首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The characteristics of rain and point charges based on routine measurements extending over four rainy seasons are presented. An average rain current density of (1.0±0.1)×10–10 A m–2 and charge per unit volume of rain water of (0.43±0.02)×10–4 C m–3 for the locality are obtained, which are compared with data obtained elsewhere by other workers. The point-discharge current measurements lead to a revised estimate of (0.86±0.08)×10–9 A m–2 for the average point discharge current below storm clouds.  相似文献   

2.
The concentrations and sea-to-air fluxes of dissolved methane (CH4) were investigated in the North Yellow Sea during August 2006, January, April and October 2007. Dissolved CH4 concentrations showed obvious seasonal variation, with maximum values occurring in summer and lowest values occurring in winter. The saturations of dissolved CH4 in surface waters ranged from 78.7% to 1679.7% with an average of 252.4%. The estimated atmospheric CH4 fluxes using the Liss and Merlivat (LM86), and Wanninkhof formulae (W92) were (4.2±4.7), (11.6±10.3), (8.5±12.7) and (0.2±1.0), and (6.9±7.3), (14.6±22.3), (13.8±14.3) and (0.4±1.7) μmol·(m2 d)−1, respectively, for spring, summer, autumn and winter. Based on the average annual atmospheric CH4 flux and the area of the North Yellow Sea, the annual CH4 emission was estimated to be (2.4×10−2–4.2×10−2) Tg a−1, which suggests that the North Yellow Sea was a net source of atmospheric CH4.  相似文献   

3.
Discrimination of abiogenic and biogenic alkane gases   总被引:5,自引:0,他引:5  
We have combined the analytical data of the carbon isotope distribution pattern, R/Ra and CH4/3He values of abiogenic and biogenic (referring to the thermogenic and bacterial or microbial) alkane gases in China with those of alkane gases from USA, Russia, Germany, Australia and other countries. Four discrimination criteria are derived from this comparative study: 1) Carbon isotopic composition is generally greater than -30‰ for abiogenic methane and less than -30‰ for biogenic methane; 2) Abiogenic alkane gases have a carbon isotopic reversal trend (δ 13C1> δ 13C2> δ 13C3> δ 13C4) with δ 13C1>-30‰ in general; 3) Gases with R/Ra >0.5 and δ 13C11 δ 13C2>0 are of abiogenic origin; 4) Gases (meth- ane) with CH4/3He≤106 are of abiogenic origin, whereas gases with CH4/3He≥1011 are of biogenic origin.  相似文献   

4.
The precise knowledge of the initial 26Al/27Al ratio [(26Al/27Al)0] is crucial if we are to use the very first solid objects formed in our Solar System, calcium–aluminum-rich inclusions (CAIs) as the “time zero” age-anchor and guide future work with other short-lived radio-chronometers in the early Solar System, as well as determining the inventory of heat budgets from radioactivities for early planetary differentiation. New high-precision multi-collector inductively-coupled plasma mass spectrometry (MC-ICP-MS) measurements of 27Al/24Mg ratios and Mg-isotopic compositions of nine whole-rock CAIs (six mineralogically characterized fragments and three micro-drilled inclusions) from the CV carbonaceous chondrite, Allende yield a well-defined 26Al–26Mg fossil isochron with an (26Al/27Al)0 of (5.23 ± 0.13) × 10− 5. Internal mineral isochrons obtained for three of these CAIs (A44A, AJEF, and A43) are consistent with the whole-rock CAI isochron. The mineral isochron of AJEF with (26Al/27Al)0 = (4.96 ± 0.25) × 10− 5, anchored to our precisely determined absolute 207Pb–206Pb age of 4567.60 ± 0.36 Ma for the same mineral separates, reinstate the “canonical” (26Al/27Al)0 of 5 × 10− 5 for the early Solar System. The uncertainty in (26Al/27Al)0 corresponds to a maximum time span of ± 20 Ka (thousand years), suggesting that the Allende CAI formation events were culminated within this time span. Although all Allende CAIs studied experienced multistage formation history, including melting and evaporation in the solar nebula and post-crystallization alteration likely on the asteroidal parent body, the 26Al–26Mg and U–Pb-isotopic systematics of the mineral separates and bulk CAIs behaved largely as closed-system since their formation. Our data do not support the “supra-canonical” 26Al/27Al ratio of individual minerals or their mixtures in CV CAIs, suggesting that the supra-canonical 26Al/27Al ratio in the CV CAIs may have resulted from post-crystallization inter-mineral redistribution of Mg isotopes within an individual inclusion. This redistribution must be volumetrically minor in order to satisfy the mass balance of the precisely defined bulk CAI and bulk mineral data obtained by MC-ICP-MS.The radiogenic 208Pb/206Pb ratio obtained as a by-product from the Pb–Pb age dating is used to estimate time-integrated 232Th/238U ratio (κ value) of CAIs. Limited κ variations among the minerals within a single CAI, contrasted by much larger variations among the bulk CAIs, suggest Th/U fractionation occurred prior to crystallization of igneous CAIs. If interpreted as primordial heterogeneity, the κ value can be used to calculate the mean age of the interstellar dust from which the CAIs condensed.  相似文献   

5.
The metabolic balance between production and respiration in plankton communities of the Gulf of Papua was investigated in May 2004. Water samples taken at 19 stations were allocated to groups on the basis of physico-chemical characteristics. Oxygen consumption and production in flasks incubated in the dark and in the light was determined by micro-Winkler titration. Dark bottle respiration in samples influenced by the estuarine plume averaged 3.09±1.92 (SD) mmol O2 m−3 d−1 and production within surface light bottles averaged 7.63±3.36 (SD)  mmol O2 m−3 d−1. Corresponding values in stations more typical of the central Gulf of Papua were 1.68±1.30 (SD) mmol O2 m−3 d−1 and 1.08±2.25 (SD) mmol O2 m−3 d−1. Despite a shallow (<10 m) euphotic zone within the plume stations, phytoplankton production in the surface layers was sufficiently high to subsidise total water column respiration. Integrating production and respiration over the water column resulted in a calculation of net community production (NCP) of 626±504 (SD) mg C m−2 d−1, and community respiration (CR) of 712±492 mg C m−2 d−1 at the plume stations, with an average P:R ratio of 1.97. In the offshore group NCP was 157±450 (SD) mg C m−2 d−1 and CR was 1620±1576 mg C m−2 d−1. The average P:R ratio was 1.27. Three of the 7 stations allocated to the offshore group were net heterotrophic. In contrast to earlier studies in the area indicating that the Gulf of Papua waters is heterotrophic [Robertson, A.I., Dixon, P., Alongi, D.M., 1998. The influence of fluvial discharge on pelagic production in the Gulf of Papua, Northern Coral Sea. Estuarine, Coastal and Shelf Science 46, 319–331], our data indicate that in May 2004 the Gulf was in positive metabolic balance, but by only ∼120 mg C m−2 d−1. We conclude that waters of the Gulf of Papua under riverine influence are net autotrophic, but that within the central Gulf there is a fine metabolic balance alternating between autotrophy and heterotrophy.  相似文献   

6.
The backward‐averaged iterative two‐source surface temperature and energy balance solution (BAITSSS) model was developed to calculate evapotranspiration (ET) at point to regional scales. The BAITSSS model is driven by micrometeorological data and vegetation indices and simulates the water and energy balance of the soil and canopy sources separately, using the Jarvis model to calculate canopy resistance. The BAITSSS model has undergone limited testing in Idaho, United States. We conducted a blind test of the BAITSSS model without prior calibration for ET against weighing lysimeter measurements, net radiation, and surface temperature of drought‐tolerant corn (Zea mays L. cv. PIO 1151) in a semiarid, advective climate (Bushland, Texas, United States) in 2016. Later in the season (20 days), BAITSSS consistently overestimated ET by up to 3 mm d?1. For the entire growing season (127 days), simulated versus measured ET resulted in a 7% error in cumulative ET, RMSE = 0.13 mm h?1, and 1.70 mm d?1; r2 = 0.66 (daily) and r2 = 0.84 (hourly); MAE = 0.08 mm h?1 and 1.24 mm d?1; and MBE = 0.02 mm h?1 and 0.58 mm d?1. The results were comparable with thermally driven instantaneous ET models that required some calibration. Next, the initial soil water boundary condition was reduced, and model revisions were made to resistance terms related to incomplete cover and assumption of canopy senescence. The revisions reduced discrepancies between measured and modelled ET resulting in <1% error in cumulative ET, RMSE = 0.1 mm h?1, and 1.09 mm d?1; r2 = 0.86 (daily) and r2 = 0.90 (hourly); MAE = 0.06 mm h?1 and 0.79 mm d?1; and MBE = 0.0 mm h?1 and 0.17 mm d?1 and generally mitigated the previous overestimation. The advancement in ET modelling with BAITSSS assists to minimize uncertainties in crop ET modelling in a time series.  相似文献   

7.
The noble gas nuclide abundances and isotopic ratios of the upmost layer of Fe-Mn crusts from the western and central Pacific Ocean have been determined. The results indicate that the He and Ar nu- clide abundances and isotopic ratios can be classified into two types: low 3He/4He type and high 3He/4He type. The low 3He/4He type is characterized by high 4He abundances of 191×10-9 cm3·STP·g-1 on average, with variable 4He, 20Ne and 40Ar abundances in the range (42.8―421)×10-9 cm3·STP·g-1, (5.40―141)×10-9 cm3·STP·g-1, and (773―10976)×10-9 cm3·STP·g-1, respectively. The high 3He/4He samples are characterized by low 4He abundances of 11.7×10-9 cm3·STP·g-1 on average, with 4He, 20Ne and 40Ar abundances in the range of (7.57―17.4)×10-9 cm3·STP·g-1, (10.4―25.5)×10-9 cm3·STP·g-1 and (5354―9050)×10-9 cm3·STP·g-1, respectively. The low 3He/4He samples have 3He/4He ratios (with R/RA ratios of 2.04―2.92) which are lower than those of MORB (R/RA=8±1) and 40Ar/36Ar ratios (447―543) which are higher than those of air (295.5). The high 3He/4He samples have 3He/4He ratios (with R/RA ratios of 10.4―12.0) slightly higher than those of MORB (R/RA=8±1) and 40Ar/36Ar ratios (293―299) very similar to those of air (295.5). The Ne isotopic ratios (20Ne/22Ne and 21Ne/22Ne ratios of 10.3―10.9 and 0.02774―0.03039, respectively) and the 38Ar/36Ar ratios (0.1886―0.1963) have narrow ranges which are very similar to those of air (the 20Ne/22Ne, 21Ne/22Ne, 38Ar/36Ar ratios of 9.80, 0.029 and 0.187, respectively), and cannot be differentiated into different groups. The noble gas nuclide abundances and isotopic ratios, together with their regional variability, suggest that the noble gases in the Fe-Mn crusts originate primarily from the lower mantle. The low 3He/4He type and high 3He/4He type samples have noble gas characteristics similar to those of HIMU (High U/Pb Mantle)- and EM (Enriched Mantle)-type mantle material, respectively. The low 3He/4He type samples with HIMU-type noble gas isotopic ratios occur in the Magellan Seamounts, Marcus-Wake Seamounts, Marshall Island Chain and the Mid-Pacific Sea- mounts whereas the high 3He/4He type samples with EM-type noble gas isotopic ratios occur in the Line Island Chain. This difference in noble gas characteristics of these crust types implies that the MagellanSeamounts, Marcus-Wake Seamounts, Marshall Is- land Chain, and the Mid-Pacific Seamounts originated from HIMU-type lower mantle material whereas the Line Island Chain originated from EM-type lower mantle material. This finding is consistent with varia- tions in the Pb-isotope and trace element signatures in the seamount lavas. Differences in the mantlesource may therefore be responsible for variations in the noble gas abundances and isotopic ratios in the Fe-Mn crusts. Mantle degassing appears to be the principal factor controlling noble gas isotopic abundances in Fe-Mn crusts. Decay of radioactive isotopes has a negligible influence on the nuclide abundances and isotopic ratios of noble gases in these crusts on the timescale of their formation.  相似文献   

8.
A multispecies bloom caused by the centric diatoms, viz. Coscinodiscus radiatus, Chaetoceros lorenzianus and the pennate diatom Thalassiothrix frauenfeldii was investigated in the context of its impact on phytoplankton and microzooplankton (the loricate ciliate tintinnids) in the coastal regions of Sagar Island, the western part of Sundarban mangrove wetland, India. Both number (15–18 species) and cell densities (12.3 × 103 cells l−1 to 11.4 × 105 cells l−1) of phytoplankton species increased during peak bloom phase, exhibiting moderately high species diversity (H′ = 2.86), richness (R′ = 6.38) and evenness (E′ = 0.80). The diatom bloom, which existed for a week, had a negative impact on the tintinnid community in terms of drastic changes in species diversity index (1.09–0.004) and population density (582.5 × 103 to 50 × 103 ind m−3). The bloom is suggested to have been driven by the aquaculture activities and river effluents resulting high nutrient concentrations in this region. An attempt has been made to correlate the satellite remote sensing-derived information to the bloom conditions. MODIS-Aqua derived chlorophyll maps have been interpreted.  相似文献   

9.
Uranium-series dating is a critical tool in quaternary geochronology, including paleoclimate work, archaeology and geomorphology. Laser ablation (LA) methods are not as precise as most isotope dilution methods, but can be used to generate calendar ages rapidly, expanding the range of dating tools that can be applied to late Pleistocene carbonates. Here, existing LA methods are revisited for corals (cold- and warm-water) and speleothems spanning the last 343 thousand years (ka). Measurement of the required isotopes (238U, 234U, 230Th and 232Th) is achieved by coupling a laser system to a multi-collector inductively-coupled-plasma mass spectrometer (MC-ICPMS) using a combination of a single central ion counter and an array of Faraday cups. Each sample analysis lasts for ∼4.3 min, and fifty samples can be measured in 12 h with an automated set up, after a day of sample preparation. The use of different standard materials and laser systems had no significant effect on method accuracy. Uncertainty on the measured (230Th/238U) activity ratios ranges from 5.4% to 7.6% for (230Th/238U) ratios equal to 0.7 and 0.1 respectively. Much of this uncertainty can be attributed to the heterogeneity of the standard material (230Th/238U) at the length scale of LA. A homogeneous standard material may therefore improve measurement uncertainty but is not a requirement for age-screening studies. The initial (234U/238U) of coral samples can be determined within ∼20‰, making it useful as a first indicator of open-system behaviour. For cold-water corals, success in determination of (232Th/238U) – which can affect final age accuracy – by LA depended strongly on sample heterogeneity. Age uncertainties (2 sigma) ranged from <0.8 ka at 0–10 ka, ∼1.5 ka at 20 ka to ∼15 ka at 125 ka. Thus, we have demonstrated that U-series dating by LA-MC-ICPMS can be usefully applied to a range of carbonate materials as a straightforward age-screening technique.  相似文献   

10.
The Raman spectrograms of hydrocarbon standard samples show that: (1) the Raman spectrogram of normal paraffin has very strong peaks of methyl and methylene (from 2700 cm-1 to 2970 cm-1); (2) branch methyl has the particular peak of 748 cm-1±; (3) six cyclic has the particular peak of 804 cm-1±; (4) phenyl has two particular peaks of 988 cm-1± and 3058 cm-1± and the 988 cm-1± peak is stronger than the 3058 cm-1± peak; and (5) hexene has three alkenyl spectrum peaks of 1294 cm-1±, 1635 cm-1± and 2996 cm-1±, with the 1635 cm-1± peak being the strongest, showing that the number of carbon in hy-drocarbon does not affect its Raman spectrogram, and the hydrocarbon molecular structure and base groups affect its Raman spectrogram, the same hydrocarbons (such as normal paraffin) have the same Raman spectrogram; the types (such as CH4, C2H6, C3H8) and the content of hydrocarbon in oil inclu-sions are not estimated by their characteristic Raman peaks. According to the Raman spectrograms of hydrocarbon compositions, the Raman spectrogram of hydrocarbon inclusion can be divided into five types: saturated hydrocarbon Raman spectrogram, fluoresce Raman spectrogram, saturated hydro-carbon bitumen Raman spectrogram, bitumen Raman spectrogram, and ethane Raman spectrogram. And according to the characteristics of Raman spectrogram, hydrocarbon inclusions can be divided into five types: saturated hydrocarbon inclusion, less saturated hydrocarbon (oil or gas) inclusion, saturated hydrocarbon bitumen inclusion, bitumen inclusion, and methane water inclusion.  相似文献   

11.
Helium (He) and Argon (Ar) isotopic compositions of the Tertiary basic igneous rocks were determined by the high temperature melting extraction method. The selected samples for the studies included al-kaline basalts and diabases from the Jiyang basin,and the surrounding Shanwang and Qixia outcrops in the Shandong Peninsula,eastern China. The results show that the Paleogene basalts and diabases from the Jiyang basin yielded a wide range of P4 PHe abundance of (73.70-804.16)×10 P-8 Pcm P3 P STP·g P-1 P,with P3 PHe/ P4 PHe ratios of 0.374-2.959 Ra,which was lower than the MORB but evidently higher than the con-tinental crust value. The Neogene alkaline basalts from the Jiyang basin,Shanwang and Qixia outcrops have variable P4 PHe abundances ((42.34-286.72)×10-8 Pcm P3 P STP·g-1 P),and "continental crust-like" P3 PHe/ P4 PHe ratios (0.013-0.074 Ra). All of them contain atmospheric-like P40 PAr/ P36 PAr ratio (395.4-1312.7),reflecting the mantle sources with air components. Their low P3 PHe/ P4 PHe ratios are interpreted as the enrichment of the radiogenic P4 PHe mainly inherited from the mantle. He and Ar systematics show the mixing of MORB-type,air and a P4 PHe enriched member in the mantle source,suggesting that these igneous rocks originated from the depleted asthenospheric mantle mixed with an EMI component. Therefore,the present He and Ar isotopes do not support the viewpoints that the Cenozoic igneous rocks of Eastern North China were the products of mantle plume(s) activities.  相似文献   

12.
Sixty-eight sediment samples collected from Dongjiang River, Xijiang River, Beijiang River and Zhujiang River in the Pearl River Delta (PRD) region, Southern China, were analyzed for 16 phthalate esters (PAEs). PAEs were detected in all riverine sediments analyzed, which indicate that PAEs are ubiquitous environmental contaminants. The Σ16PAEs concentrations in riverine sediments in the PRD region ranged from 0.567 to 47.3 μg g1 dry weight (dw), with the mean and median concentrations of 5.34 μg g1 dw and 2.15 μg g1 dw, respectively. Elevated PAEs concentrations in riverine sediments in the PRD region were found in the highly urbanized and industrialized areas. Of the 16 PAEs, diisobutyl phthalate (DiBP), di-n-butyl phthalate (DnBP) and di(2-ethylhexyl) phthalate (DEHP) dominated the PAEs, with the mean and median concentrations of 1.12 μg g1 dw, 0.420 μg g1 dw and 3.72 μg g1 dw, and 0.429 μg g1 dw, 0.152 μg g1 dw and 1.55 μg g1 dw, respectively, and accounted for 94.2–99.7% of the Σ16PAEs concentrations. Influenced by local sources and the properties of PAEs, a gradient trend of concentrations and a fractionation of composition from more to less industrialized and urbanized areas were discovered. As compared to the results from other studies, the riverine sediments in the PRD region were severely contaminated with PAEs. Information about PAEs contamination status and its effect on the aquatic organisms in the PRD region may deserve further attention.  相似文献   

13.
This study reports an inter-laboratory comparison of the 3He and 4He concentrations measured in the pyroxene material CRONUS-P. This forms part of the CRONUS-Earth and CRONUS-EU programs, which also produced a series of natural reference materials for in situ produced 26Al, 10Be, 14C, 21Ne and 36Cl.Six laboratories (GFZ Potsdam, Caltech Pasadena, CRPG Nancy, SUERC Glasgow, BGC Berkeley, Lamont New York) participated in this intercomparison experiment, analyzing between 5 and 22 aliquots each. Intra-laboratory results yield 3He concentrations that are consistent with the reported analytical uncertainties, which suggests that 3He is homogeneous within CRONUS-P. The inter-laboratory dataset (66 determinations from the 6 different labs) is characterized by a global weighted mean of (5.02 ± 0.12) × 109 at g−1 with an overdispersion of 5.6% (2σ). 4He is characterized by a larger variability than 3He, and by an inter-lab global weighted mean of (3.60 ± 0.18) × 1013 at g−1 (2σ) with an overdispersion of 10.4% (2σ).There are, however, some systematic differences between the six laboratories. More precisely, 2 laboratories obtained mean 3He concentrations that are about 6% higher than the clustered other 4 laboratories. This systematic bias is larger than the analytical uncertainty and not related to the CRONUS-P material (see Schaefer et al., 2015). Reasons for these inter-laboratory offsets are difficult to identify but are discussed below. To improve the precision of cosmogenic 3He dating, we suggest that future studies presenting cosmogenic 3He results also report the 3He concentration measured in the CRONUS-P material in the lab(s) used in a given study.  相似文献   

14.
Late Early Paleozoic mafic-ultramafic dykes and volcanic rocks from the South Qinling belt are char- acterized by εNd( t ) = 3.28― 5.02, (87Sr/86Sr)i= 0.70341― 0.70555, (206Pb/204Pb)i = 17.256― 18.993, (207Pb/204Pb)i= 15.505―15.642, (208Pb/204Pb)i=37.125―38.968, ?8/4=21.18―774.43, ?7/4=8.11―18.82. These charac- teristics suggest that they derived from a Middle Neoproterozoic mantle with isotopic compositions of mixed HIMU, EMII and minor EMI components. We interpret that these rocks were melting products of depleted mantle modified by subducted ancient oceanic crust and continental margin sediments along the northern margin of Yangtze block during Early Neoproterozoic.  相似文献   

15.
Pressure–volume–temperature relations have been measured to 32 GPa and 2073 K for natural magnesite (Mg0.975Fe0.015Mn0.006Ca0.004CO3) using synchrotron X-ray diffraction with a multianvil apparatus at the SPring-8 facility. A least-squares fit of the room-temperature compression data to a third-order Birch–Murnaghan equation of state (EOS) yielded K0 = 97.1 ± 0.5 GPa and K′ = 5.44 ± 0.07, with fixed V0 = 279.55 ± 0.02 Å3. Further analysis of the high-temperature compression data yielded the temperature derivative of the bulk modulus (∂KT/∂T)P = −0.013 ± 0.001 GPa/K and zero-pressure thermal expansion α = a0 + a1T with a0 = 4.03 (7) × 10−5 K−1 and a1 = 0.49 (10) × 10−8 K−2. The Anderson–Grüneisen parameter is estimated to be δT = 3.3. The analysis of axial compressibility and thermal expansivity indicates that the c-axis is over three times more compressible (KTc = 47 ± 1 GPa) than the a-axis (KTc = 157 ± 1 GPa), whereas the thermal expansion of the c-axis (a0 = 6.8 (2) × 10−5 K−1 and a1 = 2.2 (4) × 10−8 K−2) is greater than that of the a-axis (a0 = 2.7 (4) × 10−5 K−1 and a1 = −0.2 (2) × 10−8 K−2). The present thermal EOS enables us to accurately calculate the density of magnesite to the deep mantle conditions. Decarbonation of a subducting oceanic crust containing 2 wt.% magnesite would result in a 0.6% density reduction at 30 GPa and 1273 K. Using the new EOS parameters we performed thermodynamic calculations for magnesite decarbonation reactions at pressures to 20 GPa. We also estimated stability of magnesite-bearing assemblages in the lower mantle.  相似文献   

16.
The on- and off-site effects of soil erosion in many environments are well known, but there is still limited understanding of the soil loss fluxes in downstream direction due, among other factors, to scarce and poor quality. A four year study to (i) evaluate water and sediment fluxes at different spatio-temporal scales and (ii) interpret the results in terms of processes involved and the controlling factors, was conducted in Thukela basin, South Africa. Five hierarchically nested catchments; namely microcatchment (0.23 km2), subcatchment (1.20 km2), catchment (9.75 km2), sub-basin (253 km2) and basin (29,038 km2), were used in addition to fifteen (1 m2) microplots and ten (10 m2) plots on five locations within the microcatchment. The results showed 19% decrease of unit-area runoff (q) from 3.1 L m−2 day−1 at microplot to 2.5 L m−2 day−1 at plot scale followed by steeper (56%) decrease at microcatchment scale. The q decreased in downstream direction to very low level (q ≤ 0.26 L m−2 day−1). The changes in q were accompanied by initial 1% increase of soil loss (SL) from 18.8 g m−2 day−1 at microplot to 19.1 g m−2 day−1 at plot scale. The SL also decreased sharply (by 39 fold) to 0.50 g m−2 day−1 at microcatchment scale, followed by further decrease in downstream direction. The decrease of q with spatial scale was attributed to infiltration losses, while initial increase of SL signified greater competence of sheet than splash erosion. The decrease of SL beyond the plot scale was attributed to redistribution of the soil on the hillslope and deposition on the stream channel upstream of the microcatchment outlet. Therefore, erosion control strategies focussing on the recovery of vegetation on the slope and stabilisation of gullies are recommended.  相似文献   

17.
In situ synchrotron X-ray diffraction experiments were conducted using the SPEED-1500 multi-anvil press at SPring-8 on majoritic garnet synthesized from natural mid-ocean ridge basalt (MORB), whose chemical composition is close to the average of oceanic crust, at 19 GPa and 2200 K. Pressure-volume-temperature data were collected using a newly developed high-pressure cell assembly to 21 GPa and 1273 K. Data were fit to the high-temperature Birch-Murnaghan equation of state, with fixed values for the ambient cell volume (V0 = 1574.14(4) Å3) and the pressure derivative of the isothermal bulk modulus (KT = 4). This yielded an isothermal bulk modulus of KT0 = 173(1) GPa, a temperature derivative of the bulk modulus (∂KT/∂T)P = −0.022(5) GPa K−1, and a volumetric coefficient of thermal expansivity α = a + bT with values of a = 2.0(3) × 10−5 K−1 and b = 1.0(5) × 10−8 K−2. The derived thermoelastic parameters are very similar to those of pyrope. The density of subducted oceanic crust compared to pyrolitic mantle at the conditions in Earth's transition zone (410-660 km depth) was calculated using these results and previously reported thermoelastic parameters for MORB and pyrolite mineral assembledges. These calculations show that oceanic crust is denser than pyrolitic mantle throughout the mantle transition zone along a normal geotherm, and the density difference is insensitive to temperature at the pressures in lower part of the transition zone.  相似文献   

18.
Low tide rainfall may represent an important but little studied process affecting sediment fluxes on intertidal mudflats. In this study, we simulated rainfall events on an intertidal mudflat (median grain size=18.4 μm) of low slope (1 in 300) then quantified effects on sediment erodibility. Treatments consisted of a high (4.1 mm min−1 for 6 min) and low (0.36 mm min−1 for 60 min) rain intensity, chosen to match naturally occurring events and experiments were conducted seasonally (May and August) to encompass variations in ambient sediment stability. Changes in bed elevation due to rainfall were estimated using marked rods and sediment erodibility parameters (mass of sediment eroded at a flow velocity of 0.3 m s−1 (ME-30, g m−2) and critical erosion velocity (Ucrit, m s−1)) were determined in annular flumes (bed area=0.17 m2). Ambient/control sediment erodibility in May (ME-30=211 g m−2, Ucrit=0.18 m s−1) was higher than in August (ME-30=30 g m−2, Ucrit=0.26 m s−1) and was correlated with changes in biological activity. In May, surface sediment was influenced by high densities of the bioturbating snail Hydrobia ulvae (1736 ind. m−2) and low biomass of the sediment stabilising microphytobenthos (5.7 μg chlorophyll a cm−2). In contrast, in August H. ulvae densities were low (52 ind. m−2) and microphytobenthic biomass higher (9.2 μg chlorophyll a cm−2). The high rain treatment caused a decrease in bed elevation of between 1.5 mm (May) and 4.4 mm (August) and significantly reduced sediment organic content and microphytobenthic biomass. Rainfall increased sediment erodibility; compared to ambient sediments ME-30 increased by a factor of 1.4× in May and 8.8× in August and caused a 10–30% decline in Ucrit. The seasonal difference in treatment effect was due to the change in ambient sediment stability. The low rain treatment in August had no effect on bed elevation, microphytobenthic biomass or sediment erodibility. In May, the same treatment caused a reduction in bed elevation (0.5 mm) and microphytobenthic biomass but counter-intuitively, a decrease in sediment erodibility (ME-30 was reduced by 40%, Ucrit increased by 5%) compared to controls. We attribute this result to removal by rainfall of easily eroded surface flocs and biogenic roughness which resulted in an underlying sediment with a smoother surface and greater resistant to erosion. Results suggest that high intensity rain events may destabilise intertidal sediments making them more susceptible to erosion by returning tidal currents and that the sediment eroded during such events may represent a considerable fraction (up to 25%) of the seasonal variation in shore elevation. The impact of natural rain events are likely to vary considerably due to variations in droplet size, intensity and duration and the interaction with ambient sediment stability.  相似文献   

19.
In this paper we suggest that conditional estimator/predictor of rockburst probability (and rockburst hazard, P T (t)) can be approximated with the formula P T (t) = P 1(θ 1)…P N (θ N P dyn T (t), where P dyn T (t) is a time-dependent probability of rockburst given only the predicted seismic energy parameters, while P i (θ i ) are amplifying coefficients due to local geologic and mining conditions, as defined by the Expert Method of (rockburst) Hazard Evaluation (MRG) known in the Polish mining industry. All the elements of the formula are (approximately) calculable (on-line) and the resulting P T value satisfies inequalities 0 ≤ P T (t) ≤ 1. As a result, the hazard space (0–1) can be always divided into smaller subspaces (e.g., 0–10−5, 10−5–10−4, 10−4–10−3, 10−3–1), possibly named with symbols (e.g., A, B, C, D, …) called “hazard states” — which saves the prediction users from worrying of probabilities. The estimator P T can be interpreted as a formal statement of (reformulated) Comprehensive Method of Rockburst State of Hazard Evaluation, well known in Polish mining industry. The estimator P T is natural, logically consistent and physically interpretable. Due to full formalization, it can be easily generalized, incorporating relevant information from other sources/methods.  相似文献   

20.
The contents of 31 samples from free-drifting sediment traps deployed in the Gulf of St. Lawrence (GSL) were analyzed for the individual contribution of the different types of particles encountered to the total particulate organic carbon (POC) flux. Two trap models were used in 1993-1994: small traps at 50 m depth and large traps at 50 and 150 m. Total POC fluxes averaged 42 mg C m−2 d−1 for the more reliable large trap and 149 mg C m−2 d−1 for the small trap. The POC fluxes were attributed to different classes of particles based upon microscopically determined particle dimensions and carbon/volume algorithms available in the literature. Fecal pellets, followed by phytoplankton, were the major attributable components, with important contributions by microzooplankton, particularly during the summer of 1994. The mean fluxes for pellets (6 and 60 mg  C m−2 d−1, for the large and small traps, respectively) and phytoplankton (3.2 and 42.9 mg C m−2 d−1) were in the range of those encountered in other areas of moderate primary productivity. Mean zooplankton carbon fluxes (1.8 and 8.5 mg C m−2 d−1, respectively), however, reflect higher than average zooplankton abundances in the GSL. The C fluxes of specific algal groups confirmed the existence of three trophic regimes previously identified from water column studies and numeric cell fluxes: (1) a period when diatoms were dominant during the spring, (2) a longer interval, which was dominated by dinoflagellates at most others times of the year, and (3) a period of transition during summer. Carbon of animal origin dominated the attributable flux, including an important fraction associated with heterotrophic dinoflagellates. The contribution of marine snow to the total flux (estimated as the difference between the total POC flux and the sum of the attributed components) frequently amounted to more than 60%. The true importance of marine snow remains uncertain, however, because the errors associated with each of the measured components accumulate to produce large uncertainties. The methodological problems involved are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号