首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We consider the cosmological dynamics of a tachyon field localized on the extended DGP braneworld scenario. We present a detailed analysis of the critical points in the phase space of the model, their stability and late-time cosmological viability of the solutions. We study the luminosity distance behavior of this ?EDGP model and compare it with ΛCDM model. Also we show that the EDGP solutions in the presence of tachyon field can explain late time acceleration of the universe.  相似文献   

2.
In this paper we present a class of non-stationary solutions of Einstein’s field equations describing embedded Vaidya-de Sitter black holes with a cosmological variable function Λ(u). The Vaidya-de Sitter black hole is interpreted as the radiating Vaidya black hole is embedded into the non-stationary de Sitter space with variable Λ(u). The energy-momentum tensor of the Vaidya-de Sitter black hole is expressed as the sum of the energy-momentum tensors of the Vaidya null fluid and that of the non-stationary de Sitter field, and satisfies the energy conservation law. We study the energy conditions (like weak, strong and dominant conditions) for the energy-momentum tensor. We find the violation of the strong energy condition due to the negative pressure and leading to a repulsive gravitational force of the matter field associated with Λ(u) in the space-time. We also find that the time-like vector field for an observer in the Vaidya-de Sitter space is expanding, accelerating, shearing and non-rotating. It is also found that the space-time geometry of non-stationary Vaidya-de Sitter solution with variable Λ(u) is Petrov type D in the classification of space-times. We also find the Vaidya-de Sitter black hole radiating with a thermal temperature proportional to the surface gravity and entropy also proportional to the area of the cosmological black hole horizon.  相似文献   

3.
In this paper we study the chameleon Jordan-Brans-Dicke (JBD) cosmological models under the hypothesis of self-similarity. Since there are several ways to define the matter Lagrangian for a perfect fluid: L m =?ρ and L m =γρ, we show that they bring us to obtain two completely different cosmological models. In the first approach, L m =?ρ, there is ordinary matter conservation, while in the second approach, L m =γρ, we get matter creation processes. We deduce for each approach the behaviour of each physical quantity, under the self-similar hypothesis, by employing the Lie group method. The results are quite general and valid for any homogeneous geometry (FRW, Bianchi types, etc.). As example, we calculate exact solutions for each approach by considering the case of a Bianchi II geometry. In this way we can determine the exact behaviour of each physical quantity and in particular of G eff and U (the potential that mimics the cosmological constant).We compare the solutions with the obtained ones in the framework of the usual JBD models.  相似文献   

4.
In order to study how the gravitational and the cosmological constants, G, Λ may vary, we consider two theoretical frameworks which are, a modification of the General Relativity and several scalar models (the standard, non-interacting and interacting models and their respective modifications to allow a G varying). We find exact self-similar solutions for the geometry Bianchi VI h , (that is, the models: III, VI0, and VI h ,). Some physical and geometrical properties of the models are also discussed and we compare the obtained theoretical results with the current observational data. In the first of the theoretical models, we reach the conclusion that, from the structure of the field equations, the behaviour of Λ and G are related, but taking into account the observational data, we conclude that the Λ behaves as a positive decreasing time function while G is growing but in the long time regimen it tends to a constant value. In the scalar models, our solutions predict a “positive” dynamical cosmological constant in all the obtained solutions while the behaviour of G yields indeterminate, since its depends on a free parameter, Gt 2α , so it may be growing or decreasing as in the scalar-tensor theories.  相似文献   

5.
In this paper we review and interpret the values of upper-atmosphere rotation rate (zonal winds) obtained by analysing satellite orbits determined from observations. The history of the method is briefly reviewed, the basic principles are explained, objections to the method are answered, and three examples are given. Existing analyses of the atmospheric rotation rate A are critically reviewed, and, after rejecting some and revising others, we are left with 85 values. These are divided according to local time and season, to give the variation of A with height in nine situations—namely morning, evening and average local time, for summer, winter and average season. These observational results indicate that the value of Λ (in rev/day), averaged over both local time and season, increases from 1.0 at 125 km to 1.22 at 325 km and then decreases to 1.0 at 430 km and 0.82 at 600 km. The value of Λ is higher in the evening (18–24 h), with a maximum value (near 1.4) corresponding to a West-to-East wind of 150 m s?1 at heights near 300 km. The value of Λ is lower in the morning (06–12 h), with East-to-West winds of order 50 m s?1 at heights of 200–400 km. There is also a consistent seasonal variation, the values of Λ being on average 0.15 higher in winter and 0.1 lower in summer than the average seasonal value. No significant variation with solar activity is found, but there is a slight tendency for a greater rotation rate at lower latitudes for heights above 300 km. Unexpectedly, the values for the 1960s are found to be significantly higher than those for the 1970s. Finally, these observational values are compared with the theoretical global model of Fuller-Rowell and Rees: there is complete agreement on the trends, though there are some differences in the mean values.  相似文献   

6.
In this paper, we study the new holographic dark energy model in the framework of modified f(R) Horava-Lifshitz Gravity. We apply correspondence scheme to construct model the in underlying scenario using power-law form of scale factor. To explore accelerated expansion of the universe, some well-known cosmological parameters (equation of state parameter and squared speed of sound) and cosmological planes (ω Λ \(\omega'_{\varLambda}\) and statefinder) are discussed for reconstructed model. It is interesting to conclude that these parameters represent phantom behavior of the universe with stable configuration. also, the cosmological planes show compatible results with recent observations for accelerated expansion of the universe.  相似文献   

7.
Various cosmological models in frames of F(T) gravity are considered. The general scheme of constructing effective dark energy models with various evolution is presented. It is showed that these models in principle are compatible with ΛCDM model. The dynamics of universe governed by F(T) gravity can mimics ΛCDM evolution in past but declines from it in a future. We also construct some dark energy models with the “real” (non-effective) equation-of-state parameter w such that w≤?1. It is showed that in F(T) gravity the Universe filled phantom field not necessarily ends its existence in singularity. There are two possible mechanisms permitting the final singularity. Firstly due to the nonlinear dependence between energy density and H 2 (H is the Hubble parameter) the universe can expands not so fast as in the general relativity and in fact Little Rip regime take place instead Big Rip. We also considered the models with possible bounce in future. In these models the universe expansion can mimics the dynamics with future singularity but due to bounce in future universe begin contracts.  相似文献   

8.
We aim in this paper to study Brans-Dicke cosmology in the presence of varying mass fermions and a self-interaction potential. Furthermore, we also probe the entropy corrected holographic dark energy (ECHDE) in the model in two non-interacting and interacting scenarios. The model parameters are constrained by using the recent SNe Ia observational data and tested against observational data of Hubble parameter. For a comparison, we also constrained and tested the cosmological parameters in ΛCDM model with the same observational data. We show that in non of the scenarios the model prediction is better than ΛCDM model.  相似文献   

9.
Clusters of galaxies are approximated by the Schwarzschild interior solution (with non-zero cosmological constant) embedded in a Robertson/Walker background. The conditions that the two metrics join up smoothly and that the cluster be stable imply either (a)k=?1 with Λ lying in the range ?1.1×10?27?Λ?1.5×10?36 (s?2), or (b)k=0. Also, superclustering on a scale larger than 0.5 Mpc is unacceptable unless Λ<0.  相似文献   

10.
We find that Einstein’s like field equations with coordinate-dependent cosmological “constant” Λ(x i ) imply a non geodesic law of motion for test particles moving in a continuous distribution of incoherent matter (“dust”). The deviation from the geodesic law depends on the derivatives ?Λ/? x i and, in the weak field approximation, causes an anomalous acceleration A~(Vc 2/γ ρ)?Λ/? t+(c 4/γ ρ)?Λ/? r where V=dr/dt, c=the speed of light, γ=8π G with G=the gravitational coupling, ρ=the mass density of the cloud, r and t are the radial and time coordinate respectively. Reasonable assumptions on Λ=Λ(t) give A<10?8 cm/s2 when ρ>10?29 g/cm3 i.e. in all known astrophysical systems. A possible connection with the anomalous Pioneer acceleration is shortly discussed in the case of a cosmological “constant” coupled to matter.  相似文献   

11.
We propose a model of the evolution of the tachyonic scalar field over two phases in the universe. The field components do not interact in phase I, while in the subsequent phase II, they change flavours due to relative suppression of the radiation contribution. In phase II, we allow them to interact mutually with time-independent perturbation in their equations of state, as Shifted Cosmological Parameter (SCP) and Shifted Dust Matter (SDM). We determine the solutions of their scaling with the cosmic redshift in both phases. We further suggest the normalised Hubble function diagnostic, which, together with the low- and high-redshift H(z) data and the concordance values of the present density parameters from the CMBR, BAO statistics etc., constrain the strength of interaction by imposing the viable conditions to break degeneracy in 3-parameter $(\gamma, \varepsilon, \dot{\phi}^{2})$ space. The range of redshifts (z=0.1 to z=1.75) is chosen to highlight the role of interaction during structure formation, and it may lead to a future analysis of power spectrum in this model vis a vis Warm Dark Matter (WDM) or ΛCDM models. We further calculate the influence of interaction in determining the age of the universe at the present epoch, within the degeneracy space of model parameters.  相似文献   

12.
13.
In this paper we have studied the anisotropic and homogeneous Bianchi type-I universe filled with interacting Dark matter and Holographic dark energy. Here we discussed two models, in first model the solutions of the field equations are obtained for constant value of deceleration parameter where as in the second model the solutions of the field equations are obtained for special form of deceleration parameter. It is shown that for suitable choice of interaction between dark matter and holographic dark energy there is no coincidence problem (unlike ΛCDM). Also, in all the resulting models the anisotropy of expansion dies out very quickly and attains isotropy after some finite time. The Statefinder diagnostic is applied to both the models in order to distinguish between our dark energy models with other existing dark energy models. The physical and geometrical aspects of the models are also discussed.  相似文献   

14.
A statistical analysis of radial distributions of Luminous Red Galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS DR7) catalogue within an interval 0.16≤z≤0.47 is carried out. We found that the radial distribution of ~ 106,000 LRGs incorporates a few quasi-periodical components relatively to a variable η, dimensionless line-of-sight comoving distance calculated for the ΛCDM cosmological model. The most significant peaks of the power spectra are obtained for two close periodicities corresponding to the spatial comoving scales (135±12) h?1?Mpc and (101±6) h?1?Mpc. The latter one is dominant and consistent with the characteristic scale of the baryon acoustic oscillations. We analyse also the radial distributions of two other selected LRG samples: ~33,400 bright LRGs (?23.2<M≤?21.8) and ~60,300 all LRGs within a rectangle region on the sky, and show differences of the quasi-periodical features characteristic for different samples. Being confirmed the results would allow to give preference of the spatial against temporal models which could explain the quasi-periodicities discussed here. As a caveat we show that estimations of the significance levels of the peaks strongly depend on a smoothed radial function (trend) as well as characteristics of random fluctuations.  相似文献   

15.
Dark energy models inspired by the cosmological holographic principle are studied in homogeneous isotropic spacetime with a general choice for the dark energy density \(\rho_{d}=3(\alpha H^{2}+\beta\dot{H})\) . Special choices of the parameters enable us to obtain three different holographic models, including the holographic Ricci dark energy (RDE) model. Effect of interaction between dark matter and dark energy on the dynamics of those models are investigated for different popular forms of interaction. It is found that crossing of phantom divide can be avoided in RDE models for β>0.5 irrespective of the presence of interaction. A choice of α=1 and β=2/3 leads to a varying Λ-like model introducing an IR cutoff length Λ ?1/2. It is concluded that among the popular choices an interaction of the form Q m suits the best in avoiding the coincidence problem in this model.  相似文献   

16.
The orbit of Explorer 24 (1964–1976A) has been determined at 18 epochs during the five month period prior to its decay in October 1968, using the RAE orbit refinement computer program PROP6. As a balloon, the satellite was strongly influenced by atmospheric perturbations, despite its high perigee altitude near 490 km. It therefore provided an opportunity of determining atmospheric rotation rates at high altitude. The rotation rate, Λ rev day?1, was estimated from the observed variation in orbital inclination, after the removal of perturbations including those due to solar radiation pressure.The mean rotation rates, averaged over local time, are Λ = 0.98 for 18 May to 18 August 1968 at 542 km; Λ = 1.06 for 18 May to 13 October 1968 at 533 km.For morning conditions, Λ = 0.9 for 22 June to 20 July 1968 at 540 km; Λ = 0.8 during September 1968 at 513 km.For evening conditions, Λ = 1.1 for 18 May to 15 June 1968, and for 26 July to 7 September 1968, at 540 km and 536 km respectively; Λ = 1.3 for 28 September to 13 October 1968 at 484 km.Further, the maximum W to E zonal wind has been estimated to occur at 20.5 h local time, during the period of the analysis.  相似文献   

17.
A variant of the Jordan-Brans-Dicke (JBD) theory is examined which contains a cosmological scalar that is written so that on going to the Einstein representation it becomes the ordinary cosmological constant of general relativity theory. This paper is divided into two parts. In Part I we examine the cosmological solutions for the Einstein representation of the JBD theory, i.e., in the presence of a minimally coupled scalar field. In Part II we shall study the cosmological solutions in the proper representation of the JBD theory with a self consistent scalar field. The analysis of these solutions is of interest in connection with modern concepts of the evolution of the universe, in particular, with the observed acceleration of cosmological expansion and estimates of the density of dark matter and dark energy.__________Translated from Astrofizika, Vol. 48, No. 3, pp. 455–462 (August 2005).  相似文献   

18.
The chromophores responsible for coloring the jovian atmosphere are embedded within Jupiter’s vertical aerosol structure. Sunlight propagates through this vertical distribution of aerosol particles, whose colors are defined by ?0(λ), and we remotely observe the culmination of the radiative transfer as I/F(λ). In this study, we employed a radiative transfer code to retrieve ?0(λ) for particles in Jupiter’s tropospheric haze at seven wavelengths in the near-UV and visible regimes. The data consisted of images of the 2008 passage of Oval BA to the south of the Great Red Spot obtained by the Wide Field Planetary Camera 2 on-board the Hubble Space Telescope. We present derived particle colors for locations that were selected from 14 weather regions, which spanned a large range of observed colors. All ?0(λ) curves were absorbing in the blue, and ?0(λ) increased monotonically to approximately unity as wavelength increased. We found accurate fits to all ?0(λ) curves using an empirically derived functional form: ?0(λ) = 1 − A exp(−). The best-fit parameters for the mean ?0(λ) curve were A = 25.4 and B = 0.0149 for λ in units of nm. We performed a principal component analysis (PCA) on our ?0(λ) results and found that one or two independent chromophores were sufficient to produce the variations in ?0(λ). A PCA of I/F(λ) for the same jovian locations resulted in principal components (PCs) with roughly the same variances as the ?0(λ) PCA, but they did not result in a one-to-one mapping of PC amplitudes between the ?0(λ) PCA and I/F(λ) PCA. We suggest that statistical analyses performed on I/F(λ) image cubes have limited applicability to the characterization of chromophores in the jovian atmosphere due to the sensitivity of I/F(λ) to horizontal variations in the vertical aerosol distribution.  相似文献   

19.
The solutions of Einstein’s equations with cosmological constant (Λ) in the presence of a creation field have been obtained for general class of anisotropic cosmological models. We have obtained the cosmological solutions for two different scenarios of average scale factor. In first case, we have discussed three different types of physically viable cosmological solutions of average scale factor for the general class of Bianchi cosmological models by using a special law for deceleration parameter which is linear in time with a negative slope. In second case, we have discussed another three different forms of cosmological solutions by using the average scale factor in three different scenarios like Intermediate scenario, Logamediate scenario and Emergent scenario. All physical parameters are calculated and discussed in each physical viable cosmological model. We examine the nature of creation field and cosmological constant is dominated the early Universe but they do not survive for long time and finally tends to zero for large cosmic time t. We have also discussed the all energy conditions in each cases.  相似文献   

20.
Alternative cosmologies, based on extensions of General Relativity, predict modified thermal histories in the early universe during the pre Big Bang Nucleosynthesis (BBN) era. When the expansion rate is enhanced with respect to the standard case, thermal relics typically decouple with larger relic abundances. In this paper, we study the dynamical evolution of an f(R) model of gravity in a homogeneous and anisotropic background which is given by a Bianchi type-I model of the universe filled with dark matter, which is described by a perfect fluid with a barotropic equation of state. As an example of a consistent analysis of modified gravity, we apply the formalism to a simple background solution of R+βR n gravity. Our analysis shows that f(R) cosmology allows dark matter masses lesser than 100 GeV, in the regime ρ c ?ρ m . We finally discuss how these limits apply to some specific realizations of standard cosmologies: an f(R) gravity model, Einstein frame model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号