首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two and a half layer oceanic model of wind-driven, thermodynamical general circulation is appliedto study the interannual oscillation of sea surface temperature (SST) in the South China Sea (SCS). Themodel consists of two active layers: the upper mixed layer (UML) and the seasonal thermocline, with themotionless abyss beneath them. The governing equations which include momentum, continuity and sea.temperature for each active layer, can describe the physics of Boussinseq approximation, reduced gravityand equatorial β-plane. The formulas for the heat flux at the surface and at the interface between twoactive layers are designed on the Haney scheme. The entrainment and detrainment at the bottom of theUML induces vertical transport of mass,momentum and heat, and couples of dynamic andthermodynamic effect.Using leap-frog integrating scheme and the Arakawa-C grid the model is forced bya time-dependent wind anomaly stress pattern obtained from category analysis of COADS. The numerical results indicate that t  相似文献   

2.
In this paper, we use the conductivity-temperature-depth (CTD) observation data and a three-dimensional ocean model in a seasonally-varying forcing field to study the barrier layer (BL) in the PN section in the East China Sea (ECS). The BL can be found along the PN section with obviously seasonal variability. In winter, spring and autumn, the BL occurs around the slope where the cold shelf water meets with the warm Kuroshio water. In summer, the BL can also be found in the shelf area near salinity front of the Changjiang (Yangtze) River Dilution Water (YRDW). Seasonal variations of BL in the PN section are caused by local hydrological characteristics and seasonal variations of atmospheric forcing. Strong vertical convection caused by sea surface cooling thickens the BL in winter and spring in the slope area. Due to the large discharge of Changjiang River in summer, the BL occurs extensively in the shelf region where the fresh YRDW and the salty bottom water meet and form a strong halocline above the seasonal thermocline. The formation mechanism of BL in the PN section can be explained by the vertical shear of different water masses, which is called the advection mechanism. The interannual variation of BL in summer is greatly affected by the YRDW. In the larger YRDW year (such as 1998), a shallow but much thicker BL existed on the shelf area. Supported by National Basic Research Program of China (973 Program, No. 2005CB422303 and 2007CB411804), the Key Project of the International Science and Technology Cooperation Program of China (No. 2006DFB21250), the “111 Project” of the Ministry of Education (No. B07036), the Program for New Century Excellent Talents in University, China (No. NECT-07-0781)  相似文献   

3.
The general features of the seasonal surface heat budget in the tropical western Pacific Ocean, 20° S–20°N, western boundary −160°E, were documented by Qu (1995) using a high-resolution general circulation model (GCM, Semtner & Chervin, 1992) and existing observations. Close inspection of the smaller areas, with the whole region further partitioned into six parts, showed different mechanisms balance the seasonal surface heat budget in different parts of the region. The results of study on five subregions are detailed in this article. In the equatorial (3°S–3°N) and North Equatorial Countercurrent (3°N–9°N) region, the surface heat flux does not change significantly throughout the year, so the surface heat content is determined largely by vertical motion near the equator and roughly half due to horizontal and half due to vertical circulation in the region of the North Equatorial Countercurrent (NECC). In the other subrigions (9°N–20°N, 20°S–11°S and 11°S–3°S), however, in addition to ocean dynamics, surface heat flux can also play a major role in the seasonal variation of sea surface temperature (SST). The remotely forced baroclinic waves and their effect on the surface heat storage in the model are also investigated. Comparison with observations indicates that the model wave activities are reasonably realistic. Contribution No. 2396 from the Institute of Oceanology, Chinese Academy of Sciences. This study was supported by the Australian CSIRO Division of Oceanography and the National Natural Science Foundation of China (No. 49176255)  相似文献   

4.
Spatial and seasonal variabilities of submesoscale currents in the northeastern South China Sea are investigated by employing a numerical simulation with a horizontal resolution of 1 km. The results suggest that submesoscale currents are widespread in the surface mixed layer mainly due to the mixed layer instabilities and frontogenesis. In horizontal, submesoscale currents are generally more active in the north than those in the south, since that active eddies, especially cyclonic eddies, mainly occur in the northern area. Specifically, submesoscale currents are highly intensified in the east of Dongsha Island and south of Taiwan Island. In temporal sense, submesoscale currents are more active in winter than those in summer,since the mixed layer is thicker and more unstable in the winter. The parameterization developed by FoxKemper et al. is examined in terms of vertical velocity, and the results suggest that it could reproduce the vertical velocity if mixed layer instability dominates there. This study improves our understanding of the submesoscale dynamics in the South China Sea.  相似文献   

5.
We investigated the interaction between mesoscale eddies and the Kuroshio Current east of Taiwan,China,using a fine-resolution regional general circulation model.Mesoscale eddies are injected into a region east of Taiwan,China,according to the quasi-geostrophic theory of stratified fluids.Modeled eddies propagated westward at the velocity of the first baroclinic mode Rossby wave.When eddies collide with the Kuroshio Current east of Taiwan,China,the spatial structure and volume transport of the Kuroshio Current shows a significant variation.The upper 600 m of the anticyclonic eddy cannot cross the Kuroshio Current to reach the region west of the Kuroshio Current;rather,these waters flow northward along the eastern side of the Kuroshio Current.The upper water carried by the anticyclonic eddies cannot reach the shelf of the East China Sea(ECS).In contrast,the waters in the upper layer of the cyclonic eddy reach the western side of the Kuroshio Current and then flow northward.The dynamic mechanism analysis shows that the interaction between the Kuroshio Current and the cyclonic(anticyclonic) eddy decrease(increase)the horizontal potential vorticity(PV) gradient,or PV barrier,whereby the cyclonic(anticyclonic) eddy can(cannot) cross the Kuroshio Current.This study implies that the continental shelf could potentially be influenced by cyclonic eddies in the open ocean,which can transport heat and material from the upper open ocean acro s s the Kuroshio Current to the shelf waters.  相似文献   

6.
This study on the sectional and vertical distribution of dissolved oxygen (DO) and the O2 fluxes across the sea-air interface in East China Sea (ESC) waters shows that the waters were in steady state and that the difference of DO was great in upper and bottom waters in Apr. 1994; but that seawater mixing was strong and the difference of DO was small in upper and bottom waters in Oct. 1994. The above conclusions were specially obvious in continental shelf waters under 100 m. The DO maximum in subsurface layer waters appeared only at several stations and in general the DO in the waters decreased with depth. The horizontal distributions of O2 fluxes across the sea-air interface appeared in stripes in Leg 9404 when most regions covered were supersaturated with O2 seawater to air flux was large, and that on section No. 1 was 1.594 L/m2·d. The horizontal distribution of O2 fluxes across the sea-air interface appeared lumpy in Leg 9410, when most regions covered were unsaturated with O2·O2 was dissolved from air to seawater, and the fluxes were 0.819 L/m2·d on section No. 1 in Leg 9310, 0.219 L/m2·d in Leg 9410. The main reasons for DO change in surface layer seawater were the mixture of upper and bottom layer water, and the exchange of O2 across the sea-air interface. The variation of DO by biological activity was only 20% of total change of DO. Contribution No. 2716 from Institute of Oceanology, Chinese Academy of Sciences.  相似文献   

7.
Zhang  Yanwei  Liang  Xinfeng  Tian  Jiwei  Yang  Lifen 《中国海洋湖沼学报》2009,27(1):129-134
TOPEX/POSEIDON altimeter data from October 1992 to June 2002 are used to calculate the global barotropic M 2 tidal currents using long-term tidal harmonic analysis. The tides calculated agree well with ADCP data obtained from the South China Sea (SCS). The maximum tide velocities along the semi-major axis and semi-minor axis can be computed from the tidal ellipse. The global distribution of M 2 internal tide vertical energy flux from the sea bottom is calculated based on a linear internal wave generation model. The global vertical energy flux of M 2 internal tide is 0.96 TW, with 0.36 TW in the Pacific, 0.31 TW in the Atlantic and 0.29 TW in the Indian Ocean, obtained in this study. The total horizontal energy flux of M 2 internal tide radiating into the open ocean from the lateral boundaries is 0.13 TW, with 0.06 TW in the Pacific, 0.04TW in the Atlantic, and 0.03 TW in the Indian Ocean. The result shows that the principal lunar semi-diurnal tide M 2 provides enough energy to maintain the large-scale thermohaline circulation of the ocean. Supported by the National Basic Research Program of China (973 Program, No. 2005CB422303), the International Cooperation Program (No. 2004DFB02700), and the National Natural Science Foundation of China (No. 40552002). The TOPEX/POSEIDON data are provided by Physical Oceanography Distributed Active Archive Center (PO DACC)  相似文献   

8.
Insufficient vertical mixing in the upper ocean during summer is a common problem of oceanic circulation and climate models. The turbulence associated with non-breaking waves is widely believed to effectively solve this problem. In many studies, non-breaking surface wave processes are attributed to the effects of Langmuir circulations(LCs). In the present work, the influences of LCs on the upper-ocean thermal structure are examined by using one-and three-dimensional ocean circulation, as well as climate, models. The results indicated that the effect of vertical mixing enhanced by LCs is limited to the upper ocean. The models evaluated, including those considering LC effects alone and the combined effects of LCs and wave breaking, failed to produce a reasonable summertime thermocline, resulting in a large cold bias in the subsurface layer. Therefore, while they can slightly reduce the biases of mixed layer depths and sea surface temperatures in models, LCs are insufficient to solve the problem of insufficient vertical mixing. Moreover, restriction of non-breaking surface wave-induced processes in LCs may be questionable.  相似文献   

9.
We investigate the influence of low-frequency Rossby waves on the thermal structure of the upper southwestern tropical Indian Ocean (SWTIO) using Argo profiles, satellite altimetric data, sea surface temperature, wind field data and the theory of linear vertical normal mode decomposition. Our results show that the SWTIO is generally dominated by the first baroclinic mode motion. As strong downwelling Rossby waves reach the SWTIO, the contribution of the second baroclinic mode motion in this region can be increased mainly because of the reduction in the vertical stratification of the upper layer above thermocline, and the enhancement in the vertical stratification of the lower layer under thermocline also contributes to it. The vertical displacement of each isothermal is enlarged and the thermal structure of the upper level is modulated, which is indicative of strong vertical mixing. However, the cold Rossby waves increase the vertical stratification of the upper level, restricting the variability related to the second baroclinic mode. On the other hand, during decaying phase of warm Rossby waves, Ekman upwelling and advection processes associated with the surface cyclonic wind circulation can restrain the downwelling processes, carrying the relatively colder water to the near-surface, which results in an out-of-phase phenomenon between sea surface temperature anomaly (SSTA) and sea surface height anomaly (SSHA) in the SWTIO.  相似文献   

10.
ImODUcnONThedeepequatorialoceanhasobvioussignilicantflowapparentlycarryinghacelsa1ongandacrosstheequator(WissCtal.,l985).RmtfloatmsurementSshoWedthattheflowishigh1yvariable(Richardsonetal.,l993).ThomPsonandKawase(l993)pro-posedthatthelargeinstantaneousandfloatvelocitiesasWellasthevariabilitysuggestthatthetracersignaIsreflCCtreCtificationoftimedependentmotionsandniinginsteadofrneanEulerianflow.TheresultSoftheirstudyonthegenerationofmeancurrentSbyperi-odicfordngintheequatorialoceaninasir…  相似文献   

11.
In recent major earthquakes, the researchers have found the need for consideration of vertical seismic acceleration for the stability analysis of the man-made and natural slopes. However, in most past studies, the performance of slopes has been assessed by accounting only the horizontal seismic component of the ground motion, without giving due weightage to the effect of vertical component. In the present study, analytical expressions are derived to determine the factor of safety, yield seismic coefficient and consequently the seismic displacement of cohesionless soil slope under combined horizontal and vertical components of the ground motion. The derivation uses the Newmark’s sliding block approach, in which the soil slope with a planar failure surface within the framework of conventional pseudo-static analysis is assumed to follow the Mohr-Coulomb failure criterion. The effects of vertical seismic coefficient on the stability of cohesionless slope have been studied through a set of graphical presentations for a specific range of soil parameters. It is observed that overlooking the effect of the vertical component of the ground motion on factor of safety and the displacement while designing the slope may be detrimental, resulting in the slope failure. The general expressions presented in this paper may be highly useful in the field of earthquake geotechnical engineering practice for designing the cohesionless soil slopes under combined horizontal and vertical seismic loads.  相似文献   

12.
Surveys since 1959 showed that the dynamic basis of the East China Sea sectional circulation is the nearshore seawater horizontal divergence caused by wind on the surface compensated by Kuroshio subsurface water convergence caused by meridional current in the lower layer. Fish always tend to migrate along certain routes or stay in certain areas favorable for development of eggs, survival of larvae and living of adults. The movement of water masses supplies a very important driving force for marine animals migrating long distance. The lower part of the sectional circulation formed by the subsurface water of Kuroshio is not suitable for the aggregation of fish because of its lack of oxygen, and has therefore a driving influence on demersal fishes. This study of the sectional circulation influence on the distributions of some commercially important species in the East China Sea reveals a close relationship between the circulation and the movement of fish schools. The principal factors influencing zonal vertical circulation are the meridional vector of the Kuroshio lower layer and atmospheric circulation, referning here mainly to the subtropical high pressure in the Asia-Pacific area that causes surface divergence and lifts subsurface water from the bottom to the surface at the nearshore area. Some simple methods for estimating the intensity of the sectional circulation are, introduced for fishery forecasts and operations.  相似文献   

13.
INTRODUCTIONJiaozhouBayisashallowsemi closedbaywithtotalareaofabout 40 0km2 andaveragewaterdepthof7m .Themaximumwaterdepthisover 5 0matthecenterofthestraitconnectingtotheYellowSea.Thisstraitcenterwateriscalledbaymouthwater,thewaterinthenorthernpartofthestrai…  相似文献   

14.
A Lagrangian tracer model is set up for Hangzhou Bay based on Coupled Hydrodynamical Ecological model for Regional Shelf Sea (COHERENS). The study area is divided into eight subdomains to identify the dominant physical processes, and the studied periods are March (the dry season) and July (the wet season). The model performance has been first verified by sea-surface elevation and tidal current observations at several stations. Eight tracer experiments are designed and Lagrangian particle tracking is simulated to examine the impact of physical processes (tide, wind and river runoff) on the transport of passive tracer released within the surface layer. Numerical simulations and analysis indicate that: (1) wind does not change the tracer distribution after 30 days except for those released from the south area of the bay during the wet season; (2) the tide and the Qiantang River runoff are important for particle transport in the head area of the bay; (3) the Changjiang River runoff affects the tracer transport at the mouth of the bay, and its impact is smaller in the dry season than in the wet season. Supported by the Natural Science Foundation of China (No.40576080); National High Technology Research and Development Program of China (863 Program, No. 2007AA12Z182)  相似文献   

15.
Interannual variability of the southern Yellow Sea Cold Water Mass   总被引:2,自引:0,他引:2  
Temperature data collected in the sections of 34°N, 35°N and 36°N in August from 1975 through 2003 were analyzed using Empirical Orthogonal Function (EOF) to investigate interannual variability of the southern Yellow Sea Cold Water Mass (YSCWM). The first mode (EOF1) reveals variations of basin-wide thermocline depth, which is mainly caused by surface heating. The second mode (EOF2) presents fluctuations of vertical circulation, resulting mainly from interannual variability of cold front intensity. In addition, it is found that the upward extent of upwelling in the cold front is basically determined by wind stress curl and the zonal position of the warm water center in the southern Yellow Sea is correlated with spatial difference of net heat flux.  相似文献   

16.
This paper describes the large scale aspects of the seasonal surface heat budget and discusses itsmain forcing mechanisms in the tropical Western Pacific Ocean.The high-resolution generalcirculation model (Semtner & Chervin,1992)used in this study reproduced well the observed upper-layer thermal structure and circulation.It is shown that at least on the average of the study region(20°S-20°N,west boundary-160°E)the semiannual variation is a dominant signal for all heat budgetcomponents and is presumably due to the sun’s passing across the equator twice a year,but that thecomponents have substantial differences in amplitude.The local Ekman divergence in the region doesnot change significantly through the year.As a result,the change in surface heat content is roughlyhalf due to ocean-atmosphere heat exchange and half due to heat advection by remotely forced verti-cal motion.Horizontal currents do not play a significant role directly by advection,because the wat-er which enters the region is not very muc  相似文献   

17.
Seasonal variability of thermocline in the Yellow Sea   总被引:5,自引:0,他引:5  
Based on the MASNUM wave-tide-circulation coupled numerical model, seasonal variability of thermocline in the Yellow Sea was simulated and compared with in-situ observations. Both simulated mixed layer depth (MLD) and thermocline intensity have similar spatial patterns to the observations. The simulated maximum MLD are 8 m and 22 m, while the corresponding observed values are 13 m and 27 m in July and October, respectively. The simulated thermocline intensity are 1.2℃/m and 0.5℃/m in July and October, respectively, which are 0.6℃/m less than those of the observations. It may be the main reason why the simulated thermocline is weaker than the observations that the model vertical resolution is less precise than that of the CTD data which is 1 m. Contours of both simulated and observed thermocline intensity present a circle in general. The wave-induced mixing plays a key role in the formation of the upper mixed layer in spring and summer. Tidal mixing enhances the thermocline intensity. Buoyancy-driven m  相似文献   

18.
Characteristics of water exchange in the Luzon Strait during September 2006   总被引:7,自引:1,他引:6  
The Luzon Strait is the only deep channel that connects the South China Sea(SCS) with the Pacific.The transport through the Luzon Strait is an important process influencing the circulation,heat and water budgets of the SCS.Early observations have suggested that water enters the SCS in winter but water inflow or outflow in summer is quite controversial.On the basis of hydrographic measurements from CTD along 120° E in the Luzon Strait during the period from September 18 to 20 in 2006,the characteristics of t...  相似文献   

19.
Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.  相似文献   

20.
The heat distributions in the upper layers of the ocean have been studied and some important low frequency oscillations (LFOs) are already found and quantified by using various characteristic factors. In this paper, the ‘heat center' of a sea area is defined with a simple method. Then the temperature data set of the upper layer of the global ocean (from surface down to 400 m, 1955-2003) is analyzed to detect the possible LFOs. Not only some zonal LFOs, which were reported early, but also some strong LFOs of the vertical and meridional heat distribution, which might imply some physical sense, are detected. It should be noted that the similar vertical oscillation pattern can be found in the Pacific Ocean, Atlantic Ocean and Indian Ocean. Results from some preliminary studies show that the vertical LFO might be caused by the solar irradiance anomalies. This study may help reveal some unknown dynamical processes in the global oceans and may also benefit other related studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号