首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
一次高空槽在青藏高原上诱发切变线的Q矢量分析   总被引:4,自引:0,他引:4       下载免费PDF全文
通过对1982年6月1—6日一次高空槽在青藏高原上诱发切变线的过程进行了Q矢量分析,发现高原切变线产生、维持在明显的呈东西向的500 hPa Q矢量辐合带内,而且低层500 hPa ▽·Q0。这说明宽广的上升运动的存在和加强,是产生、维持切变线的重要机制。高原切变线的产生、维持还与锋生情况有一定的关系。  相似文献   

3.
山东省三次暖切变线极强降水的对比分析   总被引:2,自引:2,他引:2  
杨晓霞  吴炜  姜鹏  徐娟  胡顺起  刁秀广  高留喜  王文青  华雯丽 《气象》2013,39(12):1550-1560
应用加密观测、常规观测、卫星云图和雷达探测的资料及NCEP/NCAR(1°×1°)再分析资料,对山东省三次极强降水天气进行了诊断和对比分析。结果表明,低层暖式切变线和500 hPa西风槽是三次强降水的主要影响系统。强降水前低层大气高温、高湿、对流不稳定,有较高的对流不稳定能量。低层暖式切变线辐合和暖湿平流产生的上升运动与地面辐合线附近产生的上升运动相叠加,触发对流不稳定能量释放,产生强对流,造成强降水。较强的风垂直切变使得对流有组织地发展。强降水期间,中高层弱的干冷空气侵入,使得对流不稳定加强,中高层具有高位涡的干冷空气入侵诱发低层中尺度涡旋发展, 辐合上升运动加强。低层暖湿气流螺旋式辐合上升与中高层入侵的干冷空气相遇,水汽凝结率增大,降水强度增强。中高层干冷空气侵入的时段与极强降水的时段相对应。有利的地形对局地短时极强降水有重要作用。低层暖式切变线和500 hPa低槽的位置、强弱不同,中高层冷空气的强度和入侵路径不同,对流云团的发生发展、内部结构和移动方向不同,造成强降水的地理位置和强度不同。  相似文献   

4.
文章结合短期天气预报业务的业务类型、业务特征、短期天气预报员的岗位职责任务及新形势下对短期天气预报员的评价标准,综合采用文献调研法、定性分析法专家访谈法等研究方法,探索和建立科学、客观、系统的短期天气预报员能力评价指标体系。  相似文献   

5.
写在前面的话:对于大多数预报员,事后回忆起某次天气过程时,刻在脑海中的大多是天气图、雷达图、卫星云图、降水量……如今,隔了数日再回忆起7月21日当天的种种,发现现在的自己如旁白一般看着当天的自己在那里忙碌。因此,这一切用“他”来叙述,或许更为真切。  相似文献   

6.
7.
一次江淮切变线系统结构和暴雨分析   总被引:1,自引:0,他引:1  
基于气象观测资料和数值模式产品,分析了2006年7月2—3日一次江淮暖切变线影响下的大暴雨过程。分析表明:稳定的大尺度环流背景下,北抬的江淮暖切变线是暴雨的主要影响系统,该系统表现为结构竖立的相当正压的浅薄系统,相应的物理量场成垂直分布特征,切变线上风场的风速辐合中心对应中小尺度气旋性系统。强蛊的中低空西南急流不仅为大降水的产生提供充沛的水汽,还利于该中小尺度系统的形成,该系统散度、涡度结构上呈柱状垂直分布,对流层中下层负涡度中心增大和抬高以及负散度区中心增大和跃升造成降水的脉动加强,而且上述物理量场的高低空配置特征利于上升运动加强和维持。由于切变线南侧西南气流中的风速辐合和上升运动远较切变线北侧的风向辐合更为突出和完整,对流不稳定更强,最大上升运动及其相应的暴雨区主要集中在切变线中间偏南的位置。  相似文献   

8.
胡伯威 《大气科学》1997,21(6):679-686
如果大气底层有一条强的湿度梯度带(底层“湿度锋”)则在尺度相对大的高空扰动诱发下,“湿度锋”南界附近最利于发生第二类条件不稳定,即在这里出现CISK增长率极大轴。发展的南北向尺度基本取决于“湿度锋区”宽度。由此可在“湿度锋”紧南侧发展起一条具有相当正压结构的切变线。文中分别讨论了Ekman-CISK和Wave-CISK两种情况,均有类似的结果。这种与低层“湿度锋”耦合的CISK可以解释长江流域梅雨末期暖切变型梅雨锋的发生过程。  相似文献   

9.
生成于东部平原地区的江淮切变线和西部青藏高原地区的高原切变线,都处在东亚副热带相同纬度带上。为深化对地形高度迥异的江淮切变线和高原切变线的认识与理解,基于ERA-interim再分析资料和合成分析方法,从切变线与暴雨关系、切变线三维结构特征、切变线附近风场与环流特征以及切变线结构演变中的热力机制等方面对二者进行对比研究。结果表明:(1)江淮切变线分为暖切变线、冷切变线、准静止切变线和低涡切变线4类,高原切变线分为高原横切变线和高原竖切变线2类。江淮切变线与高原切变线均与暴雨关系密切,夏季,有近70%的江淮切变线会产生暴雨,暖切变线暴雨对江淮地区切变线暴雨的雨量贡献最大,低涡切变线暴雨的降水强度最大但发生频率较低;近60%的高原横切变线给高原主体地区带来暴雨,超过55%的竖切变线造成高原东侧及其邻近地区暴雨。(2)江淮切变线与高原切变线均为边界层系统,特征层次分别位于850 hPa和500 hPa。时空尺度上,江淮冷切变线和高原横切变线水平尺度分别可达1000 km和2000 km,垂直伸展厚度分别可达5 km和2 km,生命期分别可达48 h和96 h;江淮切变线和高原横切变线在垂直方向上均有从低到高向北倾斜的特征。(3)江淮冷切变线与高原横切变线风场与环流特征存在差异,江淮冷切变线北侧为东北风,南侧为西南风;高原横切变线东、西两段风场有所不同,其西段类似于江淮冷切变线,东段在不同发展阶段风场有明显变化。(4)江淮冷切变线与高原横切变线的动力结构和热力结构存在差异。动力结构上,二者均位于正涡度带内,正涡度中心强度都在强盛阶段达到最大。热力结构上,江淮冷切变线附近低空锋区特征明显,其西段位于暖湿区内,东段位于干冷区内;高原横切变线南侧具有明显的高温、高湿特征,切变线北侧存在锋区结构。(5)切变线附近的大气非绝热加热与高原横切变线和江淮冷切变线演变关系密切,垂直非均匀加热作用是高原横切变线和江淮冷切变线发展增强最为重要的因子。二者热力结构有差异,减弱机制不同,干冷空气的侵入会导致高原横切变线强度减弱甚至消亡,江淮冷切变线的强度减弱则与南方暖湿空气的向北侵入有关。   相似文献   

10.
一次切变线暴雨过程的诊断研究和数值试验   总被引:3,自引:5,他引:3       下载免费PDF全文
郑钢  张铭 《气象科学》2004,24(3):294-302
本文对1998年6月12~13日的一次长江中下游切变线暴雨过程进行了诊断研究并使用一个η坐标细网格暴雨数值模式对其作了数值试验。结果发现,与该暴雨过程相联系的β中尺度系统主要表现在低层的切变线及地面的β中尺度气旋,气旋的东移和发展引起长江中下游大范围强降水,在启动该场暴雨过程中,位势不稳定起了决定性的作用;深厚的β中尺度“涡柱”是该暴雨雨团的明显特征;地形对暴雨的强度和范围均有重要影响,该切变线强度对暴雨过程的降水量也有明显影响。  相似文献   

11.
纬向切变线暴雨落区的精细化分析   总被引:6,自引:0,他引:6  
孙兴池  王西磊  周雪松 《气象》2012,38(7):779-785
应用常规观测资料、NCEP 1°×1°再分析资料,对纬向切变线的暴雨落区进行精细化分析。结果表明:虽然低层切变线的位置对暴雨落区很重要,但不是判断暴雨落区的唯一依据。影响系统的空间结构及冷暖空气的相互作用对暴雨落区的精细化预报至关重要。当东北地区有冷空气入侵,山东省为一致东北风时,除了与切变线对应的暴雨区,还有因锋面抬升作用造成的地面东北风中的暴雨区;而当东北地区为暖低压,850 hPa冷中心盘踞山东省时,切变线南侧西南暖湿气流强盛,此时暴雨区位于切变线南侧和地面静止锋之间的鲁南地区;风场辐合中心往往和高湿舌对应,高湿舌前部和风场辐合中心附近是暴雨落区。  相似文献   

12.
利用加密探测资料分析冷式切变线类大暴雨的动力结构   总被引:2,自引:0,他引:2  
杨成芳  阎丽凤  周雪松 《气象》2012,38(7):819-827
利用风廓线雷达、多普勒天气雷达、地面加密自动站和闪电定位仪等非常规观测资料,对发生在山东东南部沿海青岛的一次大暴雨天气的动力结构进行了分析,以探索如何综合应用新资料追踪暴雨的演变过程。结果表明:(1)此次大暴雨过程的影响系统是冷式切变线,冷空气从对流层低层入侵,切变线在850 hPa以下层次明显,地面冷锋逐渐演变为静止锋。(2)暴雨过程经历了两个强降雨和一个弱降雨时段,1小时30 mm以上的短历时强降雨发生在冷空气刚入侵阶段,并伴随雷电。(3)强降雨主要发生在925 hPa切变线附近,降雨分布在925 hPa切变线的东北风与850 hPa切变线的西南风叠置区域。大暴雨的分布与切变线走向基本一致。(4)在切变线移动和发展过程中,水平风有明显不同:冷空气刚影响时,对流层低层产生了明显的中尺度低压环流,是导致对流性短历时强降雨的关键因素;静止锋形成的时段内,从低层至高层,低压环流消失,代之以较强西南风与弱西北风之间的切变线;在静止锋维持的后期,低层和高层均转为西北风,仅在中层有西南风与偏北风之间的切变线,从而产生稳定性弱降雨。(5)风廓线对降雨的起止、盛衰有较强信号,风向风速自上而下顺序变化,当中层西南风风速增大且不断向下扩展,持续4 h后西南低空急流明显加强,当近地面转为东北风时,强降雨开始,强降雨阶段的显著特点是在风廓线雷达上表现为中低层强西北风和强西南风交替出现,降雨强度与交替的高度有关;当各层均转为稳定的西北风时预示降雨结束。  相似文献   

13.
切变线类暴雨发生的天气背景和触发机制   总被引:5,自引:1,他引:5  
温市耕 《气象》1999,25(2):44-48
对1994年和1995年7 ̄8月内蒙古中西部的切变线暴雨进行了统计合成分析,探讨了暴雨发生时的天气学特征和物理量场特征,揭示其发生发展机制,为日常业务预报提供一些启示。  相似文献   

14.
本文对湖南资水流域700hPa层呈现相似切变线天气形势的两次天气过程进行了研究,其中一次是2001年6月19日08BST出现大暴雨,另一次是2001年8月13日08 BST至14日08 BST仅出现小雨,文中对这两个个例进行中尺度数值模拟,对比分析了这两个个例演变过程的差异,并对6月19日中β尺度对流系统在暴雨强盛期的动力结构特征和热力结构特征作了详细分析。研究结果表明6月19日在演变过程中生产的中β尺度对流系统引发了这次暴雨,而8月13日虽然有类似于6月19日的切变线,但是没有形成中β尺度对流系统,也就没有引发暴雨。由此表明,相似的700hPa形势可以有根本不一样的演变,而暴雨的发生与中β尺度对流系统的生产和发展有十分密切的关系。  相似文献   

15.
利用数值模式WRF进行二维飑线理想数值试验。通过改变初始场低层湿度和低层环境垂直风切变探讨了初始环境场对飑线在触发阶段与发展初期结构和强度的影响。低层湿度试验表明,增加低层湿度有利于初始启动阶段对流的发生从而使对流系统强度更强;飑线强度增加,对流上升运动增强,更有利于冷池前沿激发出新生对流单体,系统发展更快;同时激发更多降水,冷池强度增强。低层环境垂直风切变试验表明,在飑线触发阶段,更强的环境垂直风切变使对流主体前倾趋势更大,对对流的触发有阻碍作用;冷池和环境垂直风切变的相互作用被认为是飑线发展的重要机制,基于RKW理论,在飑线发展初期,近地面冷池相对较弱,在更弱的环境垂直风切变作用下更容易使对流结构呈直立状态从而产生更强和更深的上升运动,飑线强度增强。  相似文献   

16.
一次梅雨锋暴雨的中尺度对流系统及低层风场影响分析   总被引:1,自引:1,他引:1  
杨舒楠  路屹雄  于超 《气象》2017,43(1):21-33
本文利用常规气象观测资料,地面自动站加密观测资料和FY-2D、FY-2E卫星云图以及NCEP 1°×1°的FNL分析资料、EC 0.25°×0.25°的细网格模式数据等,对2015年6月15—18日梅雨锋暴雨过程的中尺度对流系统(MCS)活动特征、对流层低层风场对MCS发展的影响以及梅雨锋暴雨的垂直环流特征等进行了研究,结果表明:天气尺度梅雨锋上叠加的MCS的产生及向下游移动,以及其在安徽中部到江苏南部正涡度带作用下的发展增强,造成了江苏南部的局地强降水。强降水与中尺度低空急流核的位置吻合较好。在垂直方向上,高空急流入口区右侧与低空急流核左前方叠加,高低空急流耦合作用明显。在降水过程中,对流层低层具有较强的垂直风切变,有利于垂直涡度的增强和MCS的发展。对流层低层的垂直风切变也有利于不同源地的水汽在梅雨锋区汇集。梅雨锋北侧的干冷空气在对流层低(中)层以东北(西北)路径向锋区移动。南侧的暖湿气流沿西南路径移动、抬升,接近锋区后质点在上升过程中逐渐转向东移,在高空急流的抽吸作用下,快速向东流出,近地面层空气存在跨锋面环流。梅雨锋系统垂直方向上的次级环流是高层风场强烈辐散以及空气运动过程中质量补充和循环的结果。  相似文献   

17.
Chao  WC 黄彬 《气象科技》1999,(2):31-36
文章论述了在天气尺度系统中深积云对流和低层辐合之间的相位滞后的起源。众所周知从1974年以来已研究过几个可能的原因:1)加热场的传播;2)β效应;3)基本气流的垂直切变;4)热源的垂直倾斜。研究发现最后一个因素是相位滞后的原因。热源垂直倾斜的出现是天气系统内的中尺度对流系统传播和演变的结果。在其演变过程中,垂直加热廓线的变化导致了加热场的倾斜。  相似文献   

18.
低槽(含切变线)的计算机识别   总被引:1,自引:0,他引:1  
天气系统的计算机识别是实现自动化的关键.本文介绍了一个低槽(含切变线)的模式识别法,比较简便,适于计算机自动处理.该方法在“致洪暴雨”的试验中获得了令人满意的结果.  相似文献   

19.
目前,业务平台、预报制作系统技术已成为气象台天气预报的关键技术,也是我国与发达国家技术发展的主要差距之一。本文从科学技术论的角度,研究气象台预报制作系统发展的历史及其发展的阶段性,归纳了技术发展的基本特征,提出了预报制作系统技术跨越式发展的应对措施。  相似文献   

20.
欧国明 《广东气象》2009,31(4):43-44
总结多年气象影视制作的经验,认为在电视天气预报平面广告中,画面要力争做到局部画面的反差、整体画面的和谐;并结合photoshop抠像技巧浅析平面图广告画面的设计制作。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号