首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Particle export from the upper waters of the oligotrophic ocean may play a crucial role in the global carbon cycle. Mesoscale eddies have been hypothesized to inject new nutrients into oligotrophic surface waters, thereby increasing new production and particle export in otherwise nutrient deficient regimes. The E-Flux Program was a large multidisciplinary project designed to investigate the physical, biological and biogeochemical characteristics of cold-core cyclonic eddies that form in the lee of the Hawaiian Islands. There, we investigated particle dynamics using 210Pb–210Po disequilibrium. Seawater samples for 210Pb and 210Po were collected both within (IN) and outside (OUT) of two cyclones, Noah and Opal, at different stages of their evolution as well as from the eddy generation region. Particulate carbon (PC), particulate nitrogen (PN) and biogenic silica (bSiO2) export fluxes were determined using water-column PC, PN, and bSiO2 inventories and the residence times of 210Po. PC and PN fluxes at 150 m ranged from 1.58±0.10 to 1.71±0.16 mmol C m−2 d−1 and 0.22±0.02 to 0.30±0.02 mmol N m−2 d−1 within Cyclones Opal and Noah. PC and PN fluxes at OUT stations sampled during both cruises were of similar magnitudes, 1.69±0.16 to 1.67±0.16 mmol C m−2 d−1 and 0.30±0.03 to 0.26±0.03 mmol N m−2 d−1. The bSiO2 fluxes within Cyclone Opal were 0.157±0.010 mmol Si m−2 d−1 versus 0.025±0.002 mmol Si m−2 d−1 at OUT stations. These results of minimal PC and PN export, but significant eddy-induced bSiO2 fluxes, agree very well with other studies that used a variety of direct and indirect methods. Thus, our results suggest that using elemental inventories and residence times of 210Po is another independent and robust method for determining particle export and should be investigated more fully.  相似文献   

2.
Wind-driven cyclonic eddies are hypothesized to relieve nutrient stress and enhance primary production by the upward displacement of nutrient-rich deep waters into the euphotic zone. In this study, we measured nitrate (NO3), particulate carbon (PC), particulate nitrogen (PN), their stable isotope compositions (δ15N-NO3, δ13C-PC and δ15N-PN, respectively), and dissolved organic nitrogen (DON) within Cyclone Opal, a mature wind-driven eddy generated in the lee of the Hawaiian Islands. Sampling occurred in March 2005 as part of the multi-disciplinary E-Flux study, approximately 4–6 weeks after eddy formation. Integrated NO3 concentrations above 110 m were 4.8 times greater inside the eddy (85.8±6.4 mmol N m−2) compared to the surrounding water column (17.8±7.8 mmol N m−2). Using N-isotope derived estimates of NO3 assimilation, we estimated that 213±59 mmol m−2 of NO3 was initially injected into the upper 110 m Cyclone Opal formation, implying that NO3 was assimilated at a rate of 3.75±0.5 mmol N m−2 d−1. This injected NO3 supported 68±19% and 66±9% of the phytoplankton N demand and export production, respectively. N isotope data suggest that 32±6% of the initial NO3 remained unassimilated. Self-shading, inefficiency in the transfer of N from dissolved to particulate export, or depletion of a specific nutrient other than N may have led to a lack of complete NO3 assimilation. Using a salt budget approach, we estimate that dissolved organic nitrogen (DON) concentrations increased from eddy formation (3.8±0.4 mmol N m−2) to the time of sampling (4.0±0.09 mmol N m−2), implying that DON accumulated at rate of 0.83±1.3 mmol N m−2 d−1, and accounted for 22±15% of the injected NO3. Interestingly, no significant increase in suspended PN and PC, or export production was observed inside Cyclone Opal relative to the surrounding water column. A simple N budget shows that if 22±15% of the injected NO3 was shunted into the DON pool, and 32±6% is unassimilated, then 46±16% of the injected NO3 remains undocumented. Alternative loss processes within the eddy include lateral exchange of injected NO3 along isopycnal surfaces, remineralization of PN at depth, as well as microzooplankton grazing. A 9-day time series within Cyclone Opal revealed a temporal depletion in δ15N-PN, implying a rapid change in the N source. A change in NO3 assimilation, or a shift from NO3 fueled growth to assimilation of a 15N-deplete N source, may be responsible for such observations.  相似文献   

3.
Mesoscale eddies may enhance primary production (PP) in the open ocean by bringing nutrient-rich deep waters into the euphotic zone, potentially leading to increased transport of particles to depth. This hypothesis remains controversial, however, due to a paucity of direct particle export measurements. In this study, we investigated particle dynamics using 234Th–238U disequilibria within a mesoscale cold-core eddy, Cyclone Opal, which formed in the lee of the Hawaiian Islands. 234Th samples were collected along two transects across Cyclone Opal as well as during a time-series within the eddy core during a decaying diatom bloom. Particulate carbon (PC), particulate nitrogen (PN) and biogenic silica (bSiO2) fluxes at 150 m varied spatially and temporally within the eddy and strongly depended on the 234Th model formulation used (e.g., steady state versus non-steady state, inclusion of upwelling, etc.). Particle fluxes estimated from a steady state model assuming an upwelling rate of 2 m day−1 yielded the best fit to sediment-trap data. These 234Th-derived particle fluxes ranged from 332±14 to 1719±53 μmol C m−2 day−1, 27±3 to 114±12 μmol N m−2 day−1, and 33±20 to 309±73 μmol Si m−2 day−1. Although PP rates within Cyclone Opal were elevated by a factor of 2–3, PC and PN fluxes were the same, within error, inside and outside of Cyclone Opal. The ratio of PC export to PP remained surprisingly low at <0.03 and similar to those measured in surrounding waters. In contrast, bSiO2 fluxes within the eddy core were three times higher. Detailed analyses of 234Th depth profiles consistently showed excess 234Th at 100–175 m, associated with the remineralization and possible accumulation of suspended and dissolved organic matter from the surface. We suggest that strong microzooplankton grazing facilitated particulate organic matter recycling and resulted in the export of empty diatom frustules. Thus, while eddies may increase PP, they do not necessarily increase PC and PN export to deep waters. This may be a general characteristic of wind-driven cyclonic eddies of the North Pacific Subtropical Gyre and suggests that eddies may preferentially act as a silica pump, thereby playing an important role in promoting silicic-acid limitation in the region.  相似文献   

4.
Using data collected during cruises of the JGOFS equatorial Pacific Study in March/April and October of 1992 at the equator (140°W), we examine the downward transport of carbon by three size classes of die] migrant mesozooplankton (200–500 gm, 500–1000 μm and 1000–2000 gm). In addition to respiratory carbon flux, we consider the flux due to mortality of migrators below the euphotic zone. Diel migrant mesozooplankton biomass was estimated from the difference between nighttime and daytime biomass within the euphotic zone. Except for a four-day period early in the March/April cruise, mesozooplankton nighttime biomass was significantly larger than daytime biomass within the euphotic zone during both cruises. We estimate that the downward flux of carbon from the euphotic zone due to mesozooplankton die] vertical migrators was an average of 0.6 mmol Cm−2 d−1 and 1.1 mmol C m−2 d−1 during the March/April and October cruises, respectively. Addition of this flux to the gravitational particle sinking flux estimated from234Th measurements during the same period results in a 31 % increase in the carbon export flux from the euphotic zone in the equatorial Pacific during the March/April cruise and a 44% increase in the October cruise. The migratory flux is strongly dependent on whether feeding takes place below the euphoric zone, the length of time migrators spend in the deep waters, and the mortality rate of migrators.  相似文献   

5.
We examined the effect of light on water column and benthic fluxes in the Pensacola Bay estuary, a river-dominated system in the northeastern Gulf of Mexico. Measurements were made during the summers of 2003 and 2004 on 16 dates distributed along depth and salinity gradients. Dissolved oxygen fluxes were measured on replicate sediment and water column samples exposed to a gradient of photosynthetically active radiation. Sediment inorganic nutrient (NH4+, NO3, PO43−) fluxes were measured. The response of dissolved oxygen fluxes to variation in light was fit to a photosynthesis–irradiance model and the parameter estimates were used to calculate daily integrated production in the water column and the benthos. The results suggest that shoal environments supported substantial benthic productivity, averaging 13.6 ± 4.7 mmol O2 m−2 d−1, whereas channel environments supported low benthic productivity, averaging 0.5 ± 0.3 mmol O2 m−2 d−1SE). Estimates of baywide microphytobenthic productivity ranged from 8.1 to 16.5 mmol O2 m−2 d−1, comprising about 16–32% of total system productivity. Benthic and water column dark respiration averaged 15.2 ± 3.2 and 33.6 ± 3.7 mmol O2 m−2 d−1, respectively Inorganic nutrient fluxes were generally low compared to relevant estuarine literature values, and responded minimally to light exposure. Across all stations, nutrient fluxes from sediments to the water column averaged 1.11 ± 0.98 mmol m−2 d−1 for NH4+, 0.58 ± 1.08 mmol m−2 d−1 for NO3, 0.01 ± 0.09 mmol m−2 d−1 for PO43−. The results of this study illustrate how light reaching the sediments is an important modulator of benthic nutrient and oxygen dynamics in shallow estuarine systems.  相似文献   

6.
The dynamics of dissolved inorganic carbon (DIC) and processes controlling net community production (NCP) were investigated within a mature cyclonic eddy, Cyclone Opal, which formed in the lee of the main Hawaiian Islands in the subtropical North Pacific Gyre. Within the eddy core, physical and biogeochemical properties suggested that nutrient- and DIC-rich deep waters were uplifted by 80 m relative to surrounding waters, enhancing biological production. A salt budget indicates that the eddy core was a mixture of deep water (68%) and surface water (32%). NCP was estimated from mass balances of DIC, nitrate+nitrite, total organic carbon, and dissolved organic nitrogen, making rational inferences about the unobserved initial conditions at the time of eddy formation. Results consistently suggest that NCP in the center of the eddy was substantially enhanced relative to the surrounding waters, ranging from 14.1±10.6 (0–110 m: within the euphotic zone) to 14.2±9.2 (0–50 m: within the mixed layer) to 18.5±10.7 (0–75 m: within the deep chlorophyll-maximum layer) mmol C m−2 d−1 depending on the depth of integration. NCP in the ambient waters outside the eddy averaged about 2.37±4.24 mmol C m−2 d−1 in the mixed layer (0–95 m). Most of the enhanced NCP inside the eddy appears to have accumulated as dissolved organic carbon (DOC) rather than exported as particulate organic carbon (POC) to the mesopelagic. Our results also suggest that the upper euphotic zone (0–75 m) above the deep chlorophyll maximum is characterized by positive NCP, while NCP in the lower layer (>75 m) is close to zero or negative.  相似文献   

7.
Depth profiles of total 234Th (dissolved+particulate) were collected at Station ALOHA (22°45N, 158°00W) in the North Pacific Subtropical Gyre during 9 cruises from April 1999 to March 2000. Samples were collected and processed by a new 2 L technique that enables more detailed depth resolution then previous 234Th studies. Significant zones of particle export (234Th deficiency) and particle remineralization (234Th excess) were measured both temporally and with depth. 234Th derived particulate carbon (PC) and nitrogen (PN) fluxes were determined with steady-state and non-steady-state models and PC/234Th and PN/234Th ratios measured with both in situ pumps and free-drifting particle interceptor traps deployed at 150 m. 234Th based export estimates of 4.0±2.3 mmol C m−2 d−1 and 0.53±0.19 mmol N m−2 d−1, were approximately 60% higher than those measured in PIT style sediment traps from the same time period, 2.4±0.2 mmol C m−2 d−1 and 0.32±0.08 mmol N m−2 d−1. Most of this difference is attributable to two large export events that occurred during October and December 1999, when traps undercollected for 234Th by a factor of 2 to 4. 234Th export (ThE) ratios based on 234Th derived PC flux/14C based primary production ranged from 4% to 22% (average=8.8%). Our results confirm the recent estimates of C export by Emerson et al. (Nature 389 (1997) 951) and Sonnerup et al. (Deep-Sea Research I 46 (1999) 777) and indicate that C export from the oligotrophic ocean must be considered when discussing C sequestration in global climate change.  相似文献   

8.
The composition, density and community structure of the benthic macrofauna were investigated in sediments of the Campeche Canyon in the SW Gulf of Mexico. Total macrofaunal density ranged from 9466±2736 ind m−2 at the continental shelf station to 1550±195 ind m−2 in the canyon. Density values significantly diminished with distance from the coast and depth; only a few stations in the center of the canyon displayed larger density values (E-37 with 4666±1530 ind m−2, E-36 with 5791±642 ind m−2 and E-26 with 6925±2258 ind m−2). Densities were positively correlated to organic nitrogen in the sediment (r=0.82) and coarse silt (r=0.43), and negatively with depth (r=−0.74) and distance from the coast (r=−0.68). At all stations, the polychaete worms contributed most to the multi-species community structure. The nematodes and Foraminifera displayed their highest densities in the center of the canyon. The biomass values declined significantly with depth. We conclude that the macrofauna density and biomass changed in response to organic matter contents in the sediment, both with distance from the coast and with depth.  相似文献   

9.
A three-dimensional hydrodynamic-ecosystem model was used to examine the factors determining the spatio-temporal distribution of denitrification in the Arabian Sea. The ecosystem model includes carbon and nitrogen as currencies, cycling of organic matter via detritus and dissolved organic matter, and both remineralization and denitrification as sinks for material exported below the euphotic zone. Model results captured the marked seasonality in plankton dynamics of the region, with characteristic blooms of chlorophyll in the coastal upwelling regions and central Arabian Sea during the southwest monsoon, and also in the northern Arabian Sea during the northeast monsoon as the mixed layer shoals. Predicted denitrification was 26.2 Tg N yr−1,the greatest seasonal contribution being during the northeast monsoon when primary production is co-located with the zone of anoxia. Detritus was the primary organic substrate consumed in denitrification (97%), with a small (3%) contribution by dissolved organic matter. Denitrification in the oxygen minimum zone was predicted to be fuelled almost entirely by organic matter supplied by particles sinking vertically from the euphotic zone above (0.73 mmol N m−2 d−1) rather than from lateral transport of organic matter from elsewhere in the Arabian Sea (less than 0.01 mmol N m−2 d−1). Analysis of the carbon budget in the zone of denitrification (north of 10°N and east of 55°E) indicates that the modelled vertical export flux of detritus, which is similar in magnitude to estimates from field data based on the 234Th method, is sufficient to account for measured bacterial production below the euphotic zone in the Arabian Sea.  相似文献   

10.
Seasonal change in the downward carbon transport due to respiration and mortality through diel vertical migration (DVM) of the calanoid copepods Metridia pacifica and Metridia okhotensis was estimated in the Oyashio region, western subarctic Pacific during six cruises from June 2001 to June 2002. M. pacifica (C4, C5 and adult females) was an active migratory species throughout the year though its DVM amplitude varied among seasons and stages. The mean distribution depths of adult females during the daytime were positively related with the illumination level in the water column, being shallowest in April and deepest in January. M. okhotensis generally showed less-extensive migrations than M. pacifica. Therefore, together with their lower abundance, this species is considered to be a less-important mechanism of downward transport of carbon except for April when their DVM was more active and descended deeper than M. pacifica, which remained in the upper 150 m even during the daytime. The mean migrating biomass of the two Metridia species was 558 mg C m−2 d−1 and was high during summer to winter (263–1676 mg C m−2 d−1) and low during spring (59–63 mg C m−2 d−1). Total downward flux through DVM fluctuated between 1.0 and 20.0 mg C m−2 d−1 with an annual mean of 8.0 mg C m−2 d−1. Contribution of the respiratory flux was greater than the mortality flux and accounted for 64–98% of total migratory flux throughout the year except for January when contribution of both fluxes was equal. Overall the annual carbon transport by DVM of Metridia spp. was estimated as 3.0 g C m−2 year−1, corresponding to 15% of the annual total POC flux at 150 m at the study site, suggesting that DVM is a significant process for carbon export in the subarctic region as well as that in tropical and subtropical oceanic regions. Since DVM in M. pacifica is more active during the non-bloom season when the gravitational flux of particulate matter is low, this species plays an important role in driving the biological pump in the subarctic Pacific during summer to winter.  相似文献   

11.
This study focused on the causes of the variation in microphytobenthic biomass and the effects of this variation on macrobenthic animals in the western Seto Inland Sea, Japan, where the importance of microphytobenthos as the primary food source for benthic animals has been recently reported. We investigated the microphytobenthic biomass together with light attenuation of seawater, phytoplanktonic biomass, macrobenthic density and biomass at eight stations (water depth = 5–15 m) during four cruises in 1999–2000. The increased light attenuation coefficient of the water column associated with increased concentration of the phytoplanktonic Chl-a caused a decrease in light flux that reached the seafloor. The biomass of the microphytobenthos within the upper 1 cm of the sediment, 1.9–46.5 mg Chl-a m−2, was inversely correlated with the phytoplanktonic biomass in the overlying water column, 10.9–65.0 mg Chl-a m−2. Thus, interception of light by phytoplankton is considered to be a main cause of the variation in the microphytobenthic biomass. The microphytobenthos biomass showed a significant positive correlation with the macrobenthic density (78–9369 ind. m−2) and biomass (0.4–78.8 gWW m−2). It appears that the increase in oxygen production by the microphytobenthos allowed macrobenthic animals to become more abundant, as a consequence of oxygenation of the organically enriched muddy sediments (14.5 ± 2.69 mg TOC g−1). This study suggests that the variation in the microphytobenthic biomass is influenced by the phytoplanktonic biomass due to shading effect, and the balance between these two functional groups might affect the variability in the macrobenthic density and biomass.  相似文献   

12.
Upper-ocean fluxes of particulate organic carbon (POC) and biogenic silica (bSi) are calculated from four US JGOFS cruises along 170°W using a thorium-234 based approach. Both POC and bSi fluxes exhibit large variability vs. latitude during the seasonal progression of diatom dominated blooms. POC fluxes at 100 m of up to 50 mmol C m−2 d−1 are found late in the bloom, and farthest south near the Ross Sea Gyre. Biogenic Si fluxes also peak late in the bloom as high as 15 mmol Si m−2 d−1, but this flux peak occurs at a different latitude, just south of the Antarctic Polar Front (APF), which is centered around 60°S along this cruise track. The ratios of both POC and bSi export relative to their production rates are large, suggesting an efficient biological pump at these latitudes. The highest relative bSi/POC flux ratios at 100 m are found just south of the APF, coincident with a bSi/POC flux peak seen in 1000 m traps during this same program by Deep-Sea Research II (Honjo et al., Deep-Sea Research II 47, 3521–3548). These data suggest that efficient export at these latitudes can support the high accumulation rates of bSi found in the sediments under and south of the APF, despite the generally low biomass and productivity levels in this region.  相似文献   

13.
Zooplankton dynamics (community composition, juvenile somatic growth rate, adult egg production, secondary production) were studied in coastal waters of the Great Barrier Reef. Two sectors were compared, one adjacent to a catchment of near-pristine land use patterns, the other to a more intensively farmed catchment. Sampling was conducted in the austral winter (August) and summer (January–March) of two succeeding years. Gradients in zooplankton community composition were weak, with only moderate effects of season and sector. Overall, 37% of zooplankton biomass was in the 73–150 μm size fraction, 26% in the 150–350 μm fraction, and 38% was >350 μm. There was no biomass difference and only small differences in community composition between samples taken during the day and at night; ostracods and large calanoid copepods were occasionally more common at night. Carbon-specific growth rates averaged 0.29 d−1 for cyclopoid copepods and 0.35 d−1 for calanoid copepods, with no difference between sectors. Calanoid copepod growth showed a significant relationship to chlorophyll concentration, but cyclopoid copepods did not. Copepod egg production was low (7.9 ± 5.9 eggs female−1 d−1) and apparently food-limited. Copepod secondary production was lower in August (mean = 2.6, range 1.4–4.0 mg C m−2 d−1) than in January–March (mean = 8.5, range 2.4–15.5 mg C m−2 d−1). Secondary production by mesozooplankton in the 73–100 μm size range averaged 0.9% of total phytoplankton production.  相似文献   

14.
Spring profiles of microbial production derived from the dark incorporation of tritiated leucine and tritiated thymidine in the northwest Mediterranean show an exponential decline with depth. Assuming this to represent a steady-state balance between microbial respiration and the downward flux of carbon, the downward flux is estimated as (1−/)p/b, where p is the microbial production, their gross growth efficiency and b the coefficient of exponential decline with depth. Summer profiles, ranging over about 3° of latitude and 4° of longitude, were well fitted by a two-component exponential decline, suggesting two distinct microbial substrates. Values of b for the more rapidly declining component varied between 0.01 and 0.06 m−1 according to location. In the case of the slower component, b was estimated as 0.002 m−1, and did not vary significantly over the region. Estimated fluxes of carbon at the surface are 123–335 mg m−2 d−1 for the fast and 95 mg m−2 d−1 for the slow component. Below about 200 m, carbon flux is dominated by the slow component. Flux estimates are compatible with flux estimates from sediment traps in the same region. The observed changes between the spring and summer profiles, combined with the horizontal homogeneity of the summer profiles below 200 m, are consistent with a downward transport of about 5–10 m d–1, implying a significant dispersive component to the observed fluxes.  相似文献   

15.
As part of the E-Flux project, we documented spatial variability and temporal changes in plankton community structure in a cold-core cyclonic eddy in the lee of the Hawaiian Islands. Cyclone Opal spanned 200 km in diameter, with sharply uplifted isopycnals (80–100 m relative to surrounding waters) and a strongly expressed deep chlorophyll a maximum (DCM) in its central core region of 40 km diameter. Microscopic and flow cytometric analyses of samples from across the eddy revealed dramatic transitions in phytoplankton community structure, reflecting Opal's well-developed physical structure. Upper mixed-layer populations in the eddy resembled those outside the eddy and were dominated by picophytoplankton. In contrast, the DCM was composed of large chain-forming diatoms dominated by Chaetoceros and Rhizosolenia spp. Diatoms attained unprecedented levels of biomass (nearly 90 μg C l−1) in the center of the eddy, accounting for 85% of photosynthetic biomass. Protozoan grazers displayed two- to three-fold higher biomass levels in the eddy center as well. We also found a distinct and persistent layer of senescent diatom cells overlying healthy populations, often separated by less than 10 m, indicating that we were sampling a bloom in a state of decline. Time-series sampling over 8 days showed a successional shift in community structure within the central diatom bloom, from the unexpected large chain-forming species to smaller forms more typical of the subtropical North Pacific. The diatom bloom of Cyclone Opal was a unique, and possibly extreme, example of biological response to physical forcing in the North Pacific subtropical gyre, and its detailed study may therefore help to improve our predictive understanding of environmental controls on plankton community structure.  相似文献   

16.
Biweekly composite averages of the standing stock of sea-surface chlorophyll (SSC) were derived from SeaWiFS satellite ocean-color data at 44 benthic sampling stations occupied along the continental slope and rise by the Deep Gulf of Mexico Benthos (DGoMB) program. At the 22 DGoMB sites north of 26°N and west of 91°W in the NW Gulf of Mexico, annual average SSC was 0.19 mg m−3, ranging at most locations from annual highs of about 0.3 mg m−3 in November–February to lows of about 0.1 mg m−3 in May–August. Comparison of three years of SeaWiFS data (January 1998–December 2000) showed little inter-annual variation at these NW Gulf stations. In contrast, at the 22 NE Gulf sites north of 26°N and east of 91°W, SSC averaged 2.8 times higher than in the NW Gulf, showing also strong inter-annual variation. Maxima in the NE region occurred in November–February and also during summers. The summer maxima were associated with Mississippi River water transported offshore to the east and southward by anticyclonic eddies in the NE Gulf. The apparent increases in SSC in June–August at NE Gulf stations reached average monthly concentrations >50% greater than in November–February. Based on a primary productivity model and a vertical flux model, the calculated export of particulate organic carbon (POC flux reaching the seafloor) was estimated as 18 mg C m−2 day−1 at the 22 NE Gulf stations, and 9 mg C m−2 day−1 at the 22 NW Gulf stations. These estimates are comparable to fluxes measured by benthic lander by others in the DGoMB program, which may drive the differences in west versus east bathymetric zonation and community structure of macrobenthos that were sampled with large box corers by others in the DGoMB program.  相似文献   

17.
As part of a larger project on the deep benthos of the Gulf of Mexico, an extensive data set on benthic bacterial abundance (n>750), supplemented with cell-size and rate measurements, was acquired from 51 sites across a depth range of 212–3732 m on the northern continental slope and deep basin during the years 2000, 2001, and 2002. Bacterial abundance, determined by epifluorescence microscopy, was examined region-wide as a function of spatial and temporal variables, while subsets of the data were examined for sediment-based chemical or mineralogical correlates according to the availability of collaborative data sets. In the latter case, depth of oxygen penetration helped to explain bacterial depth profiles into the sediment, but only porewater DOC correlated significantly (inversely) with bacterial abundance (p<0.05, n=24). Other (positive) correlations were detected with TOC, C/N ratios, and % sand when the analysis was restricted to data from the easternmost stations (p<0.05, n=9–12). Region-wide, neither surface bacterial abundance (3.30–16.8×108 bacteria cm−3 in 0–1 cm and 4–5 cm strata) nor depth-integrated abundance (4.84–17.5×1013 bacteria m−2, 0–15 cm) could be explained by water depth, station location, sampling year, or vertical POC flux. In contrast, depth-integrated bacterial biomass, derived from measured cell sizes of 0.027–0.072 μm3, declined significantly with station depth (p<0.001, n=56). Steeper declines in biomass were observed for the cross-slope transects (when unusual topographic sites and abyssal stations were excluded). The importance of resource changes with depth was supported by the positive relationship observed between bacterial biomass and vertical POC flux, derived from measures of overlying productivity, a relationship that remained significant when depth was held constant (partial correlation analysis, p<0.05, df=50). Whole-sediment incubation experiments under simulated in situ conditions, using 3H-thymidine or 14C-amino acids, yielded low production rates (5–75 μg C m−2 d−1) and higher respiration rates (76–242 μg C m−2 d−1), with kinetics suggestive of resource limitation at abyssal depths. Compared to similarly examined deep regions of the open ocean, the semi-enclosed Gulf of Mexico (like the Arabian Sea) harbors in its abyssal sediments a greater biomass of bacteria per unit of vertically delivered POC, likely reflecting the greater input of laterally advected, often unreactive, material from its margins.  相似文献   

18.
Rates of transformation, recycling and burial of nitrogen and their temporal and spatial variability were investigated in deep-sea sediments of the Porcupine Abyssal Plain (PAP), NE Atlantic during eight cruises from 1996 to 2000. Benthic fluxes of ammonium (NH4) and nitrate (NO3) were measured in situ using a benthic lander. Fluxes of dissolved organic nitrogen (DON) and denitrification rates were calculated from pore water profiles of DON and NO3, respectively. Burial of nitrogen was calculated from down core profiles of nitrogen in the solid phase together with 14C-based sediment accumulation rates and dry bulk density. Average NH4 and NO3-effluxes were 7.4 ± 19 μmol m−2 d−1 (n = 7) and 52 ± 30 μmol m−2 d−1 (n = 14), respectively, during the period 1996–2000. During the same period, the DON-flux was 11 ± 5.6 μmol m−2 d−1 (n = 5) and the denitrification rate was 5.1 ± 3.0 μmol m−2 d−1 (n = 22). Temporal and spatial variations were only found in the benthic NO3 fluxes. The average burial rate was 4.6 ± 0.9 μmol m−2 d−1. On average over the sampling period, the recycling efficiency of the PON input to the sediment was 94% and the burial efficiency hence 6%. The DON flux constituted 14% of the nitrogen recycled, and it was of similar magnitude as the sum of burial and denitrification. By assuming the PAP is representative of all deep-sea areas, rates of denitrification, burial and DON efflux were extrapolated to the total area of the deep-sea floor (>2000 m) and integrated values of denitrification and burial of 8 ± 5 and 7 ± 1 Tg N year−1, respectively, were obtained. This value of total deep-sea sediment denitrification corresponds to 3–12% of the global ocean benthic denitrification. Burial in deep-sea sediments makes up at least 25% of the global ocean nitrogen burial. The integrated DON flux from the deep-sea floor is comparable in magnitude to a reported global riverine input of DON suggesting that deep-sea sediments constitute an important source of DON to the world ocean.  相似文献   

19.
As part of E-Flux III cruise studies in March 2005, we investigated phytoplankton community dynamics in a cyclonic cold-core eddy (Cyclone Opal) in the lee of the Hawaiian Islands. Experimental incubations were conducted under in situ temperature and light conditions on a drift array using a two-treatment dilution technique. Taxon-specific estimates of growth, grazing and production rates were obtained from analyses of incubation results based on phytoplankton pigments, flow cytometry and microscopy. Cyclone Opal was sampled at a biologically and physically mature state, with an 80–100 m doming of isopycnal surfaces in its central region and a deep biomass maximum of large diatoms. Depth-profile experimentation defined three main zones. The upper (mixed) zone (0–40 m), showed little compositional or biomass response to eddy nutrient enrichment, but growth, grazing and production rates were significantly enhanced in this layer relative to the ambient community outside of the eddy. Prochlorococcus spp. dominated the upper mixed layer, accounting for 50–60% of its estimated primary production both inside and outside of Opal. In contrast, the deep zone of 70–90 m showed little evidence of growth rate enhancement and was principally defined by a 100-fold increase of large (>20-μm) diatoms and a shift from Prochlorococcus to diatom dominance (80%) of production. The intermediate layer of 50–60 m marked the transition between the upper and lower extremes but also contained an elevated biomass of physiologically unhealthy diatoms with significantly depressed growth rates and proportionately greater grazing losses relative to diatoms above or below. Microzooplankton grazers consumed 58%, 65% and 55%, respectively, of the production of diatoms, Prochlorococcus and the total phytoplankton community in Cyclone Opal. The substantial grazing impact on diatoms suggests that efficient recycling was the major primary fate of diatom organic production, consistent with the low export fluxes and selective export of biogenic silica, as empty diatom frustules, in Cyclone Opal.  相似文献   

20.
Concentrations of Hg0 in surface waters and atmosphere of the Scheldt estuary and the North Sea are presented and their relationship with biological processes is discussed. Hg0 concentrations in the Scheldt estuary range from 0.1 to 0.38 pmol·l−1 in the winter and from 0.24 to 0.65 pmol·l−1 in the summer and show a positive relationship with phytoplankton pigments. In the North Sea Hg0 concentrations range from 0.06 to 0.8 pmol·l−1 and are higher in coastal stations. Transfer velocities across the air–sea interface were calculated using a classical shear turbulence model. Volatilization fluxes of Hg0 were calculated for the Scheldt estuary and the North Sea. For the Scheldt estuary the fluxes range from 226–284 pmol·m−2·d−1 in winter and 500–701 pmol·m−2·d−1 in summer and for the North Sea the fluxes range from 59–1110 pmol·m−2·d−1 for an average windspeed of 8.1 m·s−1. These fluxes are comparable to the wet and dry depositional fluxes to the North Sea. Hg0 formation rates necessary to balance the volatilization fluxes vary from 0.2 to 4% d−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号