首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文通过数值模拟研究了介质黏弹性对瑞雷波传播的影响.模拟采用结合了交错Adams-Bashforth时间积分法、应力镜像法和多轴完美匹配层的标准交错网格高阶有限差分方案.通过模拟结果和理论结果对比,测试了方法的精度,验证了结果的正确性.在均匀半空间模型中,分别从波场快照、波形曲线及频散能量图三个角度,对黏弹性介质瑞雷波衰减和频散特性进行了详细分析.两层速度递增模型被用于进一步分析瑞雷波在黏弹性层状介质中的特性.结果表明:由于介质的黏弹性,瑞雷波振幅发生衰减,高频成分比低频成分衰减更剧烈,衰减程度随偏移距增大而增强;瑞雷波相速度发生频散,且随频率增大而增大,频散能量的分辨率有所降低;黏弹性波动方程中的参考频率,不会影响瑞雷波振幅衰减和相速度频散的程度,但决定了黏弹性和弹性介质瑞雷波相速度相等的频率位置.本研究有助于人们更好地理解地球介质中瑞雷波的行为,并为瑞雷波勘探的应用和研究提供了科学和有价值的参考.  相似文献   

2.
Rayleigh波勘探方法在探测近地表横波速度、动力学特征等环境与工程地球物理领域获得了广泛应用.这种方法以弹性层状介质理论为基础,然而实际介质具有黏弹性,研究面波在层状黏弹性介质中的传播特征,将为近地表面波勘探提供有益帮助.在某些弹性层状介质模型中,例如存在低速夹层和强波阻抗差异地层模型,Rayleigh波相邻两条频散曲线彼此会非常靠近,产生看似彼此"交叉"的现象,即"osculation"现象,但对于黏弹性介质中的这种现象并没有进行相关的研究.本文利用Muller法计算层状黏弹性介质Rayleigh波频散方程,基于层状介质模型中Rayleigh波频散和衰减曲线连续的性质,结合本征位移曲线特征,分析二层黏弹性介质模型中Rayleigh波频散曲线"交叉"现象以及"交叉"点附近的波动特性.结果表明:与弹性介质相比,黏弹性介质中Rayleigh波的波动特性存在明显差异,随着介质对地震波的损耗越来越强,将导致Rayleigh波频散曲线发生"交叉"现象.  相似文献   

3.
Wave-induced flow is observed as the dominated factor for P wave propagation at seismic frequencies. This mechanism has a mesoscopic scale nature. The inhomogeneous unsaturated patches are regarded larger than the pore size, but smaller than the wavelength. Surface wave, e.g., Rayleigh wave, which propagates along the free surface, generated by the interfering of body waves is also affected by the mesoscopic loss mechanisms. Recent studies have reported that the effect of the wave-induced flow in wave propagation shows a relaxation behavior. Viscoelastic equivalent relaxation function associated with the wave mode can describe the kinetic nature of the attenuation. In this paper, the equivalent viscoelastic relaxation functions are extended to take into account the free surface for the Rayleigh surface wave propagation in patchy saturated poroelastic media. Numerical results for the frequency-dependent velocity and attenuation and the time-dependent dynamical responses for the equivalent Rayleigh surface wave propagation along an interface between vacuum and patchy saturated porous media are reported in the low-frequency range (0.1–1,000 Hz). The results show that the dispersion and attenuation and kinetic characteristics of the mesoscopic loss effect for the surface wave can be effectively represented in the equivalent viscoelastic media. The simulation of surface wave propagation within mesoscopic patches requires solving Biot’s differential equations in very small grid spaces, involving the conversion of the fast P wave energy diffusion into the Biot slow wave. This procedure requires a very large amount of computer consumption. An efficient equivalent approach for this patchy saturated poroelastic media shows a more convenient way to solve the single phase viscoelastic differential equations.  相似文献   

4.
A new technique relates the wave velocity of the surface waves in anisotropic elastic medium to its elastic constants. Anisotropic propagation of surface waves is studied in a half-space occupied by a general anisotropic elastic solid. The phase velocity expressions of quasi-waves, in three-dimensional space, are used to derive the secular equation of surface waves. The complex secular equation is resolved, analytically, into real and imaginary parts and is then solved, numerically, for phase velocity along a given phase direction on the surface. The complete procedure is thus analogous to the one used for conventional Rayleigh waves in isotropic medium. A non-linear equation relates the ray direction of the surface waves to its phase direction on the (plane) surface of the medium. The analytical differentiation of secular equation yields the directional derivative of phase velocity. This derivative is used to calculate the wave velocity of surface waves. Spatial variations of phase velocity, wave velocity and ray direction over the free plane surface are plotted for the numerical models of crustal rocks with orthorhombic, monoclinic and triclinic anisotropies.  相似文献   

5.
A method for determination of characteristics of quasi-Rayleigh (qR) wave in a transversely isotropic homogeneous half-space with inclined axis of symmetry is outlined. The solution is obtained as a superposition of qP, qSV and qSH waves, and surface wave velocity is determined from the boundary conditions at the free surface and at infinity, as in case of Rayleigh wave in an isotropic half-space. Though the theory is simple enough, a numerical procedure for calculation of surface wave velocity presents some difficulties. The difficulty is caused by necessity to calculate complex roots of a non-linear equation, which in turn contains functions determined as roots of non-linear equations with complex coefficients. Numerical analysis shows that roots of the equation corresponding to the boundary conditions do not exist in the whole domain of azimuths and inclinations of the symmetry axis. The domain of existence of qR wave depends on the ratio of the elastic parameters: for some strongly anisotropic models the wave cannot exist at all. For some angles of inclination qR-wave velocities deviate from those calculated on the basis of the perturbation method valid for weak anisotropy, though they have the same tendency of variation with azimuth. The phase of qR wave varies with depth unlike Rayleigh wave in an isotropic half-space. Unlike Rayleigh wave in an isotropic half-space, qR wave has three components - vertical, radial and transverse. Particle motion in horizontal plane is elliptic. Direction of the major axis of the ellipsis coincides with the direction of propagation only in azimuths 0° (180°) and 90° (270°).  相似文献   

6.
黏弹性与弹性介质中Rayleigh面波特性对比研究   总被引:8,自引:7,他引:1       下载免费PDF全文
Rayleigh面波的频散特性可以用来研究地表浅层结构. 本文使用时域有限差分法来模拟复杂黏弹性介质中的Rayleigh面波,研究了Q值对面波频散特性的影响.文中采用旋转交错网格有限差分,以非分裂卷积形式的完全匹配层为吸收边界,推出了求解二阶位移-应力各向同性黏弹性波动方程的数值方法.为了检验数值解的精度,首先将简单模型的正演结果与解析解对比,验证了方法的正确性;然后模拟了横向缓变层状介质和含有洞穴的介质中的面波,对弹性和黏弹性介质中的面波的频散特性进行对比分析.模拟结果表明浅层Q值对面波的频散特性有显著的影响;强吸收情况下,高阶面波的能量相对低阶面波能量显著增强.  相似文献   

7.
多层弹性半空间中的地震波(一)   总被引:6,自引:0,他引:6       下载免费PDF全文
为了了解地震震源和地球介质的性质,很有必要对地震波的辐射、传播和衰减问题作仔细的分析。作为一种近似,可以暂且忽略地球的曲率,把传播地震波的地球介质视为多层半空间。为简便起见,地震波的衰减问题另作考虑。这样,便需要研究多层、均匀、各向同性和完全弹性半空间中地震震源辐射的地震波传播问题。 用哈斯克尔(Haskell)矩阵法解多层介质中弹性波的传播问题是很方便的。如果  相似文献   

8.
High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ‘‘jumping’’ appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P–SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface waves.  相似文献   

9.
The phenomenon of wave dispersion in dry sand is studied both by purely analytical studies and by analytical–numerical experiments on the basis of gradient elastic and viscoelastic material models. These material models are employed in order to simulate the microstructural characteristics of dry sand. The analytical studies treat the material body as a one-dimensional (for the viscoelastic case) and three-dimensional (for the gradient elastic case) and for both material models provide explicit expressions for the velocity of propagation of harmonic compressional (P) and shear (S) waves. These velocities are found to be functions of frequency, i.e., dispersive. The analytical–numerical studies treat the material as a one-dimensional one and try to simulate P and S wave propagation along the axial direction of cylindrical dry sand specimens. Thus, a sinusoidal pulse with a specific frequency is applied at one end of the specimen and the response is determined at some other point by solving a transient dynamic boundary value problem with the aid of a numerical Laplace transform. This analytical–numerical experiment is repeated for various frequencies. Thus, one determines the velocities of P and S waves as functions of frequency, thereby proving again that wave propagation in dry sand is dispersive.  相似文献   

10.
In the free state, Rayleigh waves are assumed to travel in the form of planar wavefronts. Under such an assumption, the propagation behaviour of the modes of Rayleigh waves in layered half‐spaces is only frequency dependent. The frequency behaviour, which is often termed as dispersion, is determined by the shear wave velocity profile of layered soils within the depth related to wavelength (or frequency). According to this characteristic, the shear wave velocity profile can be back‐analysed from the dispersion. The technique is widely used in the surface wave testing. However, the wavefronts of Rayleigh waves activated by the surface sources are non‐planar. The geometric discrepancy could result in Rayleigh waves manifesting distance‐dependent behaviour, which is referred to as spatial behaviour in this paper. Conventional analysis ignoring this spatial behaviour could introduce unexpected errors. In order to take the effects of sources on the propagation behaviour into account, a new mathematical model is established for Rayleigh waves in layered elastic media under vertical disc‐like surface sources using the thin‐layer method. The spatial behaviour of the activated modes and the apparent phase velocity, which is the propagation velocity of Rayleigh waves superposed by the multiple modes, are then analysed. Aspects of the spatial behaviour investigated in this paper include the equilibrium path, the particle orbit, and the geometric attenuation of the activated Rayleigh waves. The results presented in this paper can provide some guidelines for developing new inverse mathematical models and algorithms.  相似文献   

11.
瑞雷面波经常被用来反演地表浅层横波速度,受到越来越广泛的关注。对瑞雷波的研究一般都基于完全弹性介质,而实际地层更接近黏弹性介质,对黏弹性介质中的瑞雷面波进行模拟更具实际意义。本文采用广义标准线性体模型来描述黏弹性介质,并采用交错网格有限差分法对考虑水平自由表面的黏弹介质进行正演模拟,再与弹性介质中的结果进行对比分析。首先采用非线性最优化算法根据期望常数品质因子直接求取松弛时间来拟合常Q模型,并给出广义标准线性固体的具体算例,实施自由表面条件时采用声学-弹性边界近似法,通过剪切模量不变来考虑自由表面上、下横向应力保持连续的条件。对于非自由表面,采用非分裂的多轴卷积完全匹配层来吸收波场。然后对几种典型的数值模型进行正演模拟计算,数值解与解析解的对比验证了本文方法的准确性与有效性,正演结果的对比表明波场尤其是面波频散会受黏弹性影响,因此有必要在面波勘探中考虑黏弹性因素。   相似文献   

12.
This study considers the propagation of Rayleigh waves in a generalized thermoelastic half-space with stress-free plane boundary. The boundary has the option of being either isothermal or thermally insulated. In either case, the dispersion equation is obtained in the form of a complex irrational expression due to the presence of radicals. This dispersion equation is rationalized into a polynomial equation, which is solvable, numerically, for exact complex roots. The roots of the dispersion equation are obtained after removing the extraneous zeros of this polynomial equation. Then, these roots are filtered out for the inhomogeneous propagation of waves decaying with depth. Numerical examples are solved to analyze the effects of thermal properties of elastic materials on the dispersion of existing surface waves. For these thermoelastic Rayleigh waves, the behavior of elliptical particle motion is studied inside and at the surface of the medium. Insulation of boundary does play a significant role in changing the speed, amplitude, and polarization of Rayleigh waves in thermoelastic media.  相似文献   

13.
The existence of rugged free‐surface three‐dimensional tunnel conditions in the coal seams, caused either by geological or mining processes, will inevitably influence wave propagation characteristics when the seismic waves go through the coal mines. Thus, a modified image algorithm has been developed to account for seismic channel waves propagating through this complicated topography with irregular free surfaces. Moreover, the seismic channel waves commonly exhibit damped and dispersive signatures, which is not only because of their own unique sandwich geometry of rock–coal–rock but also because of the viscoelastic behavior of coal. Considering the complexity of programming in three‐dimensional tunnel models with rugged free surfaces, an optimized vacuum grid search algorithm, enabling to model highly irregular topography and to compute efficiently, is also proposed when using high‐order staggered finite‐difference scheme to simulate seismic channel wave propagations in viscoelastic media. The numerical simulations are implemented to investigate the accuracy and stability of the method and the impact of coal's viscoelastic behavior on seismic channel wave propagation characteristics. The results indicate that the automatic vacuum grid search algorithm can be easily merged into high‐order staggered finite‐difference scheme, which can efficiently be applied to calculate three‐dimensional tunnel models with rugged free surfaces in the viscoelastic media. The simulation also suggests that the occurrence of a three‐dimensional tunnel with free surfaces has a remarkable influence on the seismic channel wave propagation characteristics and elastic energy distribution.  相似文献   

14.
切比雪夫伪谱法模拟地震波场   总被引:4,自引:2,他引:4       下载免费PDF全文
介绍了切比雪夫伪谱法以及快速傅立叶算法在其中的应用,并用切比雪夫伪谱法模拟二维有限区域弹性介质地震波场。分别计算了兰姆问题,均匀介质中心爆破源问题,介质内部的速度异常体问题以及各种分界面情况下地震首波传播问题。  相似文献   

15.
分别对"考虑两种压缩波和幅值比例系数"和"考虑一种压缩波(P1或P2波)但不考虑幅值比例系数"两种不同势函数下的半空间饱和多孔介质中Rayleigh波求解进行详细推导,理论分析表明"考虑两种压缩波和幅值比例系数"下Rayleigh波求解推导更为严密,与饱和多孔介质中存在两种压缩波的事实相一致。在研究半空间饱和多孔介质中Rayleigh波时应采用"考虑两种压缩波和幅值比例系数"的势函数。  相似文献   

16.
本文将地表疏松风化层看作是附在弹性介貭上的一种有慣性而无弹性的薄层,当扰动在弹性介貭中传播吋,风化薄层跟随振动;討論了弹性半空間內点震源产生的地震波和疏松薄层对地震波反射的影响。  相似文献   

17.
The present paper investigates the effect of voids on the propagation of surface waves in a homogeneous micropolar elastic solid medium which contains a distribution of vacuous pores (voids). The general theory for surface wave propagation in micropolar elastic media containing voids has been presented. Particular cases of surface waves (Rayleigh’s, Love’s and Stoneley’s) in micropolar media which contain vacuous pores have been deduced from the above general theory. Discussions have been made in each case to highlight the effect of voids and micropolar character of the material medium separately. Their joint effect has also been studied in details. Modulation of Rayleigh wave velocity has been studied numerically. It is observed that Love waves are not affected by the presence of voids.  相似文献   

18.
Summary The wave velocity equation in the form of a ninth order determinantal expression is derived appropriate to Rayleigh type waves in a granular half-space supporting a different granular layer. The calssical frequency equation when both media are elastic has been deduced as a particular case by limiting process.  相似文献   

19.
Summary Two different viewpoints of the phase velocities of the elastic surface waves in isotropic, laterally inhomogeneous media have led to inconsistent results. Arguments in terms of surface wave modes give the conclusion that the phase velocity is independent of the propagation direction, while the outcome of calculations based on a constructive interference of body waves in a surface layer is that the phase velocity is dependent on the propagation direction. Both arguments are summarized and an error in the calculations giving dependence is pointed out. The calculations and observations of surface wave amplitude changes in laterally inhomogeneous media are also summarized.  相似文献   

20.
During seismic wave propagation on a free surface, a strong material contrast boundary develops in response to interference by P- and S- waves to create a surfacewave phenomenon. To accurately determine the effects of this interface on surface-wave propagation, the boundary conditions must be accurately modeled. In this paper, we present a numerical approach based on the dynamic poroelasticity for a space–time-domain staggeredgrid finite-difference simulation in porous media that contain a free-surface boundary. We propose a generalized stess mirror formulation of the free-surface boundary for solids and fluids in porous media for the grid mesh on which lays the free-surface plane. Its analog is that used for elastic media, which is suitable for precise and stable Rayleigh-type surface-wave modeling. The results of our analysis of first kind of Rayleigh (R1) waves obtained by this model demonstrate that the discretization of the mesh in a similar way to that for elastic media can realize stable numerical solutions with acceptable precision. We present numerical examples demonstrating the efficiency and accuracy of our proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号