首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase equilibria modeling of the pressure–temperature (PT) path of regional metamorphism and associated fluid expulsion, combined with constraints on the timescale of garnet growth by Sm–Nd geochronology, elucidates the fluid production rate and fluid flux during Barrovian metamorphism of pelitic rocks from Townshend Dam, VT, USA. This modeling builds on a published companion study that utilized Sm–Nd geochronology of concentric growth zones in multiple garnet grains, to constrain the duration of garnet growth in a large sample of schist at Townshend Dam to 3.8?±?2.2 million years (Gatewood et al., Chem Geol 401:151–168, 2015). PT pseudosections combined with observed mineral compositions constrain garnet growth conditions, and were utilized to construct PT path-dependent thermodynamic forward models. These models determine that garnet growth was initiated at ~?0.6 GPa and ~?525 °C, with a roughly linear loading and heating PT trajectory to >?0.8 GPa and ~?610 °C. Loading and heating rates of 2.4 km·Myear?1 (with a range of 1.6 to 5.8 km·million year?1) and 23 °C·million year?1 (with a range of 14 to 54 °C·million year?1), respectively, are consistent with model estimates and chronologic constraints for tectono-metamorphic rates during orogenesis. Phase equilibria modeling also constrains the amount of water release during garnet growth to be ~?0.7 wt% (or >?2 vol%), largely resulting from the complete consumption of chlorite. Coupling this estimate with calculated garnet growth durations provides a fluid production rate of 5.2 kg·m?3·million year?1 (with a range of 3.2 to 12.2 kg·m?3·million year?1) and when integrated over the overlying crustal column, a regional-scale fluid flux of 0.07–0.37 kg·m?2·million year?1. This range of values is consistent with those derived by numerical models and theory for regional-scale, pervasive fluid flow. This study signifies the first derivation of a fluid production rate and fluid flux in regional metamorphism using a direct chronology of water-producing (garnet-forming) reactions and can provide a framework for future studies on elucidating the nature and timescales of fluid release.  相似文献   

2.
A complete Barrovian sequence ranging from unmetamorphosed shales to sillimanite–K-feldspar zone metapelitic gneisses crops out in a region extending from the Hudson River in south-eastern New York state, USA, to the high-grade core of the Taconic range in western Connecticut. NNE-trending subparallel biotite, garnet, staurolite, kyanite, sillimanite and sillimanite–K-feldspar isograds have been identified, although the assignment of Barrovian zones in the high-grade rocks is complicated by the appearance of fibrolitic sillimanite at the kyanite isograd. Thermobarometric results and reaction textures are used to characterize the metamorphic history of the sequence. Pressure–temperature estimates indicate maximum metamorphic conditions of 475 °C, c. 3–4 kbar in the garnet zone to >720 °C, c. 5–6 kbar in the highest grade rocks exposed. Some samples in the kyanite zone record anomalous (low) peak conditions because garnet composition has been modified by fluid-assisted reactions. There is abundant petrographic and mineral chemical information indicating that the sequence (with the possible exception of the granulite facies zone) was infiltrated by a water-rich fluid after garnet growth was nearly completed. The truncation of fluid inclusion trails in garnet by rim growth or recrystallization, however, indicates that metamorphic reactions involving garnet continued subsequent to initial infiltration. The presence of these textures in some zones of a well-constrained Barrovian sequence allows determination of the timing of fluid infiltration relative to the P–T paths. Thermobarometric results obtained using garnet compositions at the boundary between fluid–inclusion-rich and inclusion-free regions of the garnet are interpreted to represent peak metamorphic conditions, whereas rim compositions record slightly lower pressures and temperatures. Assuming that garnet grew during a single metamorphic event, infiltration must have occurred at or slightly after the peak of metamorphism, i.e. 4–5 kbar and a temperature of c. 525–550 °C for staurolite and kyanite zone rocks.  相似文献   

3.
A suite of pelitic rocks around Kandra, Singhbhum District, Bihar, displays a metamorphic gradient registered by the index minerals chlorite, biotite, garnet, staurolite and sillimanite in a Barrovian sequence. Metamorphism was by and large coeval with folding movements, and correlating the internal fabric of minerals and deformational characters, a regular sequence of the index minerals is derived. It is argued that the chronological order by itself is not sufficient to prove that metamorphism was progressive in time.Among the index minerals, garnet appears to have formed by the reaction chlorite+biotitea+quartz garnet+biotiteb+H2O. For the origin of sillimanite, a new reaction, 3 staurolite+muscovite+quartz=7 sillimanite+biotite+3H2O, is suggested on the basis of significant textural features. Textural and petrological indications regarding the formation of staurolite are in discordance. Staurolite was either derived from the biotite zone phases, or should be taken to have formed, against textural evidences, from chloritoids of the garnet zone.Graphical analysis of the assemblages by Thompson's AFM projection reveals that chlorite and staurolite are excess phases owing to retrogression and incomplete reaction. Shifting of apices of triangular fields and intersection of garnet-biotite tie lines within a zone can be satisfactorily explained in terms of extra components CaO and MnO or their ratios. It is pointed out that if MgO/(MgO + FeO) between two phases show a linear relation, their tie lines will be concurrent on the AF side of the projection, the point of concurrence reflecting equilibrium and temperature of recrystallisation.  相似文献   

4.
 Siliceous dolomites and limestones contain abundant retrograde minerals produced by hydration-carbonation reactions as the aureole cooled. Marbles that contained periclase at the peak of metamorphism bear secondary brucite, dolomite, and serpentine; forsterite-dolomite marbles have retrograde tremolite and serpentine; wollastonite limestones contain secondary calcite and quartz; and wollastonite-free limestones have retrograde tremolite. Secondary tremolite never appears in marbles where brucite has replaced periclase or in wollastonite-bearing limestones. A model for infiltration of siliceous carbonates by CO2-H2O fluid that assumes (a) vertical upwardly-directed flow, (b) fluid flux proportional to cooling rate, and (c) flow and reaction under conditions of local equilibrium between peak temperatures and ≈400 °C, reproduces the modes of altered carbonate rocks, observed reaction textures, and the incompatibility between tremolite and brucite and between tremolite and wollastonite. Except for samples from a dolomite xenolith, retrograde time-integrated flux recorded by reaction progress is on the order of 1000 mol fluid/cm2 rock. Local focusing of flow near the contact is indicated by samples from the xenolith that record values an order of magnitude greater. Formation of periclase, forsterite, and wollastonite at the peak of metamorphism also required infiltration with prograde time-integrated flux approximately 100–1000 mol/cm2. The comparatively small values of prograde and retrograde time-integrated flux are consistent with lack of stable isotope alteration of the carbonates and with the success of conductive thermal models in reproducing peak metamorphic temperatures recorded by mineral equilibria. Although isobaric univariant assemblages are ubiquitous in the carbonates, most formed during retrograde metamorphism. Isobaric univariant assemblages observed in metacarbonates from contact aureoles may not record physical conditions at the peak of metamorphism as is commonly assumed. Received: 19 September 1995 / Accepted: 14 March 1996  相似文献   

5.
Numerical simulations of diffusion‐controlled nucleation and growth of garnet porphyroblasts in regionally metamorphosed rocks constrain interfacial energy and rates of nucleation and Al intergranular diffusion. The 13 rocks analysed in this study were collected from seven localities exhibiting a diverse range of crystallization conditions. Kinetic parameters governing nucleation and intergranular diffusion were adjusted iteratively to achieve fits between simulated and natural porphyroblastic textures. Model fits were assessed primarily from textural characteristics precisely measured by high‐resolution X‐ray computed tomography. Interfacial energy for heterogeneous nucleation ranges from 0.007 to 0.255 J m?2 for the sample suite, assuming shape factors in the range 0.01–1.0. Nucleation rates change through space and time due to growth and impingement of Al depletion zones surrounding porphyroblasts. In some models, the overall rock‐wide nucleation rate rises steeply, achieves a steady state, and then falls rapidly as reactants are consumed; in others, the steady state is not achieved, but instead the rate simply peaks before falling. Maximum rock‐wide nucleation rates range from 10?14.7 to 10?10.7 nuclei cm?3 s?1, and maximum local rates range from 10?13.7 to 10?9.7 nuclei?cm?3 s?1 depending on Al supersaturation. Diffusive fluxes of Al are well constrained by the simulated textures, but rates of intergranular diffusion are subject to uncertainties in Al solubility and interconnected porosity. Best estimates of Al diffusivities at 600 °C span 10?12.3 to 10?10.5 m2 s?1 for the sample suite, a narrow range considering natural variability and the uncertainties in solubility and porosity. Eliminating some models suspected of higher uncertainty for these quantities yields diffusivities at 600 °C near 10?11.0 m2 s?1, with dispersion of less than half an order of magnitude. These simulations, which are among the first attempted for regionally metamorphosed rocks, emphasize that: (i) nucleation rates vary markedly in time and space during crystallization; (ii) nucleation extends well beyond equilibrium conditions; (iii) Al diffusivity likely varies over only a narrow range across common metamorphic circumstances; and (iv) better determinations of both Al solubility and interconnected porosity are needed to constrain rates of Al intergranular diffusion more precisely.  相似文献   

6.
Calculated phase equilibria involving minerals and H2O–CO2–NaCl fluid lead to predictions of how infiltration of rock by H2O–NaCl fluids with X NaCl in the range 0–0.3 (0–58 wt% NaCl) drives the reactions calcite + quartz = wollastonite + CO2 and dolomite = periclase + calcite + CO2. Calculations focus on metamorphism in four aureoles that together are representative of the normal PT conditions and processes of infiltration-driven contact metamorphic reactions. The effect of salinity on the spatial extent of oxygen isotope alteration was also computed. The time-integrated input fluid flux (q°) that displaces the mineral reaction front an increment of distance along the flow path always increases with increasing X NaCl. For input fluids with salinity up to approximately five times that of seawater (X NaCl ≤ 0.05), values of q° required to explain the spatial extent of decarbonation reaction are no more than 1.1–1.5 times that computed assuming the input fluid was pure H2O. For more saline fluids, values of q° may be up to 1.4–7.9 times that for pure H2O. Except for reaction in the presence of halite and vapor (V), infiltration of H2O–NaCl fluids expands the region of oxygen isotope alteration relative to the size of the region of mineral reaction. The expansion is significant only for saline fluids with X NaCl ≥ ~0.1. Immiscible fluid phase separation and differential loss of the liquid (L) or V phase from the mineral reaction site increases the amount of reactive fluid required to advance the mineral reaction front compared to conditions under which equilibration of minerals and fluid is attained with no loss of L or V. Decarbonation reactions driven by infiltration of fluids with even modest seawater-like salinity can explain the occurrence of salt-saturated fluid and solid halide inclusions in contact metamorphosed carbonate rocks.  相似文献   

7.
Conversion of carbonaceous material to graphite during metamorphism   总被引:2,自引:0,他引:2  
Using high-resolution transmission electron microscopy (HRTEM), we have charted some of the structural changes that occur as non-crystalline organic matter in low-grade metamorphic rocks becomes ordered, eventually to form well-crystallized graphite. It has long been known from X-ray studies that the state of crystallization of carbonaceous matter increases with metamorphic grade. Images obtained by HRTEM of samples from a range of metamorphic terranes provide considerable additional detail regarding the process of graphite development. The process is considerably more complex than is suggested by light-optical microscopy and powder X-ray diffraction measurements.In low-grade metamorphic rocks, the carbon layers are relatively few in number, short in length, and rather contorted. Electron-diffraction patterns show only one or two rings, and they are diffuse. As metamorphic grade increases, the carbon layers progressively increase in length and in number, the number of layers in the crystallite stacks increases, the planarity of the layers increases, and the number of layer terminations decreases. Electron-diffraction patterns show complementary increasing numbers of rings, decreasing diffuseness, and, for well-crystallized graphite, discrete spots. Well-crystallized graphite crystals appear in the chlorite zone but, in contrast to most X-ray measurements, a range of structural order is commonly observed among the various crystallites within a given rock sample. These presumably reflect the chemical and structural character of the carbonaceous precursors, possibly their sedimentary sources, as well as the degree of internal equilibration. The results of our electron microscope observations also have implications for interpreting measurements of carbon-isotope fractionations and the apparent lack of equilibrium reported in many such measurements.  相似文献   

8.
Numerical models of diffusion‐controlled nucleation and growth of garnet crystals, which successfully replicate diverse textures in 13 porphyroblastic rocks, yield quantitative estimates of the magnitudes of departures from equilibrium during crystallization. These estimates are derived from differences in chemical potential between subvolumes containing stable product assemblages and those containing persistent but metastable reactant assemblages. The magnitude of disequilibrium is evaluated in terms of the thermal overstepping, which is commonly referenced to the garnet‐in isograd; the reaction affinity in the intergranular fluid at the site and time of each nucleation event, and on average throughout the rock, and the ‘latent energy of reaction’ per unit volume, a measure of the average unreacted capacity of the bulk rock, which describes its overall metastability. Across all of the models, the first crystals nucleate after 5–67 °C of thermal overstepping (correspondingly, 0.7–5.8 kJ mol?1 of 12‐oxygen garnet); the maximum reaction affinity averaged across the intergranular fluid is between 4.7 and 16.0 kJ mol?1 of 12‐oxygen garnet; and the maximum latent energy of reaction ranges from 7.3 to 51.7 J cm?3. These results demonstrate that impediments to crystallization significantly delay nucleation and retard reaction, with the consequence that nucleation of new crystals extends throughout nearly the entire crystallization interval. This potential for protracted reaction during prograde metamorphism, with reactions continuing to temperatures and pressures well beyond equilibrium conditions, suggests the likelihood of overstepping of multiple – possibly competing – reactions that can progress simultaneously. Isograds and ranges of stability for metamorphic assemblages along a metamorphic field gradient may therefore be significantly offset from the positions predicted from calculations based on equilibrium assumptions, which poses a substantial challenge to accurate interpretations of metamorphic conditions and processes.  相似文献   

9.
10.
11.
Numerical and analytical models of fluid flow that account for fluid production during prograde regional and contact metamorphism show that expulsion of metamorphic fluids dominates the convective flux when crustal permeabilities are less than 0.1–100 μD, depending primarily on the rate of fluid production. When this is the case, fluid circulation is limited or prevented, fluid pressures are elevated above hydrostatic values, and flow throughout most of the model is up and away from the region of maximum fluid production. Fluid circulation is predicted to occur where permeability is high, in dry rocks, or after rates of fluid production decrease as peak temperatures are reached. Large changes in the pattern of flow and influx of externally derived fluids may thus occur in metamorphic terranes when dehydration wanes or ceases and cooling begins. Inclusion of an impermeable horizon in the models further inhibits fluid circulation. Earlier, shallow hydrothermal models and interpretations based on the Rayleigh number may be inappropriate for characterizing fluid flow during prograde metamorphism at depth because they do not account for fluid production.  相似文献   

12.
The reaction chlorite+muscovite=staurolite+biotite+quartz+vapor has been experimentally determined and reversible equilibrium has been demonstrated. At an oxygen fugacity corresponding to that of the FMQ buffer and using a starting mixture with a Mg/Mg+Fe ratio of 0.4, the equilibrium conditions of the reaction are 565±15°C at 7 kb and 540±15°C at 4 kb. The preliminary maximum stability of staurolite in the presence of quartz, muscovite, and biotite has been established at the following conditions: 675±15°C at 5.5 kb and 575±15°C at 2 kb. The results of both investigations are in good agreement with other experimental data and with petrographical observations. Furthermore, equilibria between minerals in medium-grade pelitic rocks are deduced from theoretical considerations and the effect of T, P solid, , on some dehydration reactions is discussed.  相似文献   

13.
Metamorphism to intermediate-pressure granulite grade had a minimal effect on the geochemistry of layered gneisses in central Australia. The overall composition of the terrain is granodioritic and major element compositions have equivalents in igneous and sedimentary supracrustal rocks. K, Rb, Sr and probably Th concentrations, and K/Rb ratios are normal; the initial isotopic composition of Sr shows the usual range of crustal rocks. However, U is strongly depleted and was lost by a pervasive process, probably dehydration, rather than by anatexis. Comparison with other areas in which major chemical depletions and unusually low initial Sr isotopic ratios are postulated leads to alternative interpretations of these areas which do not involve large scale chemical migration. An intermediate composition for the lower crust may result from a high density of basic intrusions rather than chemical processes.  相似文献   

14.
15.
Abstract Widespread ultra-high-P assemblages including coesite, quartz pseudomorphs after coesite, aragonite, and calcite pseudomorphs after aragonite in marble, gneiss and phengite schist are present in the Dabie Mountains eclogite terrane. These assemblages indicate that the ultra-high-P metamorphic event occurred on a regional scale during Triassic collision between the Sino-Korean and Yangtze cratons. Marble in the Dabie Mountains is interlayered with coesite-bearing eclogite and gneiss and as blocks of various size within gneiss. Discontinuous boudins of eclogite occur within marble layers. Marble contains an ultra-high-P assemblage of calcite/aragonite, dolomite, clinopyroxene, garnet, phengite, epidote, rutile and quartz/coesite. Coesite, quartz pseudomorphs after coesite, aragonite and calcite pseudomorphs after aragonite occur as fine-grained inclusions in garnet and omphacite. Phengites contain about 3.6 Si atoms per formula unit (based on 11 oxygens). Similar to the coesite-bearing eclogite, marble exhibits retrograde recrystallization under amphibolite–greenschist facies conditions generated during uplift of the ultra-high-P metamorphic terrane. Retrograde minerals are fine grained and replace coarse-grained peak metamorphic phases. The most typical replacements are: symplectic pargasitic hornblende + epidote after garnet, diopside + plagioclase (An18) after omphacite, and fibrous phlogopite after phengite. Ferroan pargasite + plagioclase, and actinolite formed along grain boundaries between garnet and calcite, and calcite and quartz, respectively. The estimated peak P–T conditions for marble are comparable to those for eclogite: garnet–clinopyroxene geothermometry yields temperatures of 630–760°C; the garnet–phengite thermometer gives somewhat lower temperatures. The minimum pressure of peak metamorphism is 27 kbar based on the occurrence of coesite. Such estimates of ultra-high-P conditions are consistent with the coexistence of grossular-rich garnet + rutile, and the high jadeite content of omphacite in marble. The fluid for the peak metamorphism was calculated to have a very low XCO2 (<0.03). The P–T conditions for retrograde metamorphism were estimated to be 475–550°C at <7 kbar.  相似文献   

16.
Whole-rock major element chemical analyses of progressively metamorphosed impure carbonate rocks and pelitic schists, collected from the same metamorphic terrain, reveal similarities and differences in the chemical response of these rock types to the metamorphic event. Relative to a constant aluminum reference frame, both schist and carbonate exhibit no detectable change in their contents of Fe, Mg, Ti, Si, and Ca with change in metamorphic grade. Carbonate rocks become progressively depleted in K and Na with increasing grade of metamorphism, while schists exhibit no statistically significant change in their contents of K and Na. Both rock types become depleted in volatiles (principally CO2 and H2O) with increasing grade.Whole-rock chemical data permit two mechanisms for migration of K and Na from the carbonate rocks during metamorphism: (a) diffusion of alkalis from carbonate to adjacent schist; (b) transport of alkalis by through-flowing metamorphic fluid (infiltration). Mineral equilibria in schist and metacarbonate rock from the same outcrops allow calculation of the affinity for cation exchange between the two rock types during metamorphism. Measured affinities indicate that if mass transport of K and Na occurred by diffusion, chemical potential gradients would have driven the alkalis from schist into carbonate rock. Because diffusion cannot produce the observed chemical trends in the metacarbonates, K and Na are believed to have been removed during metamorphism by infiltration.The disparity in chemical behavior between the pelitic schists and metacarbonate rocks may be a result of enhanced fluid flow through the carbonates. The carbonate rocks may have acted as metamorphic aquifers; the greater flow of fluid through them would then have had a correspondingly greater effect on their whole-rock chemistry.  相似文献   

17.
《International Geology Review》2012,54(11):1722-1725
The temperature at which organic substance begins to burn, i.e., the exothermal effect in the thermograms, is found to represent directly the degree of recrystallization of organic substance of the rock, which in turn represents the degree of regional metamorphism, namely: epigenesis, 360-400°C; slate-schist, 440°C; beginnings of progressive zonal regional metamorphism: in muscovite-chlorite rocks, 440-550°C; in biotite-chlorite zone, up to 650°C; in andalusite-staurolite zone, up to 700-740°C.  相似文献   

18.
19.
Periclase formed in siliceous dolomitic marbles during contact metamorphism in the Monzoni and Predazzo aureoles, the Dolomites, northern Italy, by infiltration of the carbonate rocks by chemically reactive, H2O-rich fluids at 500 bar and 565-710 °C. The spatial distribution of periclase and oxygen isotope compositions is consistent with reactive fluid flow that was primarily vertical and upward in both aureoles with time-integrated flux ~5,000 and ~300 mol fluid/cm2 rock in the Monzoni and Predazzo aureoles, respectively. The new results for Monzoni and Predazzo are considered along with published studies of 13 other aureoles to draw general conclusions about the direction, amount, and controls on the geometry of reactive fluid flow during contact metamorphism of siliceous carbonate rocks. Flow in 12 aureoles was primarily vertically upward with and without a horizontal component directed away from the pluton. Fluid flow in two of the other three was primarily horizontal, directed from the pluton into the aureole. The direction of flow in the remaining aureole is uncertain. Earlier suggestions that fluid flow is often horizontal, directed toward the pluton, are likely explained by an erroneous assumption that widespread coexisting mineral reactants and products represent arrested prograde decarbonation reactions. With the exception of three samples from one aureole, time-integrated fluid flux was in the range 102-104 mol/cm2. Both the amount and direction of fluid flow are consistent with hydrodynamic models of contact metamorphism. The orientation of bedding and lithologic contacts appears to be the principal control over whether fluid flow was either primarily vertical or horizontal. Other pre-metamorphic structures, including dikes, faults, fold hinges, and fracture zones, served to channel fluid flow as well.  相似文献   

20.
The activity of TiO2 can be precisely defined as a function of pressure, temperature and activities of other components for common mineral assemblages in metapelites (ilmenite-quartz-garnet-plagioclase-Al2SiO5) and in metabasites (plagioclase-sphene-ilmenite-quartzgarnet). These mineral assemblages can be modelled by the equilibria: 1) 3ilmenite+Al2SiO5+2quartz=almandine+3TiO2 2) anorthite + 2sphene = grossular + 2TiO2 + quartz 3) 3anorthite+3quartz+6ilmenite = grossular+ 6TiO2+2almandine. These mineral assemblages can be used at (rutile saturation) and a given T to get maximum pressure limits of some metapelites and metabasites. When electron microprobe analyses of mineral grains adjacent to Ti-bearing phases are made, these data give maximum pressure estimates in reasonable agreement with other geobarometers. The activity of TiO2 in many metapelites is very near rutile saturation, but for metabasites the activity of TiO2 in some sillimanite zone rocks is as low as 0.6. The solubility of TiO2 in biotite, hornblende and garnet is a complex function of T, P, the activities of components in coexisting minerals and crystal chemical constraints in these minerals. At a given P and T the solubility of TiO2 in biotite and hornblende does not appear to be strongly dependent upon for sphene and ilmenite versus rutile-bearing assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号