首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of the problem of seismic event identification at an increased level of noise, by the data of a single sensor or local group of sensors, is made. This problem is the key to development of an ultra-short-term warning system of an earthquake that has occurred. Catastrophic damage and human deaths are usually caused by the sudden character of earthquake occurrence. If data processing could be done rapidly (i.e., within 4–5 s), such an earthquake warning would be of value for decreasing human deaths and economic damage. The aim of the present study is to investigate the selection of information features of signals in order to reduce the feature dimensionality and to incorporate the particular features of self-contained systems. Special emphasis is placed on the possibility of neural network techniques for the analysis of class separability in the attribute space. Our system will be helpful for reducing the impact of a disastrous earthquake. The main problems are highlighted and the methods for their solution are discussed; tests are carried out for a test problem, consisting in detection of small earthquakes in a noise-contaminated record. It is intended to develop algorithms and programs for identification of earthquake phase arrivals at an increased level of industrial and other noise. Further work will consist in designing instrumental solutions of the system.  相似文献   

2.
震害资料显示,场地条件对地震动特性以及工程结构破坏程度影响显著。为减少因场地效应而造成的经济损失和社会影响,在进行场地地震反应分析时,需最大限度地减小因场地土层模型参数的不确定性引起的地震动评估偏差,为工程结构地震反应分析选取并生成适当的地震动输入。随着强震动观测技术的逐渐发展,大量可靠的钻井台阵记录为地震过程中场地观测点的动力反应提供了直接数据。以美国加州地区La Cienega钻井台阵强震动观测数据为基础,利用互相关函数,对不同强度地震作用下场地土层的平均剪切波速进行分析,并在此基础上,以Cyclic 1D为模拟平台,建立一维自由场地地震反应有限元分析模型。分析结果表明:通过钻井台阵地震动观测数据识别,得到场地平均剪切波速,能够反映该场地的动力特性,数值模拟计算结果和台阵地震动记录基本吻合,可为数值模型参数选取提供依据。  相似文献   

3.
Nonlinear seismic response analysis of earth dams   总被引:1,自引:0,他引:1  
The objective of this paper is to propose a general and efficient numerical procedure for analysing the dynamic response of geotechnical structures, which are considered as both nonlinear and two phase systems. In Section 2, the appropriate coupled dynamic field equations for the response of a two-phase soil system are briefly reviewed. The finite element spatial discretization of the field equations is described and time integration for the resulting nonlinear semi-discrete finite element equations is discussed. In Section 3, iterative techniques are examined for the solution of the global nonlinear system of finite element equations. A large amount of computational effort is expended in the iterative phase of the solution and so the iterative procedure used must be both reliable and efficient. The performance of three iterative procedure is examined: Newton Raphson, Modified Newton Raphson and Quasi-Newton methods, including BGFS and Broyden updates. Finally, in Section 4, the elasto-plastic earthquake response analysis of a two phase nonhomogeneous earth dam is presented. Extensive documentation exists1 for the particular problem selected including recorded earthquake motions at the base and crest of the dam. The results of the numerical calculations are compared to the recorded response of the dam.  相似文献   

4.
Earthquake-induced hazards are profoundly affected by site effects related to the amplification of ground motions, which are strongly influenced by local geologic conditions such as soil thickness or bedrock depth and soil stiffness. In this study, an integrated geographic information system (GIS)-based system for geotechnical data, called the geotechnical information system (GTIS), was developed to establish a regional counterplan against earthquake ground motions in the Seoul metropolitan area. In particular, to reliably predict spatial geotechnical information, a procedural methodology for building the GTIS within a GIS framework was developed and applied to the Seoul area in Korea. To build the GTIS, pre-existing geotechnical data were collected in and around the study area, and then a walk-over site survey was conducted to acquire surface geo-knowledge data. In addition, the representative shear wave velocities for geotechnical layers were derived by statistically analyzing many seismic test data in Korea. The GTIS was used in a practical application to estimate site effects in the study area; seismic zoning maps of geotechnical earthquake parameters, such as the depth to bedrock and the site period, were created and presented as a regional synthetic strategy for earthquake risk assessment. Furthermore, seismic zonation of site classification was also performed to determine the site amplification coefficients for seismic design and seismic performance evaluation at any site and administrative sub-unit in the study area. The methodology and results of the case study of seismic zonations in the Seoul area verified that the GIS-based GTIS can be very useful for the regional estimation of seismic risk and also to support decisions regarding seismic hazard mitigation, particularly in the metropolitan area.  相似文献   

5.
The objectives of this paper are to present a comparison of the dynamic characteristics of a seven-storey reinforced concrete building (Van Nuys–Holiday Inn) identified from four recorded strong-motion response data (Whittier earthquake, Landers earthquake, Big Bear earthquake and Northridge earthquake). In the analysis, time-domain methods for estimating the system parameters and the modal properties of the building are studied. Both off-line and on-line identification algorithms are applied to these seismic response data. Under the assumption of a linear time-invariant system the ARX model and ARMAX model are used. Comparison of the identification results using different models are made. In addition, recursive procedures are adapted as on-line identification and the time-varying modal parameters are estimated. For structural systems under strong earthquake excitation, a recursive identification method, adaptive forgetting through multiple models (AFMM), is introduced to identify systems with rapidly changing parameters. Through the analysis of the seismic response data of the building subjected to four earthquakes the identification algorithm and the identification results are discussed.  相似文献   

6.
This paper describes recent efforts that incorporate remote sensing techniques and platforms into geotechnical earthquake reconnaissance to document damage patterns, collect three-dimensional geometries of failures, and measure ground movements. The most-commonly used remote sensing techniques in geotechnical engineering (satellite imagery and LIDAR), as well as unmanned aerial vehicles (UAV), are introduced and recent case histories of the use of these techniques in reconnaissance efforts are provided. These examples demonstrate the potential for remote sensing to improve our understanding of geotechnical effects both at a regional scale and at a local level. The use of remote sensing to measure ground movements is particularly noteworthy and has the potential to provide data sets that will improve our ability to quantitatively predict the consequences of liquefaction and landslides. However, to realize this potential, investments must be made in collecting appropriate pre-earthquake data.  相似文献   

7.
Earthquake-induced hazards are profoundly affected by site effects related to the amplification of ground motions, which are strongly influenced by local geologic conditions such as soil thickness, bedrock depth, and soil stiffness. Seismic disasters are often more severe over soft soils than over stiff soils or rocks due to differences in local site effects. In this study, on the basis of a geotechnical information system (GTIS) framework, we developed an advanced geostatistical assessment for the regional zonation of seismic site effects. In particular, to reliably predict spatial geotechnical information, we developed a procedural methodology for building an advanced GTIS within a geographic information system framework and applied it to the Busan area in Korea. The systemized GTIS comprised four functional components: database, geostatistical analysis, geotechnical analysis, and visualization. First, to build the GTIS, we collected pre-existing geotechnical data in and around the study area, and then conducted a walk-over site survey to acquire surface geo-knowledge data. Second, we determined the optimum geostatistical estimation method using a cross-validation-based verification test, considering site conditions. The advanced GTIS was used in a practical application to estimate the site effects in the study area. We created seismic zoning maps of geotechnical earthquake parameters, such as the depth to bedrock and the site period, and present them as part of a regional synthetic strategy for earthquake risk assessment.  相似文献   

8.
Experimental techniques for testing dynamically substructured systems are currently receiving attention in a wide range of structural, aerospace and automotive engineering environments. Dynamic substructuring enables full‐size, critical components to be physically tested within a laboratory (as physical substructures), while the remaining parts are simulated in real‐time (as numerical substructures). High quality control is required to achieve synchronization of variables at the substructuring interfaces and to compensate for additional actuator system(s) dynamics, nonlinearities, uncertainties and time‐varying parameters within the physical substructures. This paper presents the substructuring approach and associated controller designs for performance testing of an aseismic, base‐isolation system, which is comprised of roller‐pendulum isolators and controllable, nonlinear magnetorheological dampers. Roller‐pendulum isolators are typically mounted between the protected structure and its foundation and have a fundamental period of oscillation far‐removed from the predominant periods of any earthquake. Such semi‐active damper systems can ensure safety and performance requirements, whereas the implementation of purely active systems can be problematic in this respect. A linear inverse dynamics compensation and an adaptive controller are tailored for the resulting nonlinear synchronization problem. Implementation results favourably compare the effectiveness of the adaptive substructuring method against a conventional shaking‐table technique. A 1.32% error resulted compared with the shaking‐table response. Ultimately, the accuracy of the substructuring method compared with the response of the shaking‐table is dependent upon the fidelity of the numerical substructure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Shear wave velocity (V S) can be obtained using seismic tests, and is viewed as a fundamental geotechnical characteristic for seismic design and seismic performance evaluation in the field of earthquake engineering. To apply conventional geotechnical site investigation techniques to geotechnical earthquake engineering, standard penetration tests (SPT) and piezocone penetration tests (CPTu) were undertaken together with a variety of borehole seismic tests for a range of sites in Korea. Statistical modeling of the in-situ testing data identified correlations between V S and geotechnical in-situ penetration data, such as blow counts (N value) from SPT and CPTu data including tip resistance (q t), sleeve friction (f s), and pore pressure ratio (B q). Despite the difference in strain levels between conventional geotechnical penetration tests and borehole seismic tests, it is shown that the suggested correlations in this study is applicable to the preliminary determination of V S for soil deposits.  相似文献   

10.
The nonlinear finite element (FE) analysis has been widely used in the design and analysis of structural or geotechnical systems. The response sensitivities (or gradients) to the model parameters are of significant importance in these realistic engineering problems. However the sensitivity calculation has lagged behind, leaving a gap between advanced FE response analysis and other research hotspots using the response gradient. The response sensitivity analysis is crucial for any gradient-based algorithms, such as reliability analysis, system identification and structural optimization. Among various sensitivity analysis methods, the direct differential method (DDM) has advantages of computing efficiency and accuracy, providing an ideal tool for the response gradient calculation. This paper extended the DDM framework to realistic complicated soil-foundation-structure interaction (SFSI) models by developing the response gradients for various constraints, element and materials involved. The enhanced framework is applied to three-dimensional SFSI system prototypes for a pile-supported bridge pier and a pile-supported reinforced concrete building frame structure, subjected to earthquake loading conditions. The DDM results are verified by forward finite difference method (FFD). The relative importance (RI) of the various material parameters on the responses of SFSI system are investigated based on the DDM response sensitivity results. The FFD converges asymptotically toward the DDM results, demonstrating the advantages of DDM (e.g., accurate, efficient, insensitive to numerical noise). Furthermore, the RI and effects of the model parameters of structure, foundation and soil materials on the responses of SFSI systems are investigated by taking advantage of the sensitivity analysis results. The extension of DDM to SFSI systems greatly broaden the application areas of the d gradient-based algorithms, e.g. FE model updating and nonlinear system identification of complicated SFSI systems.  相似文献   

11.
安徽省中等城市地震应急信息管理系统研究   总被引:2,自引:1,他引:1  
中等城市地震应急系统建设是地市级地震部门防震减灾工作的重要组成部分,本文通过对安徽省6个中等城市防震减灾应急信息系统建设的经验总结,介绍了系统设计与实现的思路,对重点技术和功能进行了论述。  相似文献   

12.
A methodology for seismic microzonation and earthquake damage scenarios may be considered as composed of two stages. In the first stage, microzonation maps with respect to estimated earthquake characteristics on the ground surface are generated for an investigated urban area. The effects of local geological and geotechnical site conditions are taken into account based on site characterization with respect to representative soil profiles extending down to the engineering bedrock. 1D site response analyses are performed to calculate earthquake characteristics on the ground surface using as many as possible, hazard compatible real acceleration time histories. In the second stage, vulnerability of buildings and pipeline systems are estimated based on site-specific ground motion parameters. A pilot study is carried out to evaluate seismic damage in a district in Istanbul, Turkey. The results demonstrate the significance of site characterization and site response analysis in calculating the earthquake characteristics on the ground surface in comparison to simplified empirical procedures.  相似文献   

13.
美国地震工程网络模拟系统(NEES)代表了国际地震工程试验技术的最新发展趋势,其中振动离心机的建设占有重要地位,而国内振动离心机的现状与我国辽阔的地域、复杂的工程地质条件、高速发展的经济建设以及严峻的地震形势十分不相称。文中概述了我国振动离心机的现状和客观需求,对NEES系统中振动离心机的发展进行了跟踪研究,通过分析UCDavis和RPI两台振动离心机的发展历程和最新进展,阐述了我国振动离心机发展的必要性及重点。强调应加强离心机振动台技术的研发,根据国内当前土动力学和岩土地震工程科学研究的需要,提出了以振动负载为主要指标的思想,指出了发展重点应放在振动负载、频宽、多向、低频位移、辅助试验功能和网络化功能等方面,对一些重要指标提出了建议。  相似文献   

14.
This paper presents results of the earthquake response analysis on a large‐scale seismic test (LSST) structure which was built at Hualien in Taiwan for an international cooperative research project. The analysis is carried out using a computer program which has been developed based on axisymmetric finite element method incorporating dynamic infinite elements for far‐field soil region and a substructured wave input technique. The non‐linear behaviour of the soil medium is taken into account using an iterative equivalent linearization procedure. Two sets of the soil and structural properties, namely the unified and the FVT‐correlated models, are utilized as the initial linear values. The unified model was provided by a group of experts in charge of the geotechnical experiments, and the correlated model was obtained through a system identification procedure using the forced vibration test (FVT) results by the present authors. Three components of ground accelerations are artificially generated through an averaging process of the Fourier amplitude spectra of the ground accelerations measured near the test structure, and they are used as the control input motions for the earthquake analysis. It has been found that the earthquake responses predicted using the generated control motions and with the FVT‐correlated model as the initial linear properties in the equivalent linearization procedure compare very well with the observed responses. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
本文系统概括了国内外用于地震灾害监测与评估的专业软件现状, 详细介绍了高分光学遥感地震应急应用原型系统的研制目标、 工作流程、 技术方法和主要功能。 该系统基于建立的高分光学遥感震害识别知识库, 实现了“一键式”建筑物震害快速识别, 部分震害增强方法固化于控件中, 减化操作流程, 极大地提高了地震应急的实效性。 系统集成了建筑物、 道路交通、 地震地质灾害三个主要地震灾害识别功能, 能更全面地反映灾区宏观灾情, 在未来地震应急遥感工作中发挥重要作用。  相似文献   

16.
17.
A realistic definition of seismic input for the Catania area is obtained using advanced modeling techniques that allow us the computation of synthetic seismograms, containing body and surface waves. With the modal summation technique, extended to laterally heterogeneous anelastic structural models, we create a database of synthetic signals which can be used for the study of the local response in a set of selected sites located within the Catania area. We propose a ground shaking scenario corresponding to a source spectrum of an earthquake that mimics the destructive event that occurred on 11 January 1693. Making use of the simplified geotechnical map for the Catania area, we produce maps which illustrate the spatial variability of the SH waveforms over the entire area. Using the detailed geological and geotechnical information along a selected cross section, we study the site response to the SH and P-SV motion in a very realistic case, adopting and comparing different estimation techniques.  相似文献   

18.
The propriety of adopting a multi-degree-of-freedom lumped mass–spring–dampers system driven by white noise support excitation as a one-dimensional model for a soil-layer–bedrock system during an earthquake is investigated by means of statistical system identification of the model with noisy measurement of the earthquake ground velocity. The present discussion also suggests that this model may not be applicable to all observed earthquake records, since the model itself depends on the statistical nature of the earthquake motion. For appropriate earthquake records, the system identification procedure may be accomplished; then dynamical properties of the soil-layer and the power spectral density for white noise excitation acting upon the bedrock can be estimated as shown in a numerical example.  相似文献   

19.
Structural identification is the inverse problem of estimating physical parameters of a structural system from its vibration response measurements. Incomplete instrumentation and ambient vibration testing generally result in incomplete and arbitrarily normalized measured modal information, often leading to an ill‐conditioned inverse problem and non‐unique identification results. The identifiability of any parameter set of interest depends on the amount of independent available information. In this paper, we consider the identifiability of the mass and stiffness parameters of shear‐type systems in output‐only situations with incomplete instrumentation. A mode shape expansion‐cum‐mass normalization approach is presented to obtain the complete mass normalized mode shape matrix, starting from the incomplete non‐normalized modes identified using any operational modal analysis technique. An analysis is presented to determine the minimum independent information carried by any given sensor set‐up. This is used to determine the minimum necessary number and location of sensors from the point of view of minimum necessary information for identification. The different theoretical discussions are illustrated using numerical simulations and shake table experiments. It is shown that the proposed identification algorithm is able to obtain reliably accurate physical parameter estimates under the constraints of minimal instrumentation, minimal a priori information, and unmeasured input. The sensor placement rules can be used in experiment design to determine the necessary number and location of sensors on the monitored system. John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we present a methodology to perform geophysical inversion of large‐scale linear systems via a covariance‐free orthogonal transformation: the discrete cosine transform. The methodology consists of compressing the matrix of the linear system as a digital image and using the interesting properties of orthogonal transformations to define an approximation of the Moore–Penrose pseudo‐inverse. This methodology is also highly scalable since the model reduction achieved by these techniques increases with the number of parameters of the linear system involved due to the high correlation needed for these parameters to accomplish very detailed forward predictions and allows for a very fast computation of the inverse problem solution. We show the application of this methodology to a simple synthetic two‐dimensional gravimetric problem for different dimensionalities and different levels of white Gaussian noise and to a synthetic linear system whose system matrix has been generated via geostatistical simulation to produce a random field with a given spatial correlation. The numerical results show that the discrete cosine transform pseudo‐inverse outperforms the classical least‐squares techniques, mainly in the presence of noise, since the solutions that are obtained are more stable and fit the observed data with the lowest root‐mean‐square error. Besides, we show that model reduction is a very effective way of parameter regularisation when the conditioning of the reduced discrete cosine transform matrix is taken into account. We finally show its application to the inversion of a real gravity profile in the Atacama Desert (north Chile) obtaining very successful results in this non‐linear inverse problem. The methodology presented here has a general character and can be applied to solve any linear and non‐linear inverse problems (through linearisation) arising in technology and, particularly, in geophysics, independently of the geophysical model discretisation and dimensionality. Nevertheless, the results shown in this paper are better in the case of ill‐conditioned inverse problems for which the matrix compression is more efficient. In that sense, a natural extension of this methodology would be its application to the set of normal equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号