首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FREY  MARTIN 《Journal of Petrology》1978,19(1):95-135
The unmetamorphosed equivalents of the regionally metamorphosedclays and marls that make up the Alpine Liassic black shaleformation consist of illite, irregular mixed-layer illite/montmorillonite,chlorite, kaolinite, quartz, calcite, and dolomite, with accessoryfeldspars and organic material. At higher grade, in the anchizonalslates, pyrophyllite is present and is thought to have formedat the expense of kaolinite; paragonite and a mixed-layer paragonite/muscovitepresumably formed from the mixed-layer illite/montmorillonite.Anchimetamorphic illite is poorer in Fe and Mg than at the diageneticstage, having lost these elements during the formation of chlorite.Detrital feldspar has disappeared. In epimetamorphic phyllites, chloritoid and margarite appearby the reactions pyrophyllite + chlorite = chloritoid + quartz+ H2O and pyrophyllite + calcite ± paragonite = margarite+ quartz + H2O + CO2, respectively. At the epi-mesozone transition,paragonite and chloritoid seem to become incompatible in thepresence of carbonates and yield the following breakdown products:plagioclase, margarite, clinozoisite (and minor zoisite), andbiotite. The maximum distribution of margarite is at the epizone-mesozoneboundary; at higher metamorphic grade margarite is consumedby a continuous reaction producing plagioclase. Most of the observed assemblages in the anchi-and epizone canbe treated in the two subsystems MgO (or FeO)-Na2O–CaO–Al2O3–(KAl3O5–SiO2–H2O–CO2).Chemographic analyses show that the variance of assemblagesdecreases with increasing metamorphic grade. Physical conditions are estimated from calibrated mineral reactionsand other petrographic data. The composition of the fluid phasewas low in XCO2 throughout the metamorphic profile, whereasXCH4 was very high, particularly in the anchizone where aH2Owas probably as low as 0.2. P-T conditions along the metamorphicprofile are 1–2 kb/200–300 °C in the anchizone(Glarus Alps), and 5 kb/500–550 °C at the epi-mesozonetransition (Lukmanier area). Calculated geothermal gradientsdecrease from 50 °C/km in the anchimetamorphic Glarus Alpsto 30 °C/km at the epi-mesozone transition of the Lukmanierarea.  相似文献   

2.
Four natural peridotite nodules ranging from chemically depletedto Fe-rich, alkaline and calcic (SiO2 = 43.7–45.7 wt.per cent, A12O3 = 1.6O–8.21 wt. per cent, CaO = 0.70–8.12wt. per cent, alk = 0.10–0.90 wt. per cent and Mg/(Mg+Fe2+)= 0.94–0.85) have been investigated in the hypersolidusregion from 800? to 1250?C with variable activities of H2O,CO2, and H2. The vapor-saturated peridotite solidi are 50–200?Cbelow those previously published. The temperature of the beginningof melting of peridotite decreases markedly with decreasingMg/(Mg+SFe) of the starting material at constant CaO/Al2O3.Conversely, lowering CaO/Al2O3 reduces the temperature at constantMg/(Mg+Fe) of the starting material. Temperature differencesbetween the solidi up to 200?C are observed. All solidi displaya temperature minimum reflecting the appearance of garnet. Thisminimum shifts to lower pressure with decreasing Mg/(Mg + Fe)of the starting material. The temperature of the beginning ofmelting decreases isobarically as approximately a linear functionof the mol fraction of H2O in the vapor (XH2Ov). The data alsoshow that some CO2 may dissolve in silicate melts formed bypartial melting of peridotite. Amphibole (pargasitic hornblende) is a hypersolidus mineralin all compositions, although its P/T stability field dependson bulk rock chemistry. The upper pressure stability of amphiboleis marked by the appearance of garnet. The vapor-saturated (H2O) liquidus curve for one peridotiteis between 1250? and 1300?C between 10 and 30 kb. Olivine, spinel,and orthopyroxene are either liquidus phases or co-exist immediatelybelow the temperature of the peridotite liquidus. The data suggest considerable mineralogical heterogeneity inthe oceanic upper mantle because the oceanic geotherm passesthrough the P/T band covering the appearance of garnet in variousperidotites. The variable depth to the low-velocity zone is explained byvariable aHjo conditions in the upper mantle and possibly alsoby variations in the composition of the peridotite itself. Itis suggested that komatiite in Precambrian terrane could formby direct melting of hydrous peridotite. Such melting requiresabout 1250?C compared with 1600?C which is required for drymelting. The genesis of kimberlite can be related to partial meltingof peridotite under conditions of XH2Ov = 0.5–0.25 (XCO2v= 0.5–0.75). Such activities of H2O result in meltingat depths ranging between 125 and 175 km in the mantle. Thisrange is within the minimum depth generally accepted for theformation of kimberlite.  相似文献   

3.
We document experiments on a natural metapelite in the range650–775°C, 6–14 kbar, 10 wt % of added water,and 700–850°C, 4–10 kbar, no added water. Staurolitesystematically formed in the fluid-present melting experimentsabove 675°C, but formed only sporadically in the fluid-absentmelting experiments. The analysis of textures, phase assemblages,and variation of phase composition and Fe–Mg partitioningwith P and T suggests that supersolidus staurolite formed at(near-) equilibrium during fluid-present melting reactions.The experimental results are used to work out the phase relationsin the system K2O–Na2O–FeO–MgO–Al2O3–SiO2–H2Oappropriate for initial melting of metapelites at the upperamphibolite facies. The PT grid developed predicts theexistence of a stable PT field for supersolidus staurolitethat should be encountered by aluminous Fe-rich metapelitesduring fluid-present melting at relatively low temperature andintermediate pressures (675–700°C, 6–10 kbarfor XH2O = 1, in the KNFMASH system), but not during fluid-absentmelting. The implications of these findings for the scarcityof staurolite in migmatites are discussed. KEY WORDS: metapelites; migmatites; partial melting; PT grid; staurolite  相似文献   

4.
The upper Triassic Karmutsen metabasites from northeast VancouverIsland, B.C., are thermally metamorphosed by the intrusion ofthe Coast Range Batholith. The amygdaloidal metabasites developedin the outer portion of the contact aureole show a progressivemetamorphism from zeolite to prehnite-pumpellyite facies. Thesize of an equilibrium domain is extremely small for these metabasites,and the individual amygdule assemblages are assumed to be inequilibrium. Two major calcite-free assemblages (+chlorite+quartz)are characteristic: (i) laumontite+pumpellyite+epidote in thezeolite facies and (ii) prehnite+pumpellyite+epidote in theprehnite-pumpellyite facies. The assemblages and compositionsof Ca-Al silicates are chemographically and theoretically interpretedon the basis of the predicted P-T grid for the model basalticsystem, CaO-MgO-A12O3-Fe2O3-SiO2-H2O. The results indicate:(1) local equilibrium has been approached in mineral assemblagesand compositions; (2) the XFe3+ values in the coexisting Ca-Alsilicates decrease from epidote, through pumpellyite to prehnite;(3) with increasing metamorphic grade, the Fe3+ contents ofepidotes in reaction assemblages decrease in the zeolite facies,then increase in the prehnite-pumpellyite facies rocks. Suchvariations in the assemblages and mineral compositions are controlledby a sequence of continuous and discontinuous reactions, andallow delineation of T-XFe3+ relations at constant pressure.The transition from the zeolite to prehnite-pumpellyite faciesof the Karmutsen metabasites is defined by a discontinuous reaction:0·18 laumontite+pumpellyite+0·15 quartz = 1·31prehnite+ 0·78 epidote+0·2 chlorite+ 1·72H2O, where the XFe3+ values of prehnite, pumpellyite and epidoteare 0·03, 0·10 and 0·18, respectively.These values together with available thermodynamic data andour preliminary experimental data are used to calculate theP-T condition for the discontinuous reaction as P = 1·1±0·5 kb and T = 190±30°C. The effectsof pressure on the upper stability of the zeolite facies assemblagesare discussed utilizing T-XFe3+ diagrams. The stability of thelaumontite-bearing assemblages for the zeolite facies metamorphismof basaltic rocks may be defined by either continuous or discontinuousreactions depending on the imposed metamorphic field gradient.Hence, the zeolite and prehnite-pumpellyite facies transitionboundary is multivariant.  相似文献   

5.
Reversed Na-K exchange data between mica and a 2 molal aqueous(Na,K)Cl fluid (Flux & Chatterjee, 1986) have been employedto model the thermodynamic mixing behaviour of muscovite-paragonitecrystalline solutions on the basis of the Redlich-Kister equation.For these binary micas, Gexm may be expressed as where A=11222+1.389 T+0.2359 P, B=–1134+6.806 T–0.0840 P, and C=–7305+9.043 T, with T in K, P in b, Gexm, A, B, and C in joules/mol. Gmex is well constrained between 450 and 620?C, and may be extrapolatedbeyond that range with caution. The calculated solvi are skewedtoward the paragonite end member. In the range up to 15 kb,the critical temperature, Tc and the critical composition, Xcmay be expressed as a function of P by the relations: and with P indicated in bars. Calculated phase relations of muscovite-paragonite crystallinesolutions have been depicted in terms of the system KAlSi3O8-NaAlSi3O8-Al2O3-SiO2-H2O.These data may be applied to appropriate assemblages involvingmica, alkali feldspar, an Al2 polymorph, and quartz to estimateP, T and aH2O conditions of their equilibration. In principle,the muscovite limb of the solvus may be used to obtain geothermometricdata for coexisting muscovite-paragonite pairs, provided theequilibrium pressure is independently known. However, such applicationmust be restricted for the present to micas on the ideal muscovite-paragonitejoin. Mica-alkali feldspar-Al2SiO5-quartz or mica-plagioclase-Al2SiO5-quartzassemblages may be used to deduce aH2O in the coexisting fluid,if P, and T of equilibrium are independently known. Examplesof such geological applications are given.  相似文献   

6.
Single-phase 2M1 muscovite-paragonite crystalline solutionsin the range 0?00–0?10 and 0?70–1?00 Xms have beensynthesized by hydrothermal treatment of gels of appropriatecompositions at 600–700?C, and 7 to 18 kb PH2O. The molarvolumes of these micas may be expressed as V(J/b?mol) = 13?1845+1?463Xms+0?0160 Xms2–0?1679 Xms3 (?0?005), which translateto a substantial positive excess molar volume of mixing. Na-K ion exchange experiments between presynthesized 2M1 micacrystalline solutions and 2 molal aqueous (Na,K)Cl fluids failedto proceed to completion despite 98 day runs at 500–600?C,6 kb Ptotal. Results of analogous exchange experiments provedencouraging however, when a much finer-grained 1M mica was usedas starting material. Applying the tie line rotation technique,reversal of ion exchange experiments could be achieved in the2-phase fields, not, however, in the 3-phase field of the ms-pg-NaCl-KClreciprocal ternary. Using gels as starting material, reversalexperiments were eventually successful both in the 2-phase andthe 3-phase fields; the results of reversal experiments withinthe two-phase fields being identical to those obtained earlierusing 1M micas. Four isobaric-isothermal sections through the ms-pg-NaCl-KClternary were reversibly determined at 450?C/5 kb, 550?C/6 kb,550?C/15 kb, and 620?C/7 kb. At 450?C, the coexisting mica compositionsin the 3-phase field (2 micas plus 1 fluid) are 0?10 and 0?77Xms, at 550?C they are 0?10 and 0?60 Xms, and finally, at 620?Cthese are 0?12 and 0?51 Xms. To the extent that internal equilibriumwas accomplished between the coexisting micas, these data wouldindicate a wide solvus at 450?C, narrowing gradually with increasingtemperature to 620?C. The critical temperature will be wellin excess of 620?C, although the mica at the critical conditionwill prove to be metastable with respect to the assemblage alkalifeldspars+corundum+H2O. The companion paper by Chatterjee & Flux (1986) presentsa thermodynamic analysis of the above experimental data.  相似文献   

7.
Thermodynamic calculations based on addition of mass balanceequations to the Gibbs Method (Spear, 1986) are used to modelthe cordierite-producing reaction in pelitic gneiss from theMcCullough Range, southern Nevada. Calculations which treatthe model paragenesis as a system open to transfer of H2O areconsistent with textural relations. Results indicate that cordieritegrew by the continuous net-transfer reaction: 0?76 BIO+1?72 SILL+3? 55 QTZ+0?27 PLG+0?005 GRT +0?06Al2R2+–1Si–1[BIO]1?02 KSP+0?76 H2O +0?30 FeMg–1[CRD]+0?15FeMg–1[BIO]+0?0005 FeMg–1[GRT] +0?005 CaNaAl–1Si–1[PLG] with decreasing P, decreasing T, and increasing aH2O The steepretrograde dP/dT path for these low-pressure granulites contrastswith isobaric cooling paths typical of higher pressure granulites,and suggests uplift and erosion were active during Proterozoicgranulite-grade metamorphism in this area.  相似文献   

8.
Petrogenetic grids in the system NCKFMASH (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O)and the subsystems NCKMASH and NCKFASH calculated with the softwareTHERMOCALC 3.1 are presented for the PT range 7–30kbar and 450–680°C, for assemblages involving garnet,chloritoid, biotite, carpholite, talc, chlorite, kyanite, staurolite,paragonite, glaucophane, jadeite, omphacite, diopsidic pyroxene,plagioclase, zoisite and lawsonite, with phengite, quartz/coesiteand H2O in excess. These grids, together with calculated compatibilitydiagrams and PT and TXCa and PXCa pseudosectionsfor different bulk-rock compositions, show that incorporationof Ca into the NKFMASH system leads to many of the NKFMASH invariantequilibria moving to lower pressure and/or lower temperature,which results, in most cases, in the stability of jadeite andgarnet being enlarged, but in the reduction of stability ofglaucophane, plagioclase and AFM phases. The effect of Ca onthe stability of paragonite is dependent on mineral assemblageat different PT conditions. The calculated NCKFMASH diagramsare powerful in delineating the phase equilibria and PTconditions of natural pelitic assemblages. Moreover, contoursof the calculated phengite Si isopleths in PT and PXCapseudosections confirm that phengite barometry in NCKFMASH isstrongly dependent on mineral assemblage. KEY WORDS: phase relations; metapelites; NCKFMASH; THERMOCALC; phengite geobarometry  相似文献   

9.
Experiments defining the distribution of H2O [Dw = wt % H2O(melt)/wt% H2O(crd)]) between granitic melt and coexisting cordieriteover a range of melt H2O contents from saturated (i.e. coexistingcordierite + melt + vapour) to highly undersaturated (cordierite+ melt) have been conducted at 3–7 kbar and 800–1000°C.H2O contents in cordierites and granitic melts were determinedusing secondary ion mass spectrometry (SIMS). For H2O vapour-saturatedconditions Dw ranges from 4·3 to 7 and increases withrising temperature. When the system is volatile undersaturatedDw decreases to minimum values of 2·6–5·0at moderate to low cordierite H2O contents (0·6–1·1wt %). At very low aH2O, cordierite contains less than 0·2–0·3wt % H2O and Dw increases sharply. The Dw results are consistentwith melt H2O solubility models in which aH2O is proportionalto Xw2 (where Xw is the mole fraction of H2O in eight-oxygenunit melt) at Xw  相似文献   

10.
On the pseudobinary join CaO:3MgO:Al2O3:2SiO2:xH2O–CaO:1.25MgO:2.75 Al2O3: 0.25SiO2:xH2O clintonite mixed crystals Ca(Mg1+ xAl2 – x) (Al4 – xSixO10)(OH)2 with x rangingfrom 0.6 to 1.4 occur in the temperature range 600–830?C, 2 kb fluid pressure. On the MgSirich side clintonites coexistwith chlorite, forsterite, diopside, and calcite (due to smallamounts of CO2 in the gas phase) and, at lower temperatures,also with idocrase, hydrogrossularite, and aluminous serpentine.Decomposition of clintonite over a divariant temperature rangeoccurs above 830 ?C, 2 kb; clintonite-free subsolidus assemblagescomprising three or four solid phases are formed in the temperatureranges 890 ?–1120 ?C. The subsolidus assemblages can berepresented in a polyhedron defined by the corners forsterite,diopside, melilite, spinel, anorthite, corundum, and calciumdialuminate. Above 1120 ?C partial melting occurs. The upper thermal stability limits of three selected compositionshave been reversed in the P-T range 0.5–20 kb and 730–1050 ?C, respectively. Below some 4 kb breakdown is dueto the divariant reactions: (1)Ca(Mg2.25Al0.75)(Al2.75)(Si1.25O10)(OH)2 spinel+diopsidess+forsterite+clintonitess+vapor, (2)Ca(Mg2Al)(Al3SiO10)(OH)2 spinelx002B;melilitess+anorthite+clintonitess+vapor, (3)Ca(Mg1.75Al1.25)(Al3.25)(Si0.75O10)(OH)2 spinel+melilitess+corundum+clintonitess+vapor, At the terminations of the divariant temperature ranges (1)melilitess, (2) diopsidess, and (3) anorthite enter those assemblagesand clintonitess disappears completely. The reactions can berepresented by the following equations (1)log,H2O = 10.2879–8113/T+0.0856(P–1)/T, (2)log = 9.5852–7325/T+0.0794(P–1)/T, (3)log = 7.8358–5250/T+0.077(P–1)/T, with P expressed in bars and Tin ?K. Above 4 kb the upper thermalstability limit of clintonite is defined by incongruent melting,with grossularite participating at pressures above 9 kb. Thesecurves exhibit a very steep, probably even negative slope inthe P-T diagram. There is a close correspondence between natural clintonite-bearingassemblages and thosefound experimentally. The rarity of clintonitein nature is not due to special conditions of pressure and temperaturebut rather due to special bulk compositions of the rocks.  相似文献   

11.
Blue Mountain is a central-type alkali ultrabasic-gabbro ringcomplex (lxl7middot;5 km) introducing Upper Jurassic sediments,Marlborough, New Zealand. The ultrabasic-gabbroic rocks containlenses of kaersutite pegmatite and sodic syenite pegmatite andare intruded by ring dykes of titanaugite-ilmenite gabbro andlamprophyre. The margin of the intrusion is defined by a ringdyke of alkali gabbro. The plutonic rocks are cut by a swarmof hornblendebiotite-rich lamprophyre dykes. Thermal metamorphismhas converted the sediments to a hornfels ranging in grade fromthe albite-epidote hornfels facies to the upper limit of thehornblende hornfels facies. The rocks are nepheline normative and consist of olivine (Fo82–74),endiopside (Ca45Mg48Fe7–Ca36Mg55Fe9), titanaugite (Ca40Mg50Fe10–Ca44Mg39Fe17),plagioclase (An73–18), and ilmenitetitaniferous magnetite,with various amounts of titaniferous hornblende and titanbiotite.There is a complete gradation between endiopside and titanaugitewith the coupled substitution Ry+2+Si;;(Ti+4+Fe+3+Al+3 and asympathetic increase in CaAl2SiO6 (0·2–10·2percent) and CaTiAl2O6 (2·1–8·1 per cent)with fractionation. Endiopside shows a small, progressive Mgenrichment along a trend subparallel to the CaMgSi2O6–Mg2Si2O6boundary, and titanaugite is enriched in Ca and Fe+2+Fe+3 withdifferentiation. Oscillatory zoning between endiopside and titanaugiteis common. Exsolved ilmenite needles occur in the most Fe-richtitanaugites. The amphiboles show the trend: titaniferous hornblende(1·0–57middot;7 per cent TiO2) kaersutite (6·4per cent TiO2) Fe-rich hastingsite (18·0–19·1per cent FeO as total Fe). Biotite is high in TiO2 (6·6–7·8per cent). Ilmenite and titaniferous magnetite (3·5–10·6per cent TiO2) are typically homogeneous grains; their compositioncan be expressed in terms of R+2RO3:R+2O:R2+3O4. The intrusion of igneous rocks was probably controlled by subterraneanring fracturing. Subsidence of the country rock within the ringfracture provided space for periodic injections of magma froma lower reservoir up the initial ring fracture to form the BlueMountain rocks at a higher level. Downward movement of the floorof the intrusion during crystallization caused inward slumpingof the cumulates which affected the textural, mineralogical,and chemical evolution of the rocks in different parts of theintrusion. The order of mineral fractionation is reflected by the chemicalvariation in the in situ ultrabasic-gabbroic rocks and the successiveintrusions of titanaugite-ilmenite gabbro and lamprophyre ringdykes, marginal alkali gabbro and lamprophyre dyke swarm. Aninitial decrease, then increase in SiO2; a steady decrease inMgO, CaO, Ni, and Cr: an initial increase, then decrease inFeO+Fe2O3, TiO2, MnO, and V; almost linear increase in A12O3and late stage increase in alkalis and P2O3, implies fractionationof olivine and endiopside, followed by titanaugite and Fe-Tioxides, followed by plagioclase, hornblende, biotite, and apatite.Reversals in the composition of cumulus olivine and endiopsideand Solidification Index, indicate that the ultrabasic-gabbroicsequence is composed of four main injections of magma. The ultrabasic rocks crystallized under conditions of high PH2Oand fairly high, constant  相似文献   

12.
The mineral assemblages of greenschist to amphibolite faciesmetabasites may usually be represented in a system of principalcomponents: CaO–Al2O3–(Fe2O3)–FeO–MgO–Na2O–SiO2–CO2–H2O Assemblages co-existing with quartz, ‘albite’, ‘epidote’and a fluid of restricted composition, may be shown by projectionin a CAFM subsystem from ‘epidote’ onto an extendedAFM plane. This projection is analogous to the Thompson projectionfor pelites and is particularly useful in displaying the effectsof Fe/Mg and Al substitution in the silicates as well as incorporatingCaO; it is illustrated by plotting assemblages from the SouthernAlps of New Zealand and the Scottish Highlands and demonstrateschanges occurring with grade in the assemblages. Some commonisograds and facies boundaries are seen to be strongly dependenton bulk rock composition. In some cases MnO must be consideredas an additional component. A model of Psolids=Pfluid, where the fluid is composed of CO2+H2Ois consistent with many greenschist to amphibolite facies metabasicassemblages. Natural assemblages indicate this fluid phase tohave restricted mobility. Theoretical consideration of mineralreactions resulting from increasing Xco2, in conjunction withdata from natural mineral assemblages, leads to the distinctionof five principal types of assemblage which may be expectedas a function of varying XCo2. Recognition of these assemblagetypes provides a useful guide to relative XCo2 during metamorphism. * Present Address: Department of Geology, University of California, 405 Hilgard Avenue, Los Angeles, California 90024.  相似文献   

13.
Experiments in the quartz-saturated part of the system KFMASHunder fO2 conditions of the haematite–magnetite bufferand using bulk compositions with XMg of 0·81, 0·72,0·53 define the stability limits of several mineral assemblageswithin the PT field 9–12 kbar, 850–1100°C.The stability limits of the mineral assemblages orthopyroxene+ spinel + cordierite ± sapphirine, orthopyroxene + garnet+ sapphirine, sapphirine + cordierite + orthopyroxene and garnet+ orthopyroxene + spinel have been delineated on the basis ofPT and T–X pseudosections. Sapphirine did not appearin the bulk composition of XMg = 0·53. A partial petrogeneticgrid applicable to high Mg–Al granulites metamorphosedat high fO2, developed in our earlier work, was extended tohigher pressures. The experimental results were successfullyapplied to several high-grade terranes to estimate PTconditions and retrograde PT trajectories. KEY WORDS: KFMASH equilibria; experimental petrogenetic grid at high fO2  相似文献   

14.
Phase relations for the bulk compositions 3CaO·2FeOx·3SiO2+excessH2O and CaO·FeOx·2SiO2+excess H2O were determinedusing conventional hydrothermal techniques with solid phaseoxygen buffers to control fO2. Andradite, Ca3Fe3+2Si3O12, synthesized above 550 °C hasan average unit cell edge, ao, of 12.055±0.001 Å,and an index of refraction, n, of 1.887±0.003. Belowthis temperature, ao increases whereas n decreases, indicatingthe formation of a member of the andradite-hydroandradite solidsolution. At 2000 bars Pfluid andradite is stable above an fO2of 1015 bar at 800 °C and 10-32 bar at 400 °C. At lowerfO2 andradite+fluid gives way at successively lower temperaturesto the condensed assemblages magnetite+wollastonite, kirschsteinite(CaFe2+SiO4)+ wollastonite and kirschsteinite+xonotlite (Ca6Si6O17(OH)2). Synthetic hedenbergite, CaFe2+Si2O6, has average unit cell dimensionsof ao = 9.857± 0.004 Å, bo = 9.033±0.002Å, co = 5.254±0.002 Å and ß = 104.82°±0.03°,and refractive indices of n = 1.731±0.003 and n = 1.755±0.005.At 2000 bars Pfiuid, hedenbergite is stable below an fO2 of10-13 bar at 800 °C and 10-28 bar at 400 °C. Above thesefO2 values, hedenbergite+O2 breaks down to andradite+magnetite+quartz. The mineral pair andradite +hedenbergite thus limit the fO2range possible for their joint formation under equilibrium conditions. The hydration of wollastonite to xonotlite occurs at much lowertemperatures than previous experimental work indicated. A tentativehigh temperature limit for this reaction is set at 185°±15°C and 5000±25 bars and 210°±15 °Cand 2000±20 bars. Inasmuch as the growth of xonotlitefrom wollastonite + H2O was never accomplished, this high temperaturelimit does not represent an equilibrium univariant curve. Nine phases were encountered in the study of andradite and hedenbergite.They are andradite, hedenbergite, magnetite, wollastonite, kirschsteinite,xonotlite, quartz, ilvaite, and vapor (fluid). An invariantpoint analysis using the method of Schreinemakers shows thetopologic relations of the reactions involved. The resultinggrid can be used to interpret natural occurrences.  相似文献   

15.
A hybrid pyroxene-bearing Weinsberg type granitoid of the SouthBohemian batholith (Austria) consists of two independent mineralassemblages that were formed during two different magmatic events.The older, inherited assemblage forms unevenly distributed millimetre-sizedmulti-grain patches of quartz + mesoperthitic alkali feldspar+ andesine/bytownite + clinopyroxene (XMg = 0·50–0·54)+ orthopyroxene (XMg = 0·35–0·42) ±ilmenite ± accessories. It is interpreted to representremnants of a mangeritic igneous rock with a superimposed granulite-faciesre-equilibration texture characterized by unzoned pyroxenesand plagioclase. The enclosing younger assemblage with alkalifeldspar + oligoclase/andesine + quartz + biotite ± accessoriescrystallized from a biotite-bearing granitic melt with feldsparsexhibiting typical magmatic zoning. Coexisting with the inheritedassemblage are zircons with a characteristic typology (S23 toD, mean J4). Zircons belonging to the granitic assemblage, onthe other hand, show a distinctly different typology (L2 toS5, mean L4) or are anhedral. A Cambrian age of formation andsubsequent re-equilibration of the inherited assemblage is inferredfrom a mean U/Pb and 207Pb/206Pb evaporation age of 523 ±5 Ma for the J4 zircons. Granitic L4 zircons show a mean 207Pb/206Pbevaporation age of 355 ± 9 Ma, interpreted as the ageof zircon growth during a Carboniferous partial melting eventin the lower crust. Granite emplacement at 345 ± 5 Mais inferred from U/Pb analysis of the anhedral zircon population.The comparably low radiogenic common Pb isotope compositionof megacrystic alkali feldspars suggests that at least somedomains of these crystals are inherited from the older, pyroxene-bearingmineral assemblage. Rb/Sr whole-rock dating is thus severelyjeopardized by the presence of the inherited alkali feldsparcrystals, leading to widely scattering data points and errorchronages of no geological significance. KEY WORDS: Austria; Bohemian Massif; geochronology; granites; Pb–Sr isotopes  相似文献   

16.
Blue Mountain is a central-type alkali ultrabasic-gabbro ringcomplex (1?1?5 km) introducing Upper Jurassic sediments, Marlborough,New Zealand. The ultrabasic-gabbroic rocks contain lenses ofkaersutite pegmatite and sodic syenite pegmatite and are intrudedby ring dykes of titanaugite-ilmenite gabbro and lamprophyre.The margin of the intrusion is defined by a ring dyke of alkaligabbro. The plutonic rocks are cut by a swarm of hornblende-biotite-richlamprophyre dykes. Thermal metamorphism has converted the sedimentsto a hornfels ranging in grade from the albite-epidote hornfelsfacies to the upper limit of the hornblende hornfels facies. The rocks are nepheline normative and consist of olivine (Fo82-74),endiopside (Ca45Mg48Fe7-Ca36Mg55Fe9), titanaugite (Ca40Mg50Fe10-Ca44Mg39Fe17),plagioclase (An73-18), and ilmenitetitaniferous magnetite, withvarious amounts of titaniferous hornblende and titanbiotite.There is a complete gradation between end-iopside and titanaugitewith the coupled substitution Ry+z+Si(Ti+4+Fe+3)+Al+3 and asympathetic increase in CaAl2SiO6 (0?2-10?2 percent) and CaTiAl2O6(2?1-8?1 per cent) with fractionation. Endiopside shows a small,progressive Mg enrichment along a trend subparallel to the CaMgSi2O6-Mg2Si2O6boundary, and titanaugite is enriched in Ca and Fe+2+Fe+3 withdifferentiation. Oscillatory zoning between endiopside and titanaugiteis common. Exsolved ilmenite needles occur in the most Fe-richtitanaugites. The amphiboles show the trend: titaniferous hornblende(1?0–5?7 per cent TiO2)kaersutite (6?4 per cent TiO2)Fe-richhastingsite (18?0–19?1 per cent FeO as total Fe). Biotiteis high in TiO2 (6?6–7?8 per cent). Ilmenite and titaniferousmagnetite (3?5–10?6 per cent TiO2) are typically homogeneousgrains; their composition can be expressed in terms of R+2RO3:R+2O:R2+3O4. The intrusion of igneous rocks was probably controlled by subterraneanring fracturing. Subsidence of the country rock within the ringfracture provided space for periodic injections of magma froma lower reservoir up the initial ring fracture to form the BlueMountain rocks at a higher level. Downward movement of the floorof the intrusion during crystallization caused inward slumpingof the cumulates which affected the textural, mineralogical,and chemical evolution of the rocks in different parts of theintrusion. The order of mineral fractionation is reflected by the chemicalvariation in the in situ ultrabasic-gabbroic rocks and the successiveintrusions of titanaugite-ilmenite gabbro and lamprophyre ringdykes, marginal alkali gabbro and lamprophyre dyke swarm. Aninitial decrease, then increase in SiO2; a steady decrease inMgO, CaO, Ni, and Cr: an initial increase, then decrease inFeO+Fe2O3, TiO2, MnO, and V; almost linear increase in Al2O3and late stage increase in alkalis and P2O3, implies fractionationof olivine and endiopside, followed by titanaugite and Fe-Tioxides, followed by plagioclase, hornblende, biotite, and apatite.Reversals in the composition of cumulus olivine and endiopsideand Solidification Index, indicate that the ultrabasic-gabbroicsequence is composed of four main injections of magma. The ultrabasic rocks crystallized under conditions of high PH2Oand fairly high, constant PO2; PH2 and PO2 increased duringthe formation of the gabbroic rocks until fracturing of thechamber roof occurred. The abundance of euhedral amphibole inthe latter injection phases suggests that amphibole accumulatedfrom a hydrous SiO2 undersaturated magma when an increase inPO2, stabilized its crystallization. Plutonic complexes similar to Blue Mountain are found withinand beneath the volcanic piles of many oceanic islands, e.g.Canaries, Reunion, and Tahiti, and those intruding thick sedimentarysequences, as at Blue Mountain, e.g. the pipe-like intrusionsof the Monteregian Hills, Quebec.  相似文献   

17.
Enthalpies of solution have been measured on a series of muscovite—paragonitemicas in 20.1% HF at 50C under isoperibolic conditions. Themolar enthalpy of formation of paragonite at 298 K, for whichno calorimetrically measured value is currently available, hasbeen determined to be –5937.5 (3) kJ. An inversion ofall calorimetric, volumetric and phase equilibrium data hasbeen performed, giving a range of mixing models compatible withmost experimental data. The following expressions of the mixingproperties of 2M1 micas for enthalpy (Hex) and volume (Vex)at pressures up to 10 kbar, forcing excess entropy (Sex) tobe zero and using a subregular mixing model are favoured: Hex(kJ) = [10.6+4.45(1–2Xms)]Xms(1–Xms) Vex(J/bar) = 0.452Xms(1–Xms). However, mixing models of higher order with asymmetric negativeSex are also possible. KEY WORDS: muscovite; paragonite; solvus; calorimetry; solid solution *Corresponding author.  相似文献   

18.
The biotite isograd in pelitic schists of the Waterville Formationinvolved reaction of muscovite + ankerite + rutile + pyrite+graphite + siderite or calcite to form biotite + plagioclase+ ilmenite. There was no single reaction in all pelites; eachrock experienced a unique reaction depending on the mineralogyand proportions of minerals in the chlorite-zone equivalentfrom which it evolved. Quartz, chlorite, and pyrrhotite werereactants in some rocks and products in others. All inferredbiotite-forming reactions involved decarbonation and desulfidation;some were dehydration reactions and others were hydration reactions.P-T conditions at the biotite isograd were near 3500 bars and400 °C. C-O-H-S fluids in equilibrium with the pelitic rockswere close to binary CO2-H2O mixtures with XCO2 = 0.02–0.04.During the biotite-forming reaction, pelitic rocks (a) decreasedby 2–5 percent in volume, (b) performed – (4–11)kcal/liter P-V work on their surroundings, (c) absorbed 38–85kcal/liter heat from their surroundings, and (d) were infiltratedby at least 0.9–2.2 rock volumes H2O fluid. The biotite isograd sharply marks the limit of a decarbonationfront that passed through the terrane during regional metamorphism.Decarbonation converted meta-shales with 6–10 per centcarbonate to carbonate-free pelitic schists. One essential causeof the decarbonation event was pervasive infiltration of theterrane by at least 1–2 rock volumes H2O fluid early inthe metamorphic event under P-T conditions of the biotite isograd.Average shale contains 4–13 per cent siderite, ankerite,and/or calcite, but average pelitic schist is devoid of carbonateminerals. If the Waterville Formation serves as a general modelfor the metamorphism of pelitic rocks, it is likely that worldwidemany pelitic schists developed by decarbonation of shale caused,in part, by pervasive infiltration of metamorphic terranes byseveral rock volumes of aqueous fluid during an early stageof the metamorphic event.  相似文献   

19.
A suite of mantle peridotite xenoliths from the Malaitan alnoitedisplay both trace element enrichment and modal metasomatism.Pargasitic amphibole is present in both garnet- and spinelbearingxenoliths, formed by reaction of a metasomatic fluid (representedby H2O and Na2O) with the peridotite assemblage. Two pargasite-formingreactions are postulated, whereby spinel is totally consumed: 6MgAl2O4 + 8CaMgSi2O6 + 7Mg2Si2O6 + 4H2O + 2Na2O = 4NaCa2Mg4Al3Si6O12(OH)2+ 6Mg2SiO4 or spinel is both a reactant (low Cr) and a product (high Cr): 24MgAlCrO4 + 16CaMgSi2O6 + 14Mg2Si2O6 + 8H2O + 4Na2O = 8NaCa2Mg4Al3Si6O12(OH)2+ 12MgCr2O4 + 12Mg2SiO4 Seven garnet—spinel-peridotites display cryptic metasomatismas demonstrated by the LREE enrichment in clinopyroxenes. TheLREE enrichment correlates positively with 143ND/144ND (0?512771–0?513093)which defines a mixing line between a mantle MORB source anda metasomatic fluid. Isotopic evidence (Sr and Nd) from garnet,clinopyroxene, and amphibole demonstrate this fluid has notoriginated in the alnoite sensu stricto. Calculated amphiboleequilibrium liquids show a range in La/Yb and Ce/Yb ratios similarto those calculated for the augite and subcalcic diopside megacrysts.Sr and Nd isotope analyses from amphibole are within error ofthe augite (PHN4074) and subcalcic diopside megacrysts (CRN2I6,PHN4069, and PHN4085). It is concluded that fluids emanatedfrom a proto-alnoite magma throughout megacryst fractionation,and the mixing line was generated during the crystallizationof the subcalcic diopsides. This study demonstrates that metasomatismrepresented in these xenoliths is not a prerequisite for alnoitemagmatism, but is a consequence of it.  相似文献   

20.
The pressure-temperature-compositional (P-T-X) dependence ofthe solubility of Al2O3 in orthopyroxene coexisting with garnethas been experimentally determined in the P-T range 5–30kilobars and 800–1200 ?C in the system FeO—MgO—Al2O3—SiO2(FMAS). These results have been extended into the CaO—FeO—MgO—Al2O3—SiO2(CFMAS) system in a further set of experiments designed to determinethe effect of the calcium content of garnet on the Al2O3 contentsof coexisting orthopyroxene at near-constant Mg/(Mg + Fe). Startingmaterials were mainly glasses of differing Mg/(Mg + Fe) or Ca/(Ca+ Mg + Fe) values, seeded with garnet and orthopyroxene of knowncomposition, but mineral mixes were also used to demonstratereversible equilibrium. Experiments were performed in a piston-cylinderapparatus using a talc/pyrex medium. Measured orthopyroxene and corrected garnet compositions werefitted by multiple and stepwise regression techniques to anequilibrium relation in the FMAS system, yielding best-fit,model-dependent parameters Goy= –5436 + 2.45T cal mol–1,and WM1FeA1= –920 cal mol–1. The volume change ofreaction, Vo, the entropy change, So970 and the enthalpy changeHo1,970, were calculated from the MAS system data of Perkinset al. (1981) and available heat capacity data for the phases.Data from CFMAS experiments were fitted to an expanded equilibriumrelation to give an estimate of the term WgaCaMg = 1900 ? 400cal/mole cation, using the other parametric values already obtainedin FMAS. The experimental data allow the development of a arnet-orthopyroxenegeobarometer applicable in FMAS and CFMAS: where This geobarometer is applicable to both pelitic and metabasicgranulites containing garnet orthopyroxene, and to garnet peridoditeand garnet pyroxenite assemblages found as xenoliths in diatremesor in peridotite massifs. It is limited, however, by the necessityof an independent temperature estimate, by errors associatedwith analysis of low Al2O3 contents in orthopyroxenes in high-pressureor low-temperature parageneses, and by uncertainties in thecomposition of garnet in equilibrium with orthopyroxene. Ananalysis of errors associated with this formulation of the geobarometersuggests that it is subject to great uncertainty at low pressuresand for Fe-rich compositions. The results of application ofthis geobarometer to natural assemblages are presented in acompanion paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号