首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-precision 40Ar/39Ar dating of lamprophyre dike swarms in the Western Province of New Zealand reveals that these dikes were emplaced into continental crust prior to, during and after opening of the Tasman Sea between Australia and New Zealand. Dike ages form distinct clusters concentrated in different areas. The oldest magmatism, 102–100 Ma, is concentrated in the South Westland region that represents the furthest inboard portion of New Zealand in a Gondwana setting. A later pulse of magmatism from ~ 92 Ma to ~ 84 Ma, concentrated in North Westland, ended when the first oceanic crust formed at the inception of opening of the Tasman Sea. Magmatic quiescence followed until ~ 72–68 Ma, when another swarm of dikes was emplaced. The composition of the dikes reveals a dramatic change in primary melt sources while continental extension and lithospheric thinning were ongoing. The 102–100 Ma South Westland dikes represent the last mafic calc-alkaline magmatism associated with a long-lived history of the area as Gondwana's active margin. The 92–84 Ma North and 72–68 Ma Central Westland dike swarms on the other hand have strongly alkaline compositions interpreted as melts from an intraplate source. These dikes represent the oldest Western Province representatives of alkaline magmatism in the greater New Zealand region that peaked in activity during the Cenozoic and has remained active up to the present day. Cretaceous alkaline dikes were emplaced parallel to predicted normal faults associated with dextral shear along the Alpine Fault. Furthermore, they temporally correspond to polyphase Cretaceous metamorphism of the once distal Alpine Schist. Dike emplacement and distal metamorphism could have been linked by a precursor to the Alpine Fault. Dike emplacement in the Western Province coupled to metamorphism of the Alpine Schist at 72–68 Ma indicates a period of possible reactivation of this proto Alpine Fault before it served as a zone of weakness during the opening of the oceanic Emerald Basin (at ~ 45 Ma) and eventually the formation of the present-day plate boundary (~ 25 Ma–recent).  相似文献   

2.
The Tibetan Plateau (TP) is the highest plateau in the world, which has been the focus of Cenozoic geological studies. The Northeast Tibetan Plateau (NETP) is a key location to decipher the Cenozoic evolution history of the TP. Understanding the building of the Qimen Tagh Mountains located in NETP will help to constrain the development of the northern boundary of the main TP, test the existence of a Paleo-Qaidam Basin and test the eastward growth model of the TP. In this study, granite samples from the Qimen Tagh Mountains were dated by LA-ICPMS and apatite fission track (AFT). The LA-ICPMS zircon U–Pb ages give two magmatic events around ~ 405 and ~ 255 Ma from two different sites. AFT modeling shows that the initial uplift took place at ~ 40–30 Ma in these mountains, which should be controlled by the Altyn Tagh Fault. Compiling previously low-temperature thermochronometry results, it reveals that the initial Cenozoic uplift of the northern boundary of the TP (Qimen Tagh and East Kunlun mountains), soon after the India–Eurasia collision in the southern TP, has divided the Paleo-Qaidam Basin into several sub-basins. The approximate NE–E growth process occurred along the lithospheric Altyn Tagh and Kunlun faults. The current basin and range morphology of the NETP took place around ~ 8 Ma.  相似文献   

3.
Western Tibet, between the Karakorum fault and the Gozha–Longmu Co fault system, is mostly internally drained and has a 1.5–2 km amplitude relief with km-large valleys. We investigate the origin of this peculiar morphology by combining a topography analysis and a study of the Cenozoic sedimentation in this area. Cenozoic continental strata correspond to a proximal, detrital fan deposition, and uncomformably rest on a palaeorelief similar to the modern one. Zircon U–Pb dating from trachytic flows interbedded within the Cenozoic continental sediments indicates that detrital sedimentation occurred at least between ca 24 and 20 Ma in the Shiquanhe basin, while K/Ar ages suggest it may have started since ~ 37 Ma in the Zapug basin. The distribution of continental deposits shows that present-day morphology features, including km-large, 1500 m-deep valleys, were already formed by Early Miocene times. We suggest that today's internally drained western Tibet was externally drained, at least during late Miocene, contemporaneously with early motion along the Karakorum Fault. Detailed study of the present day river network is compatible with a dextral offset on the Karakorum Fault of 250 km at a rate of ~ 10 ± 1 mm/yr. Displacement along the Karakorum fault possibly induced the shift from external to an internal drainage system, by damming of the Bangong Co ~ 4 Ma ago, leading to the isolation and preservation of the western Tibet relief.  相似文献   

4.
Curaçao has reef terraces with the potential to provide sea-level histories of interglacial periods. Ages of the Hato (upper) unit of the “Lower Terrace” indicate that this reef dates to the last interglacial period, Marine Isotope Stage (MIS) 5.5. On Curaçao, this high sea stand lasted at least 8000 yr (~ 126 to ~ 118 ka). Elevations and age of this reef show that late Quaternary uplift rates on Curaçao are low, 0.026–0.054 m/ka, consistent with its tectonic setting. Ages of ~ 200 ka for corals from the older Cortalein unit of the Lower Terrace correlate this reef to MIS 7, with paleo-sea level estimates ranging from ? 3.3 m to + 2.3 m. The estimates are in agreement with those for MIS 7 made from other localities and indicate that the penultimate interglacial period was a time of significant warmth, on a par with the present interglacial period. The ~ 400 ka (MIS 11) Middle Terrace I on Curaçao, dated by others, may have formed from a paleo-sea level of + 8.3 to + 10.0 m, or (less likely) + 17 m to + 20 m. The lower estimates are conservative compared to previous studies, but still require major ice sheet loss from Greenland and Antarctica.  相似文献   

5.
Ras Ibn Hani peninsula, a wave-dominated tombolo (800 × 1000 m) on the Syrian coast, provides evidence for significant Holocene changes that can be linked to geological inheritance, rising post-glacial sea level, sediment supply and human impacts. Initial development of Ras Ibn Hani's coastal system began ~ 8000 years ago when shallow marine environments formed in a context of rising post-glacial sea level. Following relative sea-level stabilization ~ 6000 cal yr BP, beach facies trace the gradual formation of a wave-dominated sandbank fronted by a ~ 2300 × ~ 500 m palaeo-island whose environmental potentiality was attractive to Bronze Age societies. A particularly rapid phase of tombolo accretion is observed after ~ 3500 cal yr BP characterised by a two- to fourfold increase in sedimentation rates. This is consistent with (i) a pulse in sediment supply probably driven by Bronze Age/Iron Age soil erosion in local catchments, and (ii) positive feedback mechanisms linked to regionally attested neotectonics. Archaeological remains and radiocarbon datings confirm that the subaerial tombolo was probably in place by the Late Bronze Age. These data fit tightly with other eastern Mediterranean tombolo systems suggesting that there is a great deal of predictability to their geology and stratigraphy at the regional scale.  相似文献   

6.
In this paper we present new zircon U–Pb ages, Hf isotope data, and whole-rock major and trace element data for Early Mesozoic intrusive rocks in the Erguna Massif of NE China, and we use these data to constrain the history of southward subduction of the Mongol–Okhotsk oceanic plate, and its influence on NE China as a whole. The zircon U–Pb dating indicates that Early Mesozoic magmatic activity in the Erguna Massif can be subdivided into four stages at ~ 246 Ma, ~ 225 Ma, ~ 205 Ma, and ~ 185 Ma. The ~ 246 Ma intrusive rocks comprise a suite of high-K calc-alkaline diorites, quartz diorites, granodiorites, monzogranites, and syenogranites, with I-type affinities. The ~ 225 Ma intrusive rocks consist of gabbro–diorites and granitoids, and they constitute a bimodal igneous association. The ~ 205 Ma intrusive rocks are dominated by calc-alkaline I-type granitoids that are accompanied by subordinate intermediate–mafic rocks. The ~ 185 Ma intrusive rocks are dominated by I-type granitoids, accompanied by minor amounts of A-types. These Early Mesozoic granitoids mainly originated by partial melting of a depleted and heterogeneous lower crust, whereas the coeval mafic rocks were probably derived from partial melting of a depleted mantle modified by subduction-related fluids. The rock associations and their geochemical features indicate that the ~ 246 Ma, ~ 205 Ma, and ~ 185 Ma intrusive rocks formed in an active continental margin setting related to the southward subduction of the Mongol–Okhotsk oceanic plate. The ~ 225 Ma bimodal igneous rock association formed within an extensional environment in a pause during the subduction process of the Mongol–Okhotsk oceanic plate. Every magmatic stage has its own corresponding set of porphyry deposits in the southeast of the Mongol–Okhotsk suture belt. Taking all this into account, we conclude the following: (1) during the Early Mesozoic, the Mongol–Okhotsk oceanic plate was subducted towards the south beneath the Erguna Massif, but with a pause in subduction at ~ 225 Ma; and (2) the southward subduction of the Mongol–Okhotsk oceanic plate not only caused the intense magmatic activity, but was also favorable to the formation of porphyry deposits.  相似文献   

7.
《Gondwana Research》2014,25(3):1202-1215
The South China Block, consisting of the Yangtze and the Cathaysia blocks, is one of the largest Precambrian blocks in eastern Asia. However, the early history of the Cathaysia Block is poorly understood due largely to intensive and extensive reworking by Phanerozoic polyphase orogenesis and magmatism which strongly overprinted and obscured much of the Precambrian geological record. In this paper, we use the detrital zircon U–Pb age and Hf isotope datasets as an alternative approach to delineate the early history of the Cathaysia Block. Compilation of published 4041 Precambrian detrital zircon ages from a number of (meta)sedimentary samples and river sands exhibits a broad age spectrum, with three major peaks at ~ 2485 Ma, ~ 1853 Ma and ~ 970 Ma (counting for ~ 10%, ~ 16% and ~ 24% of all analyses, respectively), and four subordinate peaks at ~ 1426 Ma, ~ 1074 Ma, ~ 780 Ma and ~ 588 Ma. Five of seven detrital zircon age peaks are broadly coincident with the crystallisation ages of ~ 1.89–1.83 Ga, ~ 1.43 Ga, ~ 1.0–0.98 Ga and ~ 0.82–0.72 Ga for known igneous rocks exposed in Cathaysia, whereas, igneous rocks with ages of ~ 2.49 Ga and ~ 0.59 Ga have not yet been found. The Hf isotopic data from 1085 detrital zircons yield Hf model ages (TDMC) between ~ 4.19 Ga and ~ 0.81 Ga, and the calculated εHf(t) values between − 40.2 and 14.4. The Archean detrital zircons are exclusively oval in shape with complicated internal textures, indicating that they were sourced by long distance transportations and strong abrasion from an exotic Archean continent. In contrast, the majority of detrital zircons in age between ~ 1.9 and ~ 0.8 Ga are euhedral to subhedral crystals, indicative of local derivation by short distance transportations from their sources. The oldest crustal basement rocks in Cathaysia were most likely formed by generation of juvenile crust and reworking of recycled Archean components in Late Paleoproterozoic at ~ 1.9–1.8 Ga, rather than in the Archean as previously speculated. Reworking and recycling of the continental crust are likely the dominant processes for the crustal evolution of Cathaysia during the Mesoproterozoic to Neoproterozoic time, with an intervenient period of significant generation of juvenile crust at ~ 1.0 Ga.Precambrian crustal evolutions of the Cathaysia Block are genetically related to the supercontinent cycles. By comparing detrital zircon data from Cathaysia with those for other continents, and integrating multiple lines of geological evidence, we interpret the Cathaysia Block as an orogenic belt located between East Antarctica, Laurentia and Australia during the assembly of supercontinent Columbia/Nuna at ~ 1.9–1.8 Ga. The Cathaysia Block amalgamated with the Yangtze Block to form the united South China Block during the Sibao Orogeny at ~ 1.0–0.89 Ga. The Laurentia–Cathaysia–Yangtze–Australia–East Antarctica connection gives the best solution to the paleo-position of Cathaysia in supercontinent Rodinia. The significant amount of ~ 0.6–0.55 Ga detrital zircons in Cathaysia and West Yangtze have exclusively high crustal incubation time of > 300 Ma, indicating crystallisation from magmas generated dominantly by crustal reworking. This detrital zircon population compares well with the similar-aged zircon populations from a number of Gondwana-derived terranes including Tethyan Himalaya, High Himalaya, Qiangtang and Indochina. The united South China–Indochina continent was likely once an integral part of Gondwanaland, connected to northern India by a “Pan-African” collisional orogen.  相似文献   

8.
In the Ribeira belt, southeastern Brazil, the Precambrian mylonitic fabric mainly formed during the Brasiliano/Pan-African orogeny (640–480 Ma) and was reactivated as fault zones in the Cretaceous and Cenozoic. The reactivation process led to the development of the System of Continental Rifts of southeastern Brazil, from the Paleogene to the Quaternary. We investigated the brittle reactivation of a mylonitic zone, which is part of a major mylonitic belt, Arcádia-Areal. We used geological and geomorphological mapping, resistivity survey, controlled source audiomagnetotelluric survey, and luminescence dating. Our results indicate that this shear zone was reactivated and formed a 15 km long and 2 km wide sedimentary-filled trough, the Rio Santana Graben. It is located on the northwest border of a major structure, the Guanabara Graben, in the State of Rio de Janeiro. The Rio Santana Graben forms an almost entirely fault-bounded, NE-elongated depression that was accommodated entirely within the Arcádia-Areal shear zone. The graben consists of two main depocenters separated by a relay ramp. The graben formed by means of multistage activity of several faults during at least two main periods. The first period formed silicified fault breccia and occurred during alkaline magmatism in the Paleogene. The second formed fault breccia and gouge in shallow conditions and occurred at least until the Quaternary. The NE-trending and NW-dipping Precambrian fabric was reactivated as dip-slip and strike-slip faults. These faults triggered clastic-sediment deposition at least 300 m thick. The upper part of the graben consists of Quaternary alluvial and colluvial sediment fill, which yielded maximum luminescence deposition ages from 49 to 13 ka in the center of the trough. An organic layer at the top of the Quaternary alluvial deposits yielded 14C ages at ~6000 years BP. The lower part of the graben may be composed of Paleogene to Neogene sedimentary deposits, which occur in other basins of the System of Continental Rifts of southeastern Brazil. We conclude that the Rio Santana Graben is an example of the direct control of a preexisting continental-scale rheological boundary on the geometry and location of fault systems and sediment deposition. Quaternary fault reactivation of the preexisting fabrics represents only the latest movement of a major structure.  相似文献   

9.
《Gondwana Research》2016,29(4):1482-1499
The Lhasa terrane, the main tectonic component of the Himalayan–Tibetan orogen, has received much attention as it records the entire history of the orogeny. The occurrence of Permian to Triassic high-pressure eclogites has a significant bearing on the understanding of the Paleo-Tethys subduction and plate suturing processes in this area. An eclogite from the Bailang, eastern Lhasa terrane, was investigated with a combined metamorphic PT and U–Pb, Lu–Hf, Sm–Nd and Ar–Ar multichronometric approach. Pseudosection modeling combined with thermobarometric calculations indicate that the Bailang eclogite equilibrated at peak PT conditions of ~ 2.6 GPa and 465–503 °C, which is much lower than those of Sumdo and Jilang eclogites in this area. Garnet–whole rock–omphacite Lu–Hf and Sm–Nd ages of 238.1 ± 3.6 Ma and 230.0 ± 4.7 Ma were obtained on the same sample, which are largely consistent with the corresponding U–Pb age of 227.4 ± 6.4 Ma for the metamorphic zircons within uncertainty. The peak metamorphic temperature of the sample is lower than the Lu–Hf and Sm–Nd closure temperatures in garnet. This, combined with the core-to-rim decrease in Mn and HREE concentrations, the slightly U-shaped Sm zonation across garnet and the exclusive occurrence of omphacite inclusion in garnet rim, are consistent with the Lu–Hf system skewing to the age of the garnet core and the Sm–Nd system favoring the rim age. The Sm–Nd age was thus interpreted as the age of eclogite-facies metamorphism and the Lu–Hf age likely pre-dated the eclogite-facies metamorphism. 40Ar/39Ar dating of hornblende from the eclogite yielded ages about 200 Ma, which is interpreted as a cooling age and is probably indicative of the time of exhumation to the middle crust. The difference of peak eclogite-facies metamorphic conditions and the distinct metamorphic ages for the Bailang eclogite (~ 2.6 GPa and ~ 480 °C; ca. 230 Ma), the Sumdo eclogite (~ 3.4 GPa and ~ 650 °C; ca. 262 Ma) and Jiang eclogite (~ 3.6 GPa and ~ 750 °C; ca. 261 Ma) in the same (ultra)-high-pressure belt indicate that this region likely comprises different slices that had distinct PT histories and underwent (U)HP metamorphism at different times. The initiation of the opening the Paleo-Tethys Ocean in the Lhasa terrane could trace back to the early Permian. The ultimate closure of the Paleo-Tethys Ocean in the Lhasa terrane was no earlier than ca. 230 Ma.  相似文献   

10.
The Cenozoic terrestrial, intermontane Qaidam Basin on the northeastern edge of the Tibetan Plateau contains > 12 km of sedimentary rocks that potentially document the accommodation of India-Asia convergence and the growth of the plateau. The chronology remains incomplete, hindering cross-basin correlation between lithostratigraphic units and their further interpretation. Here we present a high-resolution magnetostratigraphy spanning > 5 km of Paleogene-Neogene sequence at Dahonggou in the Northern Qaidam Basin. Based on correlation with the geomagnetic polarity time scale (GPTS), we have dated the section to being between ~ 52 and ~ 7 Ma. The bottom conglomeratic unit, ranging from > 52 Ma to ~ 44 Ma, was deposited in high-energy environments (e.g., alluvial fan or braided river), reflecting the earliest deformation and uplift of the basin-bounding Qilian Shan fold-thrust belt in response to India-Asia collision. In addition, we identified two major increases in sedimentation rate at 25–16 Ma and after ~ 9.5 Ma and three phases of lesser increases at 52–44 Ma, 38–33 Ma, and 14.6–12.0 Ma. These increases in sedimentation rate are consistent with regional thermochronology and basin analysis studies, which revealed enhanced motion on basin-bounding thrust faults. We argue that these accelerated sedimentation rates indicate pulsed tectonism in the northeastern Tibetan Plateau. The pulse at 25–16 Ma may further relate to phases of strong rainfall linked to an intense monsoon at that time.  相似文献   

11.
Three-dimensional (3D) district-scale geoscience information for the Luanchuan Mo district was integrated for understanding the development of its regional geology and ore-forming processes and for decision-making about potential targets for mineral exploration. The methodology and datasets used were: (1) construction of an initial geological model (25 km × 20 km × 2.5 km) using 1:10,000 scale geological map, nine geological cross-sections and gravity and magnetic data; (2) construction of three large-scale Mo deposits model (5 km × 4 km × 2.5 km) using 1:2000 scale geological and topographic maps, 288 boreholes (total core length of 158,700 m), and 32 1:2000 scale cross-sections; (3) 3D inversion of 1:25,000 scale gravity and magnetic data for identification metallogenic anomaly zones which are associated with Jurassic intrusions; (4) extraction of ore-controlling formation and sequence of the Luanchuan Group using the large-scale 3D models of Mo deposits and results of analysis of lithogeochemical samples from outcrops and borehole cores; (5) identification of ore-forming and ore-controlling faults using the large-scale 3D model of Mo deposits and mineralized Jurassic granite porphyry stocks; (6) boost weights-of-evidence and concentration–volume (C–V) fractal analyses to integrate metallogenic information and to identify and classify potential Mo targets. Four classes of exploration targets were identified using C–V modeling and 3D known orebodies model: the first and second class targets are mainly located in three large magma-skarn type deposit camps, occupying ~ 1.4 km3 with total estimated reserve of ~ 2.3 Mt; the third class targets, which are mainly located in Huangbeiling and Yuku deposit camps comprising concealed magma-skarn type deposits, occupy ~ 2.8 km3 and represent a new target exploration zone in the Luanchuan district; the fourth class targets, which are located in the Huoshenmiao, Majuan, and Daping zones, occupy ~ 15 km3 and represent potential mineral resources with likely similar orebody features as the Yuku deposit.  相似文献   

12.
The Doriri Creek (DC) Ni–Pd–Pt prospect was discovered in 1966 in the Papuan Ultramafic Belt (PUB) in PNG. The DC was interpreted as a hydrothermal Ni accumulation. The DC is located in the southern proximity of Mt Suckling (~ 180 km SE of Port Moresby), where local intrusive rocks are intermediate to acid dykes and small stocks, within the tec tonized contact zone of the Australian and Woodlark Plates. The active volcanoes of Mount Victory and Waiowa indicate recent thermal activity in the area.The Doriri Creek prospect is the result of episodic hydrothermal fluid flow running through the Doriri prospect, that resulted in Ni concentration of up to 1.55 wt.%, formed by alteration of an ultramafic unit of peridotites/pyroxenites within a Mg-rich gabbronorite envelope. Ni was concentrated in chlorite and serpentine group minerals in addition to Fe oxides, with a minor amount in pentlandite in locally sulfidic samples. Ore mineralogy is also associated with a high phosphorous content as apatite, that concentrates LREE (light rare earth elements). Palladium concentrations are up to 0.37 ppm. Platinum is present in concentrations up to 0.06 ppm within the ore.The alteration halo associated with Doriri Creek mineralization is ~ 100 m in width. Primary mineralogy comprises pyroxene, olivine and plagioclase, which have been altered extensively to amphibole and chlorite–serpentine group minerals. This halo is characterized by enrichments of U, K and W over background values.Local magnetite concentration is up to ~ 35% of whole rock, which is very pronounced in the sulfide rich area of the system. The top part of the DC system is overprinted by tropical weathering at metric scale, which displays LREE enrichment and positive Ce anomalies.The Papuan Ultramafic Belt is described as a highly prospective ground for hydrothermal Ni systems based on its availability of Ni, active thermal flow engines, and the geologic regional context dominated by mafic rock suites and the presence of carbonate/siliciclastic units.  相似文献   

13.
The Qaidam Basin is the largest intermontane basin of the northeastern Tibetan Plateau and contains a continuous Cenozoic sequence of lacustrine sediments. A ~ 1000-m-deep drilling (SG-1) with an average core recovery of ~ 95% was carried out in the depocenter of the Chahansilatu playa (sub-depression) in the western Qaidam Basin, aimed to obtain a high-resolution record of the paleoenvironmental evolution and the erosion history. Stepwise alternating field and thermal demagnetization, together with rock magnetic results, revealed a stable remanent magnetization for most samples, carried by magnetite. The polarity sequence consisted of 16 normal and 15 reverse zones which can be correlated with chrons 1n to 2An of the global geomagnetic polarity time scale. Magnetostratigraphic results date the entire core SG-1 at ~ 2.77 Ma to ~ 0.1 Ma and yielded sediment accumulation rate (SAR) ranging from 26.1 cm/ka to 51.5 cm/ka. Maximum SARs occurred within the intervals of ~ 2.6–2.2 Ma and after ~ 0.8 Ma, indicating two episodes of erosion, which we relate to pulse tectonic uplift of the NE Tibetan Plateau with subsequent global cooling.  相似文献   

14.
We have used geodetic techniques to improve constraints on the crustal motion of the Pamir Plateau. Three campaigns of Global Position System data acquisition between 2011 and 2015 demonstrate that, in association with the India–Asia collision, a complex pattern of crustal motion exists in the Pamir Plateau. In a north–south direction from the Indian Plate to the Hazak Block, the crust has absorbed ~ 35 mm/yr of shortening, of which ~ 35% is distributed around the Hindu Kush region (~ 12 mm/yr), and another ~ 35% is taken up around the Alai Valley (also ~ 12 mm/yr). Global Position System measurements also show ~ 5 mm/yr of shortening between the Pamir Plateau and the Tajik Basin, whereas between the Pamir and the Tarim Basin, an ~ 10 mm/yr extension rate is observed. With respect to the stable Eurasian Plate, the Pamir rotates counterclockwise at a rate of ~ 1.822°Myr 1, with an Euler pole positioned about the west end of the Tajik Basin (37.03 ± 0.74°N, 65.89 ± 0.12°E). The strain rate field calculated from Global Position System velocities reveals that the crustal motion is consistent with localized deformation around the Hindu Kush and the Alai Valley, the latter representing a zone with strong shallow seismic activity.  相似文献   

15.
We explore the possibility of building a continuous glacier reconstruction by analyzing the integrated sedimentary response of a large (440 km2) glacierized catchment in western Norway, as recorded in the downstream lake Nerfloen (N61°56’, E6°52’). A multi-proxy numerical analysis demonstrates that it is possible to distinguish a glacier component in the ~ 8000-yr-long record, based on distinct changes in grain size, geochemistry, and magnetic composition. Principal Component Analysis (PCA) reveals a strong common signal in the 15 investigated sedimentary parameters, with the first principal component explaining 77% of the total variability. This signal is interpreted to reflect glacier activity in the upstream catchment, an interpretation that is independently tested through a mineral magnetic provenance analysis of catchment samples. Minimum glacier input is indicated between 6700–5700 cal yr BP, probably reflecting a situation when most glaciers in the catchment had melted away, whereas the highest glacier activity is observed around 600 and 200 cal yr BP. During the local Neoglacial interval (~ 4200 cal yr BP until present), five individual periods of significantly reduced glacier extent are identified at ~ 3400, 3000–2700, 2100–2000, 1700–1500, and ~ 900 cal yr BP.  相似文献   

16.
The E-W to WNW-ESE striking Kunlun Fault Zone, extending about 1600 km, is one of the large strike-slip faults in the northern Tibet, China. As a major strike-slip fault, it plays an important role on the extrusion of Tibet Plateau in accommodating northeastward shortening caused by the India-Asia convergence. However, the time of initiation left-lateral faulting of the Kunlun Fault Zone is still largely debated, ranging from the Middle to Late Triassic (240–200 Ma) to early Quaternary (2 Ma). We document displaced basement rocks and geomorphic features along the Kunlun Fault Zone, based on tectono-geomorphic interpretation of satellite remote sensing images and field geologic and geomorphic observations. Our results show that the largest cumulative offset of basement rocks is likely to be 100 ± 20 km. Meanwhile, a series of pull-apart basins (Kusai, Xiugou and Tuosu lake basins) and pressure ridges (East Deshuiwai and Maji Snow Mountains), each 45–70 km long and ∼8–12 km wide, are developed along the Kunlun Fault Zone, which resulted from long-term tectono-geomorphic growth since the Late Miocene or Early Pliocene. Geologic evidence indicates that the Kunlun Fault Zone had a long-term slip rate of ca.10 mm/yr during the late Quaternary. This slip rate is similar to that shown by present-day GPS measurements. Thus, we estimate that the Kunlun Fault Zone probably began left-lateral faulting at 10 ± 2 Ma based on a total displacement of 100 ± 20 km, and assuming a constant long-term slip rate of ca.10 mm/yr for several millions of years. And this timing constraint on initiation of left-lateral faulting of the Kunlun Fault Zone is consistent with widespread tectonic deformation which occurred in the Tibetan Plateau.  相似文献   

17.
《Gondwana Research》2015,28(4):1487-1493
Receiver function imaging along a temporary seismic array (ANTILOPE-2) reveals detailed information of the underthrusting of the Indian crust in southern Tibet. The Moho dips northward from ~ 50 km to 80 km beneath the Himalaya terrane, and locally reaches ~ 85 km beneath the Indus–Yalung suture. It remains at ~ 80 km depth across the Lhasa terrane, and shallows to ~ 70 km depth under the Qiangtang terrane. An intra-crustal interface at ~ 60 km beneath the Lhasa terrane can be clearly followed southward through the Main Himalaya Thrust and connects the Main Boundary Thrust at the surface, which represents the border of the Indian crust that is underthrusting until south of the Bangong–Nujiang Suture. A mid-crustal low velocity zone is observed at depths of 14–30 km beneath the Lhasa and Himalaya terranes probably formed by partial melt and/or aqueous fluids.  相似文献   

18.
The Sanjiang Tethyan Metallogenic Domain (STMD) is an important part of the Tethyan giant metallogenic belt. The Yidun Arc is a part of the STMD in the eastern Tibetan Plateau. Recently, four newly discovered Mo–Cu–(W) ore deposits related to granitic intrusions were found distributed along the north-south strike in the southern Yidun Arc, which are identified as the Xiuwacu, Relin, Hongshan, and Tongchanggou deposits herein. These four deposits formed along high-angle north-northwest or north-west strike-slip faults, with vein-type and porphyry-type Mo–Cu mineralization developed in the intrusions. Molybdenite Re–Os and zircon U–Pb dating together with zircon Hf isotopes and whole-rock geochemistry of the intrusions were studied to discern the relationship between mineralization and magmatism, metallogenesis, and tectonic settings. Molybdenite from skarn-type mineralization at the Hongshan deposit has a Re–Os isochron age of 81.2 ± 2.6 Ma (MSWD = 1.3, n = 5) consistent with previously published zircon U–Pb ages and Re–Os ages of porphyry-type Mo mineralization. These results indicate that the Hongshan is a Late Cretaceous porphyry-skarn Cu–Mo deposit. Zircon U–Pb ages of the granitic intrusions in the Xiuwacu, Relin, and Tongchanggou deposits varying from ~ 87.4 Ma to ~ 82.7 Ma. Combined with published molybdenite Re–Os age spectrum (~ 85 Ma to ~ 81.2 Ma), it is proposed that the Mo–Cu–(W) mineralization in the Shangri-La region is spatially, temporally, and probably genetically related to the Late Cretaceous granitic intrusions. The Relin, Hongshan, and Tongchanggou intrusions have high SiO2 (65.2–70.0 wt.%), Sr (363–905 ppm), Sr/Y (22–72), and La/Yb (37–69) ratios, and low Y (11.6–17.0 ppm) and Yb (0.97–1.59 ppm), which displayed adakitic affinities. Their low MgO (0.66–1.44 wt.%), Mg# (25–46), variable negative zircon εHf(t) values (− 7.9 to − 2.3), and Proterozoic two-stages Hf model ages (TDM2 = 1.13–1.62 Ga) suggest that they were probably dominantly derived from partial melting of thickened lower continental crust. According to the tectonic evolution of the Bangong Meso-Tethys Ocean during the Late Mesozoic, the Late Cretaceous igneous event and mineralization in the Yidun Arc likely formed under a late- or post-collision extensional environment, probably related to the collision between the Lhasa and Qiangtang terranes during the Late Cretaceous.  相似文献   

19.
Based on the analysis of experimental data on the viscosity of mafic to ultramafic magmatic melts with the use of our structure-chemical model for the calculation and prediction of the viscosity of magmas, we have first predicted that diamond-carryihg kimberlite magma must ascend from mantle to crust with considerable acceleration. The viscosity of kimberlite magma decreases by more than three times during its genesis, evolution, and ascent from mantle to crust despite the significant decrease in the temperature of the ascending kimberlite magma (~ 150 °C) and its partial crystallization and degassing. In the case of partial melting (< 1 wt.%) of carbonated peridotite in the mantle at depths of 250-350 km, high-viscosity (~ 35 Pas) kimberlite melts can be generated at ~ 8.5 GPa and ~ 1350 °C, the water content in the melt being up to ~ 8 wt.%, C(OH-) = 0-2 wt.%, and C(H2O) = 0-6 wt.%. On the other hand, during the formation of kimberlite pipes, dikes, and sills, the viscosity of near-surface kimberlite melts is much lower (~ 10 Pa s) at ~ 50 MPa and 1200 °C, the volume contents of crystals (Vcr) and the fluid phase (bubbles) (Vfl) are 35 and 5 vol.%, respectively, and the water content in magma, C(OH-), is 0.5 wt.%. On the contrary, the viscosity of basaltic magmas increases by more than two orders of magnitude during their ascent from mantle to crust. The basaltic magmas which can be generated in the asthenosphere at depths of ~ 100 km have the minimum viscosity (up to ~ 2.3 Pas) at ~ 4.0 GPa, 1350 °C, C(OH-) - 3 wt.%, and C(H2O) - 5 wt.%. However, at the final stage of evolution (e.g., during volcanic eruptions), the viscosity of basaltic magma is considerably higher (600 Pa s) at ~ 10 MPa, 1180 °C, Vcr - 30 vol.%, Vf - 15 vol.%, and C(OH-) - 0.5 wt.%.  相似文献   

20.
The origin of Illinois Episode (OIS 6) glacial ridges (formerly: ‘Ridged Drift’) in the Kaskaskia Basin of southwestern Illinois is controversial despite a century of research. Two studied ridges, containing mostly fluvial sand (OSL ages: ~ 150 ± 19 ka), with associated debris flows and high-angle reverse faults, are interpreted as ice-walled channels. A third studied ridge, containing mostly fine-grained till, is arcuate and morainal. The spatial arrangement of various ridge types can be explained by a glacial sublobe in the Kaskaskia Basin, with mainly fine-grained ridges along the sublobe margins and coarse-grained glaciofluvial ridges in a paleodrainage network within the sublobe interior. Illinois Episode till fabric and striation data demonstrate southwesterly ice flow that may diverge near the sublobe terminus. The sublobe likely formed as glacial ice thinned and receded from its maximum extent. The Kaskaskia Basin contains some of the best-preserved Illinois Episode constructional glacial landforms in the North American midcontinent. Such distinctive features probably result from ice flow and sedimentation into this former lowland, in addition to minimal postglacial erosion. Other similar OIS 6 glacial landforms may exist in association with previously unrecognized sublobes in the midcontinent, where paleo-lowlands might also have focused glacial sedimentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号