首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Landslide hazard zonation based on co-seismic slope displacements has been applied in many regions. As there are a large number of slopes to be analyzed and it is impossible to obtain actual acceleration time histories for each of these slopes, the co-seismic displacements are often estimated by some simple empirical formulas, which are derived through regression analysis based on a certain set of acceleration time histories and can only be validly applied to regions similar to where the time history data were recorded. In this paper, treating the ground motion as a random process, a formula for calculating the expected value of Newmark displacement with the acceleration amplitude spectrum as input is derived. Since the formula is theoretically equivalent to the double integration procedure in a rigorous Newmark analysis, which has also been verified by careful comparisons of the calculated results, it can be applied for different regions. By combining the formula with ground motion simulations, a new method for estimating co-seismic slope displacements is proposed. The application of the method in the seriously struck area by Wenchuan earthquake shows that it is an effective tool for predicting co-seismic slope displacements as the predicted landslide distribution by using its estimated results agrees reasonably with the actual observations.  相似文献   

2.
Deterministic Seismic Zoning of Eastern Cuba   总被引:1,自引:0,他引:1  
—A deterministic seismic zoning of Cuba is performed by modelling, with modal summation, the complete P-SV and SH waves fields generated by point-source earthquakes buried in flat-layered anelastic media. The results of the computation, performed for periods greater than 1 second, are presented in two sets of maps of maximum displacement (d max), maximum velocity (v max) and design ground acceleration (DGA), obtained by using two different criteria in the definition of the input magnitude: (1) values reported in the earthquake catalogue (M obs) and (2) values determined from seismotectonic considerations (M max). A comparison with the results of a previous probabilistic seismic zoning is made to test the possibility of making intensity — ground motion conversion with the aid of log-linear regressions.  相似文献   

3.
A straightforward Bayesian statistic is applied in five broad seismogenic source zones of the northwest frontier of the Himalayas to estimate the earthquake hazard parameters (maximum regional magnitude M max, β value of G–R relationship and seismic activity rate or intensity λ). For this purpose, a reliable earthquake catalogue which is homogeneous for M W ≥ 5.0 and complete during the period 1900 to 2010 is compiled. The Hindukush–Pamir Himalaya zone has been further divided into two seismic zones of shallow (h ≤ 70 km) and intermediate depth (h > 70 km) according to the variation of seismicity with depth in the subduction zone. The estimated earthquake hazard parameters by Bayesian approach are more stable and reliable with low standard deviations than other approaches, but the technique is more time consuming. In this study, quantiles of functions of distributions of true and apparent magnitudes for future time intervals of 5, 10, 20, 50 and 100 years are calculated with confidence limits for probability levels of 50, 70 and 90 % in all seismogenic source zones. The zones of estimated M max greater than 8.0 are related to the Sulaiman–Kirthar ranges, Hindukush–Pamir Himalaya and Himalayan Frontal Thrusts belt; suggesting more seismically hazardous regions in the examined area. The lowest value of M max (6.44) has been calculated in Northern-Pakistan and Hazara syntaxis zone which have estimated lowest activity rate 0.0023 events/day as compared to other zones. The Himalayan Frontal Thrusts belt exhibits higher earthquake magnitude (8.01) in next 100-years with 90 % probability level as compared to other zones, which reveals that this zone is more vulnerable to occurrence of a great earthquake. The obtained results in this study are directly useful for the probabilistic seismic hazard assessment in the examined region of Himalaya.  相似文献   

4.
Bayesian probability theory is an appropriate and useful method for estimating parameters in seismic hazard analysis. The analysis in Bayesian approaches is based on a posterior belief, also their special ability is to take into account the uncertainty of parameters in probabilistic relations and a priori knowledge. In this study, we benefited the Bayesian approach in order to estimate maximum values of peak ground acceleration (Amax) also quantiles of the relevant probabilistic distributions are figured out in a desired future interval time in Iran. The main assumptions are Poissonian character of the seismic events flow and properties of the Gutenberg-Richter distribution law. The map of maximum possible values of Amax and also map of 90% quantile of distribution of maximum values of Amax on a future interval time 100 years is presented. According to the results, the maximum value of the Amax is estimated for Bandar Abbas as 0.3g and the minimum one is attributed to Esfahan as 0.03g. Finally, the estimated values in Bayesian approach are compared with what was presented applying probabilistic seismic hazard (PSH) methods based on the conventional Cornel (1968) method. The distribution function of Amax for future time intervals of 100 and 475 years are calculated for confidence limit of probability level of 90%.  相似文献   

5.
An attempt has been made to study the behavior of nailed vertical excavations in medium dense to dense cohesionless soil under seismic conditions using a pseudo-dynamic approach. The effect of several parameters such as angle of internal friction of soil(Φ), horizontal(k_h) and vertical(k_v) earthquake acceleration coefficients, amplification factor(f_a), length of nails(L), angle of nail inclination(α) and vertical spacing of nails(S_v) on the stability of nailed vertical excavations has been explored. The limit equilibrium method along with a planar failure surface is used to derive the formulation involved with the pseudo-dynamic approach, considering axial pullout of the installed nails. A comparison of the pseudo-static and pseudo-dynamic approaches has been established in order to explore the effectiveness of the pseudo-dynamic approach over pseudo-static analysis, since most of the seismic stability studies on nailed vertical excavations are based on the latter. The results are expressed in terms of the global factor of safety(FOS). Seismic stability, i.e., the FOS of nailed vertical excavations is found to decrease with increase in the horizontal and vertical earthquake forces. The present values of FOS are compared with those available in the literature.  相似文献   

6.
An embankment slope on a major highway totally collapsed during 12 November 1999 Düzce earthquake (Mw=7.1) due to the intense near field ground motion. The slope had performed satisfactorily, without even minor deformations or cracks, during the İzmit earthquake (Mw=7.4), another major event that occurred 3 months before and was far field. Predominantly coarse-grained fill of the embankment exhibited typical non-brittle behavior during laboratory tests, implying that the prefailure shear strength would remain relatively unchanged. Stability and failure mechanism of the embankment slope were investigated through a series of static, pseudostatic and fully coupled non-linear dynamic analyses. While respective performances were correctly predicted by the pseudostatic method on a failure—no failure basis during the two earthquakes, the computed failure surface geometry did not conform to that observed. Fully coupled dynamic response analysis, on the other hand, predicted the failure mechanism and failure surface configuration in conformance with the post-failure observations. Computed displacements were generally less than those observed and critically dependent on the potential uncertainties.  相似文献   

7.
In this work we review earthquakes that happened in Southern Siberia and Mongolia within the coordinates of 42°–62° N and 80°–124° E and first propose relationships between earthquake parameters (a surface-wave earthquake magnitude M s and an epicentral intensity(I 0) based on the MSK-64 scale) and maximal distances from an earthquake epicenter (R e max), hypocenter (R h max), and a seismogenic fault (R f max) to the localities of secondary coseismic effects. Special attention was paid to the study of these relationships for the effects of soil liquefaction. Hence, it was shown that secondary deformations from an earthquake were distributed in space away from an earthquake epicenter, than from an associating seismogenic fault. The effects of soil liquefaction are manifested by several times closer to a seismogenic fault, than all other effects, regardless of the type of tectonic movement in a seismic focus. Within the 40 km zone from an earthquake epicenter 44% of the known manifestations of liquefaction process occurred; within the 40 km zone from a seismogenic fault—90%. We propose the next relationship for effects of soil liquefaction: M s = 0.007 × R e max + 5.168 that increases the limits of the maximum epicentral distance at an earthquake magnitude of 5.2 ≤ M s ≤ 8.1 as compared to the corresponding relationships for different regions of the world.  相似文献   

8.
Hourly foF2 data from over 100 ionosonde stations during 1967–89 are examined to quantify F-region ionospheric variability, and to assess to what degree the observed variability may be attributed to various sources, i.e., solar ionizing flux, meteorological influences, and changing solar wind conditions. Our findings are as follows. Under quiet geomagnetic conditions (Kp<1), the 1-σ (σ is the standard deviation) variability of Nmax about the mean is approx. ±25–35% at ‘high frequencies’ (periods of a few hours to 1–2 days) and approx. ±15–20% at ‘low frequencies’ (periods approx. 2–30 days), at all latitudes. These values provide a reasonable average estimate of ionospheric variability mainly due to “meteorological influences” at these frequencies. Changes in Nmax due to variations in solar photon flux, are, on the average, small in comparison at these frequencies. Under quiet conditions for high-frequency oscillations, Nmax is most variable at anomaly peak latitudes. This may reflect the sensitivity of anomaly peak densities to day-to-day variations in F-region winds and electric fields driven by the E-region wind dynamo. Ionospheric variability increases with magnetic activity at all latitudes and for both low and high frequency ranges, and the slopes of all curves increase with latitude. Thus, the responsiveness of the ionosphere to increased magnetic activity increases as one progresses from lower to higher latitudes. For the 25% most disturbed conditions (Kp>4), the average 1-σ variability of Nmax about the mean ranges from approx. ±35% (equator) to approx. ±45% (anomaly peak) to approx. ±55% (high-latitudes) for high frequencies, and from approx. ±25% (equator) to approx. ±45% (high-latitudes) at low frequencies. Some estimates are also provided on Nmax variability connected with annual, semiannual and 11-year solar cycle variations.  相似文献   

9.
Following an overview of pertinent literature, this paper presents a new methodology for estimating seismic coefficients for the performance-based design of earth dams and tall embankments. The methodology is based on statistical regression of (decoupled) numerical data for 1084 potential sliding masses, originating from 110 non-linear seismic response analyses of 2D cross sections with height ranging from 20 to 120 m. At first, the methodology estimates the peak value of the seismic coefficient khmax as a function of: the peak ground acceleration at the free field, the predominant period of the seismic excitation, the non-linear fundamental period of dam vibration, the stiffness of the firm foundation soil or rock layer, as well as the geometrical characteristics and the location (upstream or downstream) of the potentially sliding mass. Then, it proceeds to the estimation of an effective value of the seismic coefficient khE, as a percentile of khmax, to be used with a requirement for pseudo-static factor of safety greater or equal to 1.0. The estimation of khE is based on allowable permanent down-slope deviatoric displacement and a conservative consideration of sliding block analysis.  相似文献   

10.
Rigid sliding block analysis is a common analytical procedure used to predict the potential for earthquake-induced landslides for natural slopes. Currently, predictive models provide the expected level of displacement as a function of the characteristics of the slope (e.g., geometry, strength, yield acceleration) and the characteristics of earthquake shaking (e.g., peak ground acceleration, peak ground velocity). These predictive models are used for developing seismic landslide hazard maps which identify zones with risk of earthquake-induced landslides. Alternatively, these models can be combined with Shakemaps to generate “near-real-time” Slidemaps which could be used, among others, as a tool in disaster management. Shakemaps (a publicly available free service of the United States Geological Survey, USGS) provide near-real-time ground motion conditions during the time of an earthquake event. The ground motion parameters provided by a Shakemap are very useful for the development of Slidemaps. By providing ground motion parameters from an actual earthquake event, Shakemaps also serve as a tool to decouple the uncertainty of the ground motion in sliding displacements prediction. Campania region in Italy is studied for assessing the applicability of using Shakemaps for regional landslide-risk assessment. This region is selected based on the availability of soil shear strength parameters and the proximity to the 1980 Irpina (M w  = 6.9) Earthquake.  相似文献   

11.
Newmark永久位移是评价边坡在地震时稳定性的一个重要指标,近年来广泛应用于地震边坡危险性评价中。传统Newmark永久位移法在计算临界加速度时假定其为常数,未考虑滑动面上抗剪强度参数的变化,过低估计了边坡的永久位移。为了解决这一问题,本文从岩土结构理论获得思路,详细分析滑块底面抗剪强度参数在地震中的变化过程,以边坡震动过程中黏聚力逐步丧失为基本思路,在黏聚力符合一定概率分布的基础上,提出了一种利用蒙特卡罗法模拟其动态减小过程从而实现临界加速度动态变化的计算方法。经过算例计算,黏聚力和临界加速度体现了地震过程中边坡滑块黏聚力和临界加速度的动态变化,位移大小符合地震边坡实际位移的常规数值。本文提出的蒙特卡罗法实现动态黏聚力和动态临界加速度的计算过程与地震时程相对应,不仅在一定程度上解决了抗剪强度参数的动态变化问题,还解决了传统Newmark位移计算中永久位移比实际位移偏小的问题。  相似文献   

12.
This study extracted some P-wave features from the first few seconds of vertical ground acceleration of a single station. These features include the predominant period, peak acceleration amplitude, peak velocity amplitude, peak displacement amplitude, cumulative absolute velocity and integral of the squared velocity. The support vector regression was employed to establish a regression model which can predict the peak ground acceleration according to these features. Some representative earthquake records of the Taiwan Strong Motion Instrumentation Program from 1992 to 2006 were used to train and validate the support vector regression model. Then the constructed model was tested using the whole earthquake records of the same period as well as the 2010 Kaohsiung earthquake with 6.4 ML. The effects on the performance of the regression models using different P-wave features and different length of time window to extract these features are studied. The results illustrated that, if the first 3 s of the vertical ground acceleration was used, the standard deviation of the predicted peak ground acceleration error of the whole tested 15-years earthquake records is 20.89 gal.The length of time window could be shortened, e.g. 1 s, and the prediction error is slightly sacrificed, in order to prolong the lead-time before destructive S-waves reaches.  相似文献   

13.
This paper investigates the non-linear inelastic seismic response of existing single-span simply supported bridges having bearings which can remain stable and slide after their anchor bolts are ruptured. A simplified equivalent model is developed for the inelastic analysis of these single-span simply supported bridges. Non-linear inelastic time-history analyses are conducted for various acceleration inputs. It is found that narrower bridges with longer spans may have considerable sliding displacements and fall off their supports if adequate seat width is not provided. It is also found that for the same ratio of friction coefficient to peak ground acceleration, the sliding displacement of a structural system is linearly proportional to the amplitude of the peak ground acceleration beyond a certain threshold value. This is also demonstrated analytically from an energy approach point of view. The distribution of the energy content of an earthquake, which is related to its velocity time history, can be an indication of the propensity of an earthquake to cause high sliding displacements. Ground motions with high frequency content or high Ap/Vp ratio may produce smaller sliding displacements than ground motions with relatively lower Ap/Vp ratios.  相似文献   

14.
—To estimate for the first time the typical relation between peak acceleration A max?, moment magnitude M W and hypocentral distance R for Kamchatka, 101 analog strong motion records for 1969–1993 were employed as the initial data set. Records of acceleration and velocity meters were obtained at 15 rock to medium-ground Kamchatkan sites from 33 earthquakes with M W = 4.5–7.8, at R = 30–250?km. A max values were determined from "true" acceleration time histories calculated by spectral deconvolution of digitized records. The maximum value over the two horizontal components was used as the A max value in the further analysis. With the scarce data available, there were no chances to determine reliably the whole A max?(M W ?,?R) average surface; thus the shape of this trend surface was determined on a theoretical basis and only the level was fitted to the data. The theoretical model employed included: (1) source spectrum: according to the Brune's spectral model; (2) point-source attenuation: as 1/R plus loss specified by Q(f) = 250?f 0.8; (3) finite-source correction for a disc-shaped incoherent source, its size depending on M W ?; (4) accelerogram duration: including source-dependent and distance-dependent terms; (5) A max value: based on random process representation. Distance trends calculated with this model agree with the empirical ones of FUKUSHIMA and TANAKA (1990). To calculate the absolute level for these trends, observed A max?(M W ?,?R) values were reduced to M W = 8, R = 100?km using the theoretical trends as reference. The median of the reduced values, A max?(8,?100), equal to 188?gal. was taken as the absolute reference level for the relation we sought. Note that in the process of data analysis we were forced to entirely reject relatively abundant data of two particular stations because of their prominent local amplification (×5.5) or deamplification (×0.45).  相似文献   

15.
This paper describes a new pseudostatic limit equilibrium method for the design of cantilevered retaining walls under seismic actions. The method has been applied in a parametric study of the effects of the geometry of the wall, considering different excavated and embedded depths, of the strength of the soil, and of the contact between the soil and the wall. The pseudostatic predictions are in very good agreement, both in terms of horizontal contact stress and bending moment distributions, with the results of truly dynamic 2-D finite difference analyses and published experimental data. It is found that for increasing strengths of the soil–wall system both the critical acceleration and the maximum bending moment on the wall increase. In other words, a stronger soil–wall system will experience smaller displacements during the earthquake, but this is paid for by increasing internal forces in the wall.  相似文献   

16.
The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake’s location (30.546° N, 79.063° E), depth (H?=?19 km), the seismic moment (M0?=?1.12×1017 Nm, M w 5.3), the focal mechanism (φ?=?280°, δ?=?14°, λ?=?84°), the source radius (a?=?1.3 km), and the static stress drop (Δσ s ~22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω?2 source model) by attenuation parameters Q(f)?=?500f0.9, κ?=?0.04 s, and fmax?=?infinite, and a stress drop of Δσ?=?70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤?200 km during five other earthquakes in the region (4.6?≤?M w ?≤?6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.  相似文献   

17.
In this paper, we analyzed the strong ground motion from the November 12, 2017, Kermanshah earthquake in western Iran with moment magnitude (M) of 7.3. Nonlinear and linear amplification of ground motion amplitudes were observed at stations with soft soil condition at hypocentral distances below and above 100 km, respectively. Observation of large ground motion amplitudes dominated with long-period pulses on the strike-normal component of the velocity time series suggests a right-lateral component of movement and propagation of rupture towards southeast. Comparison of the horizontal peak ground acceleration (PGA) from the M 7.3 earthquake with global PGA values showed a similar decay in ground motion amplitudes, although it seems that PGA from the M 7.3 Kermanshah earthquake is higher than global values for NEHRP site class B. We also found that the bracketed duration (Db) was higher in the velocity domain than in the acceleration domain for the same modified Mercalli intensity (MMI) threshold. For example, Db reached ~?30 s at the maximum PGA while it was ~?50 s at the maximum peak ground velocity above the threshold of MMI?=?5. Although the standard design spectrum from Iranian Code of Practice for Seismic Resistant Design of Buildings (standard No. 2800) seems to include appropriate values for the design of structures with fundamental period of 1 s and higher, it is underestimated for near-field ground motions at lower periods.  相似文献   

18.
An important task in seismic hazard assessment is estimation of the intensity and frequency of extremely strong earthquake effects, in particular, peak ground velocities (PGV). Earlier, a method was proposed to evaluate PGV values based on the magnitude of displacements of rock blocks (Rodkin et al., 2012). In this study, this method is used to analyze field data on the source zones of the August 19, 1992, MS = 7.3 Susamyr earthquake and the January 3, 1911, Mw = 7.9 Kemin earthquake, and estimate maximum ground shaking at the upper construction site of the Upper Naryn series of hydropower plants, Kyrgyz Republic. It is shown that the resulting estimates are consistent with data obtained through other techniques. Therefore, the new approach can be recommended to estimate earthquake effects.  相似文献   

19.
The occurrence of the Algiers earthquake (M 6.8) of May 21, 2003, has motivated the necessity to reassess the probabilistic seismic hazard of northern Algeria. The fact that this destructive earthquake took place in an area where there was no evidence of previous significant earthquakes, neither instrumental nor historical, strongly encourages us to review the seismic hazard map of this region. Recently, the probabilistic seismic hazard of northern Algeria was computed using the spatially smoothed seismicity methodology. The catalog used in the previous computation was updated for this review, and not only includes information until June 2003, but also considers a recent re-evaluation of several historical earthquakes. In this paper, the same methodology and seismicity models are utilized in an effort to compare this methodology against an improved and updated seismic catalog. The largest mean peak ground acceleration (PGA) values are obtained in northernmost Algeria, specifically in the central area of the Tell Atlas. These values are of the order of 0.48 g for a return period of 475 years. In the City of Algiers, the capital of Algeria, and approximately 50 km from the reported epicenter of this latest destructive earthquake, a new mean PGA value of 0.23 g is obtained for the same return period. This value is 0.07 g greater than that obtained in the previous computation. In general, we receive greater seismic hazard results in the surrounding area of Algiers, especially to the southwest. The main reason is not this recent earthquake by itself, but the significant increase in the mmax magnitude in the seismic source where the city and the epicenter are included.  相似文献   

20.
2013年8月30日乌鲁木齐市发生MS5.1地震,乌鲁木齐烈度速报台网有32个强震动台触发获得了主震加速度记录。选取23条强震动记录进行常规处理,统计强震动记录数量随震中距分布,对比分析此次地震峰值加速度(PGA)与新疆土层加速度衰减关系;并利用强震动数据对此次地震进行定位,定位结果对应台站震中距与到时线性度较好;最后分析了典型强震动台站记录特性与建筑物震害及工程震害相关性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号