首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the hypersaline stress responses of the Mediterranean seagrass Posidonia oceanica to determine if the species was tolerant to salinity increases that occur in coastal waters by the desalination industry. Water relations, amino acids, carbohydrates, ions, photosynthesis, respiration, chlorophyll a fluorescence, leaf growth and morphology, and plant mortality were analysed after exposing the mesocosm P. oceanica to a salinity level of 43 for one and three months followed by a month for recovery. One-month saline-stressed plants exhibited sub-lethal effects, including a leaf cell turgor pressure reduction, loss of ionic equilibrium and decreased leaf growth. There were also changes in photoprotective mechanisms, increased concentrations of organic osmolytes in leaves and reduced leaf ageing. All these dysfunctions recovered after removing the stress. After the longer exposure of three months, stress symptoms were much more acute and plants showed an excessive ionic exclusion capacity, increased leaf cell turgor, reduced plant carbon balance, increased leaf aging and leaf decay and increased plant mortality, which indicated that the plant had entered a stage of severe physiological stress. In addition, the long-term saline-stressed plants were not able to recover, still showing sustained injury after the one-month recovery period as reflected by unbalanced leaf ionic content, persistently impaired photosynthesis, decline in internal carbon resources and decreased leaf growth that resulted in undersized plants. In conclusion, P. oceanica was not able to acclimate to the saline conditions tested since it could not reach a new physiological equilibrium or recover after a chronic exposure of 3 months.  相似文献   

2.
The results of a phytoplankton survey conducted in coastal waters off western Ireland in 1980/1981 are reported. Surface values of temperature, salinity, NO3N, PO4P, Si, total N, total P and chlorophyll a (Chla) collected at 6 stations during 14 cruises are presented along with the species composition of the net phytoplankton.The spring bloom occurred in late April and was dominated by diatoms. Between April and July further diatom blooms occurred. In July and August dinoflagellates were dominant. This change was associated with the stratification of offshore water and low concentrations of Chla and nutrients. In Autumn large blooms of Ceratium tripos were found; it is suggested that the cause was heavy freshwater runoff. In autumn and winter some warm water oceanic species (e.g. Oxytoxum scolopax) occurred.  相似文献   

3.
A bio-optical dataset collected during the 1998?C2007 period in the Yellow and East China Seas (YECS) was used to provide alternative empirical ocean-color algorithms in the retrieval of chlorophyll-a (Chl-a), total suspended matter (TSM), and colored dissolved organic matter (CDOM) absorption coefficients at 440 nm (ag440). Assuming that remote-sensing reflectance (Rrs) could be retrieved accurately, empirical algorithms for TChl (regionally tuned Tassan??s Chl-a algorithm) in case-1 waters (TChl2i in case-2 waters), TTSM (regionally tuned Tassan??s TSM algorithm), and Tag440 or Cag440 (regionally tuned Tassan??s or Carder??s ag440 algorithm) were able to retrieve Chl-a, TSM, and ag440 with uncertainties as high as 35, 46, and 35%, respectively. Applying the standard SeaWiFS Rrs, TChl was not viable in the eastern part of the YECS, which was associated with an inaccurate SeaWiFS Rrs retrieval because of improper atmospheric correction. TChl behaved better than other algorithms in the turbid case-2 waters, although overestimation was still observed. To retrieve more reliable Chl-a estimates with standard SeaWiFS Rrs in turbid water (a proxy for case-2 waters), we modified TChl for data with SeaWiFS normalized water-leaving radiance at 555 nm (nLw555) > 2 mW cm?2 ??m?1 sr?1 (TChl2s). Finally, with standard SeaWiFS Rrs, we recommend switching algorithms from TChl2s (for case-2 waters) to MOCChl (SeaWiFS-modified NASA OC4v4 standard algorithm for case-1 waters) for retrieving Chl-a, which resulted in uncertainties as high as 49%. To retrieve TSM and ag440 using SeaWiFS Rrs, we recommend empirical algorithms for TTSM (pre-SeaWiFS-modified form) and MTag440 or MCag440 (SeaWiFS Rrs-modified forms of Tag440 or Cag440). These could retrieve with uncertainties as high as 82 and 52%, respectively.  相似文献   

4.
二氧化碳加富与阳光紫外辐射对球形棕囊藻的耦合效应   总被引:1,自引:0,他引:1  
陈善文  高坤山 《海洋学报》2011,33(4):155-162
在含有和滤除紫外(UV)辐射(UVR,280~400 nm)的阳光条件下,向静止、恒温的培养体系中分别充含390×10-6和800×10-6体积CO2的空气,以期探讨CO2浓度升高与阳光UV辐射对球形棕囊藻(Phaeocystis globosa Scherffel)的生理生态学影响.结果显示,该藻对CO2加富和UVR...  相似文献   

5.
An experimental study on Phragmites australis leaf litter decomposition was conducted in the estuarine environment, Ria de Aveiro, Western Portugal, using the leaf-bag technique, with fine- (1 mm) and coarse-mesh (5 mm) bags. The leaf bags were placed in the field sites at day 0, covering a complete salinity gradient, and replicates were collected over time, at days 3 (leaching), 7, 15, 30 and 60. The biomass loss through the leaching phase, about 20% of the initial leaf mass, was independent of both the salinity and the bag mesh size. The biomass decay pattern along the salinity gradient varied through time and presented strong similarities between the two mesh sizes, with the remaining biomass always lower in the 5 mm mesh-size bags. At days 7 and 15, the lowest remaining biomass was observed at the head of the estuary, the preferential distribution area of P. australis. At day 30, the remaining biomass was higher in the marine area and diminished under a direct relationship with salinity, reaching the lowest value in the freshwater environment, with values ranging from 66% to 44% of the initial weight in 5 mm bags, and from 79% to 51% in 1 mm bags. The largest heterogeneity in the remaining biomass among the study areas positioned along the salinity gradient was found close to days 30 (5 mm) and 40 (1 mm). The overall results indicate that the relationship between leaf decay rate and salinity depends on the decay time considered (k15, k30 or k60) and, for the later stages (k60), also on the leaf-bag mesh size. This implies that the use of leaf litter decay rates as a functional indicator in transitional waters will need to take into consideration the factor location in the salinity gradient and leaf litter stage at which the decay rate is determined. The differences between the decay rates with the mesh size acted mainly at the level of the absolute k value and not at the level of the pattern along the salinity gradient. Even so, the data obtained at the mouth of the estuary, in the area closest to a fully marine environment, indicated that after the initial biomass loss through leaching, P. australis decayed either very slowly, in the 5 mm, or not at all, in the 1 mm mesh bags.  相似文献   

6.
Particulate nitrogen (PN) and chlorophyll a (Chla) were measured in the northern reach of San Francisco Bay throughout 1980. The PN values were calculated as the differences between unfiltered and filtered (0·4 μm) samples analyzed using the UV-catalyzed peroxide digestion method. The Chla values were measured spectrophotometrically, with corrections made for phaeopigments. The plot of all PNChla data was found to be non-linear, and the concentration of suspended particulate matter (SPM) was found to be the best selector for linear subsets of the data. The best-fit slopes of PNChla plots, as determined by linear regression (model II), were interpreted to be the N: Chla ratios of phytoplankton. The Y-intercepts of the regression lines were considered to represent easily-oxidizable detrital nitrogen (EDN). In clear water ( < 10 mg l?1 SPM), the N: Chla ratio was 1·07 μg-at N per μg Chla. It decreased to 0·60 in the 10–18 mg l?1 range and averaged 0·31 in the remaining four ranges (18–35, 35–65, 65–155, and 155–470 mg l?1). The EDN values were less than 1 μg-at N l?1 in the clear water and increased monotonically to almost 12 μg-at N l?1 in the highest SPM range. The N: Chla ratios for the four highest SPM ranges agree well with data for phytoplankton in light-limited cultures. In these ranges, phytoplankton-N averaged only 20% of the PN, while EDN averaged 39% and refractory-N 41%.  相似文献   

7.
8.
Biological invasions represent one of the significant components of global change. A comparative study of invaders and co-occurring natives is a useful approach to gaining insights into the invasiveness of exotic plants. Spartina alterniflora, a C4 grass, is a widespread invader in the coastal wetlands in China and other regions of the world. We conducted a comparative study of S. alterniflora and native C3 species, Phragmites australis and Scirpus mariqueter, in terms of their gas exchange and efficiencies in resource utilization. We tested the hypothesis that S. alterniflora has growth-related ecophysiological advantages over the natives in its non-native range, which result in its rapid growth and enhance its invasiveness. Photosynthesis, leaf area index (LAI), specific leaf area (SLA), and the efficiency of resource use (light, water, and nitrogen) were examined monthly for eight months in 2004. Overall, S. alterniflora had greater LAI, higher maximal net photosynthetic rate (Amax), and longer growing season than those of the native species. On average, the efficiencies of S. alterniflora in light, water, and nitrogen utilization were respectively 10.1%, 26.1%, and 33.1% higher than those of P. australis, and respectively 70.3%, 53.5%, 28.3% higher than those of S. mariqueter. However, SLA of S. alterniflora was significantly lower than those of P. australis and S. mariqueter. Although there was no general pattern in the relationship between invasiveness and plant photosynthetic types, in this study, most of the ecophysiological characteristics that gave S. alterniflora a competitive advantage in the Yangtze River estuary were associated with photosynthetic pathways. Our results offer a greater understanding of the relationship between invasiveness and plant photosynthetic type. Our results also indicate that LAI and the length of the photosynthetic season, which vary with habitats, are also important in invasion success.  相似文献   

9.
Current methods for determining carbon content in individual planktonic cells from particle volume alone may involve large errors, and no routine technique exists for determining chlorophyll a content in individual phytoplankters. In this study the concept of using the refractive index of cells as a measure of intracellular concentrations of carbon and chlorophyll a is discussed. Specifically, the real part of the refractive index n (at light wavelengths where absorption is negligible or very small) is shown to correlate well with the intracellular concentration of carbon, Ci. The imaginary part of the refractive index n′ (in the red band of chlorophyll a) correlates well with the intracellular chlorophyll concentration, Chli. These relationships were found to be nearly identical for two species, a cyanobacterium Synechococcus and a diatom Thalassiosira pseudonana, over a two-fold range in Ci and Chli. This range was associated with interspecies differences and intraspecies variations in the cell properties over a day–night cycle. These observations and the underlying theoretical considerations suggest that the relationships Ci vs. n and Chli vs. n′ may be robust and hold for a variety of planktonic species regardless of interspecies and intraspecies variability in cellular carbon content, Chl a content, and cell size. In addition, these relationships may be applicable to single-particle analysis of natural water samples, which promises a unique capability to acquire information about the distribution of carbon and chlorophyll a among individual cells, different size classes, and taxonomic groups of planktonic microorganisms in the ocean. Further research with various planktonic species is needed to examine the generality of the relationships Ci vs. n and Chli vs. n′ before the approach can be implemented in field studies.  相似文献   

10.
Production parameters of surface phytoplankton were measured along three transects: La Manche-Cape Town (I); Cape Town-54°S (II); 0°-49°W (along 54°S) (III). The Canary upwelling waters were most productive along transect I, where the surface chlorophyll a (Chl 0) and the surface primary production (PP 0) were as high as 4.3 mg/m3 and 173 mg C/m3 per day, respectively. Mosaic patterns in the distribution of these parameters were recorded in the northeastern regions of the South Subtropical Anticyclonic Gyre (Chl 0 = 0.03–0.35 mg/m3; PP 0 = 1.6–12.6 mg C/m3 per day). Along transect II, the average twofold southward increase in Chl 0 (from 0.2 to 0.4 mg/m3) and the concurrent decline of the phytoplankton assimilation activity ( AN 0) resulted in deviations from typical latitudinal changes inPP 0. At most sites, PP 0 values varied between 6 and 15 mg C/m3 per day. Negligible changes in Chl 0 (0.36–0.85 mg/m3), PP 0 (8–19 mg C/m3 per day), and AN 0 (0.7–1.6 mg C/mg chl a per hour) were registered for the oceanic waters along transect III. Along all the transects, PP 0 depended on Chl 0 to a greater extent than AN 0. The values of the latter parameter were largely determined by the water temperature and showed a slight correlation with the insolation. Along transect II, the integrated primary production (PP int) and the layer-integrated chlorophyll a in the upper 200 m (Chl 0–200) generally varied from 180 to 360 mg C/m2 per day and from 30 to 70 mg/m2, respectively. In the Polar Front region, an increase in Chl 0–200, PP int, Chl 0, and PP 0 up to respective values of 190 mg/m2, 520 mg C/m2 per day, 1.2 mg/m3, and 32 mg C/m3 per day was observed. A comparison of the water column (0–100 m) stability with the vertical distribution of the primary production and chlorophyll content along transect II implies that the thick (>100 m) upper mixed layer (UML) formed in response to the strong water cooling and wind forcing was largely responsible for the limited primary production in the Subantarctic and Antarctic regions. The large UML thickness resulted in an intense removal of plant cells from the photosynthetic layer and light starvation of a significant (up to 60%) part of the phytoplankton community.  相似文献   

11.
The relationship between sedimentary Fe inputs and net seagrass population growth across a range of Posidonia oceanica meadows growing in carbonate Mediterranean sediments (Balearic Islands, Spain; SE Iberian Peninsula, Spain; Limassol, Cyprus; Sounion, Greece) was examined using comparative analysis. Sedimentary Fe inputs were measured using benthic sediment traps and the net population growth of P. oceanica meadows was assessed using direct census of tagged plants. The meadows examined ranged from meadows undergoing a severe decline to expanding meadows (specific net population growth, from −0.14 yr−1 to 0.05 yr−1). Similarly, Fe inputs to the meadows ranged almost an order of magnitude across meadows (8.6–69.1 mg Fe m−2 d−1). There was a significant, positive relationship between sedimentary iron inputs and seagrass net population growth, accounting for 36% of the variability in population growth across meadows. The relationship obtained suggested that seagrass meadows receiving Fe inputs below 43 mg Fe m−2 d−1 are vulnerable and in risk of decline, confirming the pivotal role of Fe in the control of growth and the stability of seagrass meadows in carbonate sediments.  相似文献   

12.
Seagrass beds occur in various morphological forms, ranging from small patches to continuous meadows. The endemic Mediterranean seagrass Posidonia oceanica forms dense and extensive stands that occur in several different morphotypes, including reticulate (seagrass interspersed with a different habitat type, such as bare sand) and continuous beds. This study, undertaken in the Maltese Islands, examined whether reticulate and continuous P. oceanica beds, located adjacent to each other and at similar depths, had different within-bed architectural characteristics. Five commonly used architectural measures (shoot density, number of leaves per shoot, mean leaf length, mean leaf width and shoot biomass) were measured from P. oceanica shoots collected from the two bed types at three different spatial scales: (1) tens of metres (‘small’ scale); (2) hundreds of metres (‘medium’ scale); and (3) kilometres (‘large’ scale). Results of 2-factor ANOVA (factor 1=bed type; factor 2=sampling locality) carried out at the three spatial scales indicated significant differences between the two bed types in shoot density (P<0.01) and leaf length (P<0.05) at the small scale, and in leaf number (P<0.05) at the large scale. Significant interactions were also apparent for shoot density (at the large scale) and for shoot biomass (at the medium scale). However, the results obtained did not indicate consistent architectural differences between the two P. oceanica bed types over the spatial scales considered. Spatial variations in within-bed architectural characteristics observed were therefore thought to be attributable mainly to the influence of local environmental factors. The findings are discussed with reference to the conservation and management of P. oceanica habitat.  相似文献   

13.
The fugacity of CO2 and abundance of chlorophyll a (Chla) were determined in two long transects from the Polar Front to the Antarctic Continent in austral summer, December 1995–January 1996. Large undersaturations of CO2 in the surface water were observed coinciding with high Chla content. In the major hydrographic regions the mean air–sea fluxes were found to range from −3 to +7 mmol m−2 d−1 making these regions act as a sink as well as a source for CO2. In the total 40-d period, the summation of the several strong source and sink regions revealed an overall modest net source of 0.3 mmol m−2 d−1, this based on the Wanninkhof (J. Geophys. Res. 97 (1992) 7373) quadratic relationship at in situ windspeed. A simple budget approach was used to quantify the role of phytoplankton blooms in the inorganic carbonate system of the Antarctic seas in a time frame spanning several weeks. The major controlling physical factors such as air–sea flux, Ekman pumping and upwelling are included. Net community production varies between −9 and +7 mmol m−2 d−1, because of the large oscillations in the dominance of autotrophic (CO2 fixation) versus heterotrophic (CO2 respiration) activity. Here the mixed layer depth is the major controlling factor. When integrated over time the gross influx and efflux of CO2 from air to sea is large, but the net residual air/sea exchange is a modest efflux from sea to atmosphere.  相似文献   

14.
Leaf mechanical traits are important to understand how aquatic plants fracture and deform when subjected to abiotic (currents or waves) or biotic (herbivory attack) mechanical forces. The likely occurrence of variation during leaf ontogeny in these traits may thus have implications for hydrodynamic performance and vulnerability to herbivory damage, and may be associated with changes in morphologic and chemical traits. Seagrasses, marine flowering plants, consist of shoot bundles holding several leaves with different developmental stages, in which outer older leaves protect inner younger leaves. In this study we examined the long‐lived seagrass Posidonia oceanica to determine ontogenic variation in mechanical traits across leaf position within a shoot, representing different developmental stages. Moreover, we investigated whether or not the collection procedure (classical uprooted shoot versus non‐destructive shoot method: cutting the shoot without a portion of rhizome) and time span after collection influence mechanical measurements. Neither collection procedure nor time elapsed within 48 h of collection affected measurements of leaf biomechanical traits when seagrass shoots were kept moist in dark cool conditions. Ontogenic variation in mechanical traits in P. oceanica leaves over intermediate and adult developmental stages was observed: leaves weakened and lost stiffness with aging, while mid‐aged leaves (the longest and thickest ones) were able to withstand higher breaking forces. In addition, younger leaves had higher nitrogen content and lower fiber content than older leaves. The observed patterns may explain fine‐scale within‐shoot ecological processes of leaves at different developmental stages, such as leaf shedding and herbivory consumption in P. oceanica.  相似文献   

15.
In the Mediterranean region, herbivory appears to be a factor controlling the production of the endemic species Posidonia oceanica, which is mainly due to two main macroherbivores: the sea urchin Paracentrotus lividus, and the sparid fish Sarpa salpa. In this context the present study is a contribution in clarifying herbivory on P. oceanica by testing: 1) whether the abundance of grazing marks of the two herbivores is variable across different spatial scales, 2) whether spatial variation of P. lividus grazing marks and its density is consistent, 3) whether there is a dependence of the number of P. lividus grazing marks on its density, 4) whether the grazing of both macroherbivores, P. lividus and S. salpa, involves the entire leaf length, and 5) whether there is a dependence of the number of P. lividus grazing marks on the number of S. salpa grazing bites.  相似文献   

16.
Benthic faunal activity and density play an important role in determining the rates of benthic nutrient fluxes, which enrich the water column and contribute to phytoplankton growth. The intensity of nutrient fluxes in the Bay of Brest depends on the density of the invasive gastropod, Crepidula fornicata. In order to study the impact of benthic fluxes on phytoplankton dynamics, realistic daily nutrient inputs simulating various densities of C. fornicata were added to six enclosures during three weeks. The increase in fertilization intensity influenced the phytoplankton biomass. A succession from Chaetoceros spp. to Pseudo-nitzschia spp. and Leptocylindrus danicus was observed in all enclosures, but the dynamics of successions were different. Pseudo-nitzschia spp. was favored in the three more fertilized enclosures, while Chaetoceros spp. persisted longer in less enriched enclosures. Despite an apparent nitrogen limitation, the quantum efficiency of PSII (Fv/Fm) was high (>0.5) and stable in all enclosures. The maximal photosynthetic capacity (PBmax) was also invariable and oscillated around an average value of 2.23 mg C (mg Chl a)−1 h−1. The stability of Fv/Fm and PBmax observed at different nutrient input intensities demonstrates that the daily inputs maintained the physiological balance of the microalgae. The maximal light utilization efficiency (α) and the light saturation parameter (Ek) were also quite stable after day 8, which reveals that photosynthetic parameters were driven by growth constraints due to nutrient availability and not by incident light or species successions. We suggest that our results correspond to an “Ek independent variation” regulation. We propose that such regulation of photosynthetic parameters appears when there are frequent nutrient additions which do not allow replete nutrient conditions to be reached but lead to physiological equilibrium.  相似文献   

17.
Abstract. In view of proposed human use of seagrass production the influence of cropping on the growth of Posidonia oceanica (L.) DELILE was investigated. Removal of photosynthetic tissue reduces productivity throughout most of the growth season. This is consistent with the observed low natural grazing rates in aquatic macrophytes. A high mortality of shoots points to possible irreversible damage to the meadow. Harvesting of Posidonia should therefore be restricted to the end of the leaf growth period in early fall.  相似文献   

18.
The sea urchin Paracentrotus lividus is common in the Mediterranean in shallow subtidal rocky habitats and in Posidonia oceanica beds. The aim of this study is to investigate whether protection has the same effect on the population structure of P. lividus occurring in rocky reef habitats and in P. oceanica beds. These results are important to generate hypotheses about the influence of human harvesting, predatory pressure and migration processes on P. lividus in the two habitats.  相似文献   

19.
Pigment indices were used to characterise the seasonal succession of phytoplankton, and associated changes in chlorophyll a and accessory pigments, in subtropical waters of the three ocean basins in the southern hemisphere. Diagnostic indices revealed the dominance of small flagellates and elevated biomass during winter–spring in the Pacific, mixed flagellate–prokaryote communities and intermediate biomass during early summer in the Atlantic, and prokaryote dominance with low biomass in mid-summer in the Indian Ocean. Photo-pigment indices indicated only a small variation in the chlorophyll a proportion of total pigments across the ocean basins, but the accessory pigments varied considerably. Under low temperature and irradiance conditions, the photosynthetic carotenoids were prominent, but as temperatures and irradiance increased and nutrients declined, there was a significant increase in the proportion of photoprotective carotenoids. At high temperatures and irradiances, the photoprotective carotenoids were the largest component of the pigment pool, exceeding the proportion of chlorophyll a. These variations in phytoplankton composition, and their photoacclimation status, could be explained according to environmental changes and have implications for satellite estimations of biomass and primary production.  相似文献   

20.
Abstract. The temporal dynamics of three seagrasses, Posidonia oceanica, Cymodocea nodosa and Zostera marina, was studied in different areas of the Adriatic Sea by analysing phenological parameters and biomass trends in different compartments of seagrass systems. For this purpose, samplings were conducted in 1997 once per season at each station, Otranto (southern Adriatic Sea) and Grado (northern Adriatic Sea). Structural parameters and biomass of plant compartments differed among seagrasses both in absolute values and in seasonal variability. P. oceanica was the largest plant, showing the highest number of leaves per shoot, highest leaf surface, Leaf Area Index and shoot weight. Z. marina was intermediate in size and had the longest leaves, whereas C. nodosa was the smallest seagrass. P. oceanica accounted for the highest total biomass (mean ± SE: 1895.9 ± 180.2 g DW · m–2; CV = coefficient of variation: 19.0 %), considerably more than C. nodosa (mean ± SE: 410.4 ± 88.4 g DW·m–2; CV: 43.1 %) and Z. marina (mean ± SE: 312.1 ± 75.1 g DW · m–2; CV: 48.1 %), although the two latter species displayed a higher seasonal variability. Similarly, other features, such as shoot density, leaf surface, LAI, shoot weight and relative contributions of above‐ and below‐ground compartments, were less variable across seasons in P. oceanica than in the two other seagrasses, while leaf length showed the highest seasonal fluctuation in P. oceanica. As for biomass partitioning, C. nodosa showed a higher proportion of the below‐ground relative to above‐ground biomass (up to 90 %), with a distinct seasonality, whereas in P. oceanica the proportion of below‐ground biomass (around 80 %) was fairly constant during the year. We infer that in P. oceanica the seasonal forcing is probably buffered by the availability of internal resources stored permanently during the year in the below‐ground. In C. nodosa and Z. marina, instead, growth processes seem to be amplified by a greater influence of environmental factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号