin are far from chemical equilibrium as the waters flow upward from reservoirs towards spring vents and possibly mix with cooler waters. The temperatures of the deep geothermal reservoirs are estimated to be between 92 and 156 °C in Diyadin field, based on quartz geothermometry, while slightly lower estimates are obtained using chalcedony geothermometers. The isotopic composition of thermal water (δ18O, δ2H, δ3H) indicates their deep-circulating meteoric origin. The waters are likely to have originated from the percolation of rainwater along fractures and faults to the deep hot reservoir. Subsequent heating by conduction due to the presence of an intrusive cupola associated with the Tendurek volcano, is followed by the ascent of deep waters to the surface along faults and fractures that act as hydrothermal conduits.Modeling of the geothermal fluids indicates that the fluid is oversaturated with calcite, aragonite and dolomite, which matches travertine precipitation in the discharge area. Likewise, the fluid is oversaturated with respect to quartz, and chalcedony indicating the possibility of siliceous precipitation near the discharge areas. A conceptual hydro-geochemical model of the Diyadin thermal waters based on the isotope and chemical analytical results, has been constructed.  相似文献   

11.
Large karstic springs in east-central Florida, USA were studied using multi-tracer and geochemical modeling techniques to better understand groundwater flow paths and mixing of shallow and deep groundwater. Spring water types included Ca–HCO3 (six), Na–Cl (four), and mixed (one). The evolution of water chemistry for Ca–HCO3 spring waters was modeled by reactions of rainwater with soil organic matter, calcite, and dolomite under oxic conditions. The Na–Cl and mixed-type springs were modeled by reactions of either rainwater or Upper Floridan aquifer water with soil organic matter, calcite, and dolomite under oxic conditions and mixed with varying proportions of saline Lower Floridan aquifer water, which represented 4–53% of the total spring discharge. Multiple-tracer data—chlorofluorocarbon CFC-113, tritium (3H), helium-3 (3Hetrit), sulfur hexafluoride (SF6)—for four Ca–HCO3 spring waters were consistent with binary mixing curves representing water recharged during 1980 or 1990 mixing with an older (recharged before 1940) tracer-free component. Young-water mixing fractions ranged from 0.3 to 0.7. Tracer concentration data for two Na–Cl spring waters appear to be consistent with binary mixtures of 1990 water with older water recharged in 1965 or 1975. Nitrate-N concentrations are inversely related to apparent ages of spring waters, which indicated that elevated nitrate-N concentrations were likely contributed from recent recharge.The online version of the original article can be found at  相似文献   

12.
Large karstic springs in east-central Florida, USA were studied using multi-tracer and geochemical modeling techniques to better understand groundwater flow paths and mixing of shallow and deep groundwater. Spring water types included Ca–HCO3 (six), Na–Cl (four), and mixed (one). The evolution of water chemistry for Ca–HCO3 spring waters was modeled by reactions of rainwater with soil organic matter, calcite, and dolomite under oxic conditions. The Na–Cl and mixed-type springs were modeled by reactions of either rainwater or Upper Floridan aquifer water with soil organic matter, calcite, and dolomite under oxic conditions and mixed with varying proportions of saline Lower Floridan aquifer water, which represented 4–53% of the total spring discharge. Multiple-tracer data—chlorofluorocarbon CFC-113, tritium (3H), helium-3 (3Hetrit), sulfur hexafluoride (SF6)—for four Ca–HCO3 spring waters were consistent with binary mixing curves representing water recharged during 1980 or 1990 mixing with an older (recharged before 1940) tracer-free component. Young-water mixing fractions ranged from 0.3 to 0.7. Tracer concentration data for two Na–Cl spring waters appear to be consistent with binary mixtures of 1990 water with older water recharged in 1965 or 1975. Nitrate-N concentrations are inversely related to apparent ages of spring waters, which indicated that elevated nitrate-N concentrations were likely contributed from recent recharge.An erratum to this article can be found at  相似文献   

13.
A sloping travertine mound, approximately 85 m across and a few metres thick is actively forming from cool temperature waters issuing out of Crystal Geyser, east‐central Utah, USA. Older travertine deposits exist at the site, the waters having used the Little Grand Wash Fault system as conduits. In contrast, the present Crystal Geyser travertine mound forms from 18°C waters which have been erupting for the last 80 years from an abandoned oil well. The present Crystal Geyser travertine accumulation forms from a ‘man‐made’ cool temperature geyser system; nevertheless, the constituents are an analogue for ancient geyser‐fed carbonate deposits. The travertine primary fabric is composed of couplets of highly porous, thin micritic laminae intercalated with thicker iron oxide rich laminae. Low Mg‐calcite is the dominant mineralogy; however, aragonite is a major constituent in deposits proximal to the vent and decreases in abundance distally. Cements exhibit a variety of fabrics, isopachous being common. Constituents include micro‐stromatolites, clasts, pisoids and the common occurrence of Frutexites‐like iron oxide precipitates. Leptothrix, a common iron‐oxidizing bacterium, is believed to be responsible for the production of the dense iron‐rich laminae. Pisoids litter the ground around the vent and rapidly decrease distally in abundance and size.  相似文献   

14.
A 2-year (October 2003–October 2005) high-resolution sediment trap study was conducted in Sacrower See, a dimictic hardwater lake in northeastern Germany. Geochemical and diatom data from sediment trap samples were compared with a broad range of limnological and meteorological parameters to quantify the impact of single parameters on biochemical calcite precipitation and organic matter production. Our goals were to disentangle how carbonaceous varves and their sublaminae form during the annual cycle to better understand the palaeorecords and to detect influences of dissolution, resuspension as well as of global radiation and stratification on lake internal particle formation. Total particle fluxes in both investigated years were highest during spring and summer. Sedimentation was dominated by autochthonous organic matter and biochemically precipitated calcite. Main calcite precipitation occurred between April and July and was preceded and followed by smaller flux peaks caused by resuspension during winter and blooms of the calcified green algae Phacotus lenticularis during summer. In some of the trap intervals during summer up to 100% of the precipitated calcite was dissolved in the hypolimnion. High primary production due to stable insolation conditions in epilimnic waters began with stratification of the water column. Start and development of stratification is closely related to air and water surface temperatures. It is assumed that global radiation influences the onset and stability of water column stratification and thereby determining the intensity of primary production and consequently of timing and amount of calcite precipitation which is triggered by phytoplanktonic CO2 consumption. Sediment fluxes of organic matter and calcite are also related to the winter NAO-Index. Therefore these fluxes will be used as a proxy for ongoing reconstruction of Holocene climate conditions.  相似文献   

15.
Millimetre to centimetre sized arborescent shrub-like calcite precipitates are common constituents of hot water travertine shallow pool deposits of Quaternary age at Rapolano Terme, Tuscany, Italy. In the presently forming travertines, the shrubs consist of apparently random associations of (i) micrite aggregates and (ii) subhedral to euhedral rhombic spar crystal aggregates. In thin section, the micrite aggregates appear dark and the spar-rhomb aggregates light, giving the shrubs a mottled appearance. Travertines are basically produced by CaCO3 precipitation due to degassing and evaporation of the spring waters, although biological influence may also stimulate precipitation. The formation of masses of erect shrubs, rather than dense crystal crusts that form on slopes, is probably due to limited water flow in the pool environments. Microbes, including bacteria and diatoms, are important influences on shrub microfabric and external shape. The micrite aggregates are associated with bacteriform bodies, seen as tiny rods and spheres. The micrite precipitates around these bodies and in adjacent biofilm. Spar-rhomb precipitation appears to be external to the biofilm, and may be related to the presence of diatoms which are locally closely associated with the spar-rhombs, although an essentially inorganic origin, particularly for the more euhedral rhombs, cannot be ruled out. In the older Quaternary travertines, the original microfabric of the shrubs has been diagenetically altered. The original mottled appearance of the shrubs has become uniformly dark and micritic, and the evidence for the dual micritic and spar-rhomb origin of the shrubs is obscured or destroyed. Spar-micritization of the shrubs is probably due to abiotic, and locally biotic, dissolution. Previous studies did not recognize the diagenetic micritization and attributed shrub formation entirely to bacterial activity.  相似文献   

16.
Hydrochemical studies of the Plitvice Lakes and their tributaries (Croatia/Yugoslavia) were coupled with micromorphological investigations on carbonate lake sediments and recent travertines. Karst springs discharge water from aquifers in Triassic and Jurassic dolomites and limestones and collect in lakes, which are ponded behind accreting travertine dams. Waters at springs have a high CO2 partial-pressure (greater than 7000 ppm) and are slightly undersaturated with respect to calcite (saturation index less than —0·03). CO2 partial pressure is quickly reduced in swift running streams, leading to very high supersaturation with carbonate minerals (saturation indices between 0·74 and 0·53). Calcite deposition, however, is restricted to the lake bottoms (formation of lake marl) and to the tufa dams. The annual carbonate precipitating capacity of the system based on water balance and downstream loss of dissolved ions is estimated to be on the order of 10 000 t CaCO3 as cascade deposits (tufa dams) or as micrite in lakes behind the travertine dams. The initial stages of travertine formation as a result of morphological, biological, and chemical factors are (i) moss settling on small ridges in the creek courses, (ii) epiphytes (diatoms and cyanobacteria) settling on the moss surface, (iii) micrite particles resuspending from lake bottoms and being trapped on mucous excretions from bacteria and diatoms, and (iv) inorganic calcite precipitating as sparite at nucleation sites provided by these crystal seeds. Geochemical studies of the lake marl and tufa dams show that amino acids are dominated by aspartic acid. Carbohydrates come from structural polysaccharides of diatoms. The sticky excretions, rich in aspartic acid, are necessary for the initiation of calcite precipitation. They may be a response of algal and bacterial metabolism to environmental stress by either nutrient depletion or high calcium concentrations in ambient waters. The formation of tufa and micrite (lake marl) appears to be initiated by localized biological factors and is not governed by mere calcite supersaturation of the water. Oligotrophy may be an essential precondition for the formation of fresh water carbonate deposits.  相似文献   

17.
Vaterite, a rare hexagonal CaCO3 polymorph, was identified in precipitates forming at a supraglacial sulfur spring, in Borup Fiord Pass, northern Ellesmere Island, Canadian High Arctic. Vaterite occurs in a precipitate mound along with calcite, gypsum, and native sulfur. The unusual conditions of the site, including an extremely cold climate, supersaturated alkaline waters, and the presence of gypsum, mimics conditions used to grow vaterite in laboratory experiments. Stable isotope data suggest that vaterite may preferentially form during colder periods of the year. Vaterite found at the site is characterized by 2- to 10-μm rounded to spherical shaped particles (comprising smaller 0.5- to 2-μm spheres) as both individuals and in chainlike structures. The spherical habit of vaterite resembles carbonate structures that have been interpreted to be organic; however, δ13C values are indicative of an inorganic origin. The thick permafrost, and the extreme cold and dry environment make this site a good terrestrial analog for carbonate precipitates that might be expected at potential deposits associated with water discharge on other planetary bodies.  相似文献   

18.
19.
Groundwaters, river and lake waters have been sampled from the semi-arid Siberian Republic of Khakassia. Despite the relatively sparse data set, from a diversity of hydrological environments, clear salinity-related trends emerge that indicate the main hydrochemical evolutionary processes active in the region. Furthermore, the major ion chemistry of the evolution of groundwater baseflow, via rivers, to terminal saline lake water, can be adequately and simply modelled (using PHREEQCI) by invoking: (i) degassing of CO2 from groundwater as it emerges as baseflow in rivers (rise in pH); (ii) progressive evapoconcentration of waters (parallel accumulation of Cl, Na+, SO42−, and increase in pH due to common ion effect); and (iii) precipitation of calcite (depletion of Ca from waters, reduced rate of accumulation of alkalinity). Dolomite precipitation is ineffective at constraining Mg accumulation, due to kinetic factors. Silica saturation appears to control dissolved Si in low salinity waters and groundwaters, while sepiolite saturation and precipitation depletes Si from the more saline surface waters. Gypsum and sodium sulphate saturation are only approached in the most saline environments. Halite remains unsaturated in all waters. Sulphate reduction processes are important in the lower part of lakes.  相似文献   

20.
The recent discoveries of deeply buried Cretaceous reservoir bodies in the Atlantic Ocean revealed that relationships between the distribution of spring carbonate deposits and faults are poorly understood. The well‐exposed Quaternary deposits at Obruktepe (Denizli Basin, Turkey) provide an opportunity to reconstruct the three‐dimensional sedimentary architecture of such a system. Integration of sedimentological, lithofacies and geochemical analyses reveals complexity in the lateral relationships between sedimentary environments, faults and geothermal spring carbonates. Five environmental systems are distinguished based on the lithofacies analysis: (i) vent; (ii) smooth slope; (iii) travertine‐terrace; (iv) tufa‐barrage; and (v) flood systems. Encrusting, baffling and settling sedimentary processes are reflected in data acquired at several scales, from lithofacies observations to the morphology and arrangement of geobodies, together with microfabrics and stable carbon and oxygen isotope data. Mean values of +4·9‰ δ13C and −8·74‰ δ18O Vienna PeeDee Belemnite reflect geothermal circulation of springwaters. The environmental distribution and lithofacies indicate a lateral continuum between travertine and tufa deposits within this hot spring system. This finding supports two depositional models in which water flow variation is the main control on both CaCO3 precipitation and the resulting formation of travertine and tufa. The proposed models address the factors responsible for the development of these complex mound‐shaped carbonate spring deposits, and how they are related to fluid circulation at depth and in association with faults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号