首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study investigated the trophic ecology of the gastropod Hydrobia ulvae in different habitat types within an intertidal bay. The results point out two major trophic pathways involving H. ulvae in this bay. On the one hand, in sandy/muddy sediments Hydrobia derives most of its energy from allochtonous detritus derived from Enteromorpha sp and the total SOM pool. In addition, in these sediments, the phototrophic purple bacteria mats played a substantial trophic role in the diet of Hydrobia. On the other hand, in a Spartina maritima marsh, the gastropod appears firstly dependent of autochtonous detritus derived from this plant. The minor contribution of microphytobenthos to the diet of Hydrobia is consistent with a relatively low presence of epipelic diatoms at the sampling sites. These results provide evidence that the trophic ecology of H. ulvae inhabiting intertidal sediments is quite plastic and does not necessarily rely primarly on microphytobenthos. Consequently, in a single bay, the small spatial scale variability in the origin and availability of detritus have direct implications on the food incorporation by H. ulvae.  相似文献   

2.
基于浒苔暴发海水池塘的微生物生态特征研究   总被引:3,自引:1,他引:2  
为研究浒苔对海水养殖环境微生物生态的影响,采用Illumia高通量测序技术测定冬季垦区进水区、浒苔暴发的池塘和排水区水体以及底泥中菌群结构,分析进水区、池塘养殖区和排水区的环境微生物结构演变过程。结果表明:(1)γ-变形细菌、α-变形细菌、放线菌、拟杆菌和δ-变形细菌为海水养殖区的优势细菌门类;(2)进水区水体和底泥微生物种类和多样性指数均高于浒苔池塘和排水区;浒苔暴发的池塘和排水区微生物群落结构较为相似;(3)浒苔池塘的水体微生物以异养细菌为主,底泥以脱硫杆菌等厌氧细菌为主,增加了底泥潜在产生硫化氢的危害;(4)进水区水体含有丰度较高的弧菌和鱼立克次氏体等条件致病性病原菌,而浒苔池塘中含量较低,说明浒苔对弧菌等有一定的抑制作用;但浒苔暴发的池塘和排水区中另一种潜在致病菌黄杆菌类的丰度较高,养殖品种务必防患此类病菌感染疾病的发生。本文从微生态学角度全面揭示浒苔对近岸海区、海水池塘和排水区微生态演变过程的影响,发现了浒苔具有抑制和增加不同致病菌的双重作用,这对水产养殖有一定指导,也为浒苔发生原因、预报、预防等研究提供一定理论参考。  相似文献   

3.
4.
By creating novel habitats, habitat‐modifying species can alter patterns of diversity and abundance in marine communities. Many sea urchins are important habitat modifiers in tropical and temperate systems. By eroding rocky substrata, urchins can create a mosaic of urchin‐sized cavities or pits separated by exposed, often flat surfaces. These microhabitats appear to harbor distinct assemblages of species. We investigated how a temperate rocky intertidal community uses three small‐scale (<100 cm2) microhabitats created by or adjacent to populations of the purple sea urchin (Strongylocentrotus purpuratus): pits occupied by urchins, unoccupied pits, and adjacent flat spaces. In tidepools, flat spaces harbored the highest percent cover of algae and sessile fauna, followed by empty pits and then occupied pits. The Shannon diversity and richness of these sessile taxa were significantly higher in flat spaces and empty pits than in occupied pits. The composition of these primary space holders in the microhabitats also varied. Unlike primary space holders, mobile fauna exhibited higher diversity and richness in empty pits than in flat spaces and occupied pits, although results were not significant. The protective empty pit microhabitat harbored the highest densities of most trophic functional groups. Herbivores, however, were densest in flat spaces, concordant with high algal coverage. These results suggest the habitats created by S. purpuratus in addition to its biological activities alter community structure at spatial scales finer than those typically considered for sea urchins.  相似文献   

5.
A comparative study on the butyltin levels in various organisms showed that marked bioaccumulation occurs in certain lower trophic levels; i.e. from seawater to phytoplankton and into caprellid amphipods, Caprella spp. Caprella spp., which inhabit algal communities and aquaculture beds in the subtidal zone, are small crustaceans with reduced movement and a life-span of less than 3 months. These characteristics indicate that Caprella spp. may be well-suited for monitoring butyltin residue changes over small spatial and temporal scales. Two groups of organisms, mussels and neogastropods, have been mainly used for monitoring butyltin in shallow water ecosystems. These invertebrates mainly inhabit the intertidal zone where the butyltin levels vary widely depending on the immersion period and exposure to the sea surface microlayer. Monitoring using neogastropods may also over estimate exposures after restrictions on tributyltin, since neogastropods show an irreversible response to residue changes owing to their long life-spans. Thus, we propose usage of Caprella spp. to monitor temporal and spatial changes in baseline concentrations of butyltins.  相似文献   

6.
Multiple stable isotope analyses were used to examine the trophic shifts at faunal assemblages within the invading macroalga Caulerpa racemosa in comparison to established communities of Posidonia oceanica seagrass meadows. Sampling of macrobenthic invertebrates and their potential food sources of algal mats and seagrass meadows in Mallorca (NW Mediterranean) showed differences in species composition of faunal and primary producers among seagrass and C. racemosa. Accordingly, changes in food web structure and trophic guilds were observed, not only at species level but also at community level. The carbon and nitrogen isotope signatures of herbivores, detritivores and deposit feeders confirmed that the seagrass provided a small contribution to the macrofaunal organisms. δ13C at the P. oceanica seagrass and at the C. racemosa assemblages differed, ranging from −6.19 to −21.20‰ and −2.67 to −31.41‰, respectively. δ15N at the Caulerpa mats was lower (ranging from 2.64 to 10.45‰) than that at the seagrass meadows (3.51–12. 94‰). Significant differences in isotopic signatures and trophic level among trophic guilds at P. oceanica and C. racemosa were found. N fractionation at trophic guild level considerable differed between seagrass and macroalgae mats, especially for detritivores, deposit feeders, and herbivores. Filter feeders slightly differed with a relatively lower N signal at the seagrass and CR values at community level and at trophic guild level were higher in the C. racemosa invaded habitats indicating an increase in diversity of basal resource pools. C. racemosa did seem to broaden the niche diversity of the P. oceanica meadows it colonised at the base of the food web, may be due to the establishment of a new basal resource. The extent of the effects of invasive species on ecosystem functioning is a fundamental issue in conservation ecology. The observed changes in invertebrate and macrophytic composition, stable isotope signatures of concomitant species and consequent trophic guild and niche breadth shifts at invaded Caulerpa beds increase our understanding of the seagrass systems.  相似文献   

7.
The effects of buried decaying macroalgae on meiobenthos were examined in intertidal sandy sediments of the Wadden Sea of Lower Saxony. In situ experiments confirmed that one of the principal causes of the formation of reduced surface sediments or ‘black spots’ on the tidal flats is the increasing occurrence and subsequent decomposition of filamentous green algae (Enteromorpha spp.) buried in the sediment. Five to fifteen days after algal material had been buried, the sediment surface turned black. The impact of these black spots on meiobenthos was dramatic: the changed chemical conditions in the sediment resulted in long and drastic reductions in meiofaunal abundance and number of taxa. A multi-dimensional scaling (MDS) analysis of data on meiobenthic abundances revealed that samples from black-spot areas were clearly separated from those of control and reference areas. Re-oxidized black spots showed recolonization by meiofaunal animals, with numbers of individuals and taxa similar to those of oxidized surface sediments. The use of abundances of members of higher meiobenthic taxa to monitor changes in the sediment's chemistry, especially those caused by biomass overload, is discussed.  相似文献   

8.
A field experiment was carried out whereby the density of macroalgae (Enteromorpha spp.) was manipulated and the resultant changes in sediment infaunal density were monitored. Four densities of Enteromorpha spp. were used: 0,0·3, 1, and 3 kg FW m−2, corresponding to control, low-, medium-, and high-density plots. The experiment ran from May to October 1985 and was sampled on three occasions. By July, the density of Corophium volutator was reduced at all weed levels when compared to control plots, whereas densities of Hydrobia ulvae, Macoma balthica, Nereis diversicolor, and Capitella capitata, all increased. Samples taken in October when the weed mats were buried in the sediment showed fewer differences than in July. Macoma, Nereis, and Capitella were still significantly more abundant at medium and high weed densities. Corophium showed no significant treatment effect. There was, however, a highly significant difference in population size structure for Corophium. Measurements of sediment redox potential and silt content under medium- and high-density plots revealed rapid anoxia with a significant increase in siltation.  相似文献   

9.
Intertidal soft-sediments biomass and metabolism are naturally heterogeneous in time and space at different scales. Particular perturbations such as freshwater seepages and seasonal proliferation of ephemeral macroalgae can intermittently and/or locally create additional variability in these systems. Since the impacts of such environmental stresses on natural processes are not well understood, the hypothesis that they would affect the functioning of the benthic system was tested. An intertidal bay whose structure and functioning has been previously described and where a carbon budget has been calculated, was chosen. The results showed that the metabolism of the intertidal sediments was greatly impacted by the above perturbations. Freshwater seepage increased meiofauna and microalgae biomasses and enhanced the total benthic metabolism (increasing community respiration and gross primary production until 4 and 2 fold respectively) without altering its seasonal trend. Ephemeral macroalgae proliferation had a more important effect on the total benthic metabolism, increasing community respiration and gross primary production 8 and 12 fold respectively and leading to a change in the seasonal trend.  相似文献   

10.
Although mudflats seem relatively planar, closer inspection reveals a succession of meso-topographical features, including consecutive convex and concave meso- and micro-topographical features. The objective of this study was to determine the influence of meso-scale surface sediment morphology on the dynamics of the macroalgae Ulvales (Chlorophyta) and associated macroepifauna in the Ria Formosa tidal lagoon (southern coast of Portugal). Four sites in the Ria Formosa were sampled monthly. Two were located on convex sections (mounds) of the mudflat and the other two on concave sections (depressions). Macroalgae and related macroepifauna were sampled at each station. Biomass was quantified by determination of the ash-free dry weight (AFDW). Data were analysed using the software package ‘PRIMER’ (Plymouth Routines In Multivariate Ecological Research). Results show a clear distinction between convex and concave areas. In convex sections, Enteromorpha dominated, to the point of being the only algal species present during part of the year. Conversely, biomass and dynamics of Enteromorpha and Ulva were almost the same in concave sections. The associated macroepifauna was also different in protruding or depressed sections of the mudflat. In the convex areas, the macroepifauna population showed less diversity and was dominated by the snail Hydrobia ulvae. In concave areas, the species diversity was larger, but dominated in terms of biomass by the amphipod Melita palmata and the gastropod Nassarius pfeifferi. Results of the study indicate that the benthic communities associated with concave or convex features were different. No relevant differences in texture and sediment physico-chemical characteristics were found between convex and concave sections. The inference is that the morphological nature of the bottom in tidal mudflats can act as a structuring agent of benthic communities.  相似文献   

11.
The relationship between macroalgal assemblages and abiotic factors was quantified by gradient analyses in an area where long-term changes in macroalgal depth distributions have previously been documented. Biomass data from 4, 6, 8 and 10 m depth in an area of similar salinity (5) and substrate (rock) in the northern Baltic Proper was constrained by a set of environmental variables defining different aspects of abiotic control of species distributions (sediment cover, effective fetch, clarity index, the curvature and slope of the bottom, and direction of exposure) in multivariate analyses at different scales. Fucus vesiculosus dominated the biomass at 4, 6 and 8 m depth, and Furcellaria lumbricalis at 10 m. The applied models explained 30.7–53.3% of the total variance in community structure, and 49.3–60.9% when analysed separately for each depth. A separate analysis of species depth distributions demonstrated that effective fetch was most strongly related to upper limits of the algal belts, sediment cover to the lower limit and density of the F. vesiculosus belt, and clarity index to the lower limits of F. vesiculosus, perennial red algae, and of the red algal and Sphacelaria spp. belts. The results show a strong correlation between environmental variables and vegetation structure even on a small, local scale in the northern Baltic Proper, indicating a high suitability of the phytobenthic zone for environmental monitoring. The results add to previous studies that show a strong importance of abiotic factors on large-scale variation in phytobentic community composition in the Baltic Sea.  相似文献   

12.
The seasonal dynamics of molluscan assemblages inhabiting the algal fronds and the underlying sediment of photophilous algae were analyzed in NW Alboran Sea between July 2007 and April 2008. Molluscs were sampled using SCUBA in two different algal stands (7 km apart) dominated by the brown algae Stypocaulon scoparium, and following an inter-strata sampling protocol consisting in first sampling the algal fronds and then the underlying substratum. The studied algal stands harbored a highly biodiverse malacofauna, with 193 species identified. Assemblages on algal fronds and sediment displayed significant seasonal variations, being more apparent on the fronds, with maximum species richness, abundance and Shannon–Wiener diversity values in summer in both strata. The between-strata differences were also observed in the trophic structure of the assemblages: algal fronds were quantitatively dominated by microalgae or periphyton grazers and the sediment by detritivores and plankton and seston feeders. The high dominance of some species resulted in lower values of diversity and evenness in autumn in the sediment (e.g. Nodulus contortus and Bittium reticulatum) and in spring on the fronds (e.g. Rissoa guerinii and Musculus costulatus). The seasonal variability of the assemblages was mainly related to the population dynamics of dominant species (22 spp. displaying dominance values > 1%) (i.e. recruitment events, high mortality rates of juveniles and/or migrations among habitats). Other factors analyzed were (1) the vegetative cycle of algae, which played an important role in the abundance of some dominant epifaunal grazers, with high abundance and species richness values coinciding with high biomass of algae; and (2) the percentage of organic matter in the sediment, which was related to the abundance changes of some depositivores species. Further conservation strategies for macroalgal stands should be taken into consideration, as this type of photophilous habitat harbors rich associated faunistic communities and it is not generally considered in conservation lists of habitats to be protected.  相似文献   

13.
Coastal bays provide habitats for juveniles and adults of many marine species. Mont Saint-Michel Bay (MSMB, France) hosts a highly diversified fish community and constitutes one of the most important nursery grounds for many commercially exploited marine species, such as sea bass, flatfish, clupeids and rays in the English Channel. Besides, MSMB also suffers from the massive invasion of an exotic mollusc, the American slipper-limpet (Crepidula fornicata, L.). This species arrived four decades ago and now represents the main filter-feeder biomass in the bay (150 Mt), an order of magnitude larger than local farmed and natural shellfishes. Recent analyses underlined the impact of this small gastropod on the trophic structure of this bay and its negative influence on juvenile sole densities in the nursery grounds. The present study uses a geostatistical approach to explore the effect of the extension of the slipper-limpet on flatfish (common sole Solea solea, L.; plaice Pleuronectes platessa, L.; brill Scophthalmus rhombus, L. and flounder Platichthys flesus, L.) spatial distribution. Data collected during survey of the MSMB at the end of the 1970s and three decades later have been used to build interpolated maps of (1) slipper-limpet and (2) flatfish spatial distributions. Slipper-limpets were concentrated in a small area, in the western part of the MSMB, in the 1970s while today they occupy half of the bay. This rapid proliferation led to the decrease of available surface for flatfishes, which previously occupied the whole bay and are now restricted to its eastern part. The present study highlighted that the negative influence on fish habitat in MSMB is apparently more related to changes in the substratum than to trophic interactions. This invasion has possible consequences on flatfish population renewal at a large scale and may also damage other benthic or demersal species, such as rays.  相似文献   

14.
The nitrogen relations of Enteromorpha spp. growing on intertidal mud flats have been examined over a twelve-month period. Nitrogen assimilation rates using 15N have been used to calculate the production of the alga and were between 0·046 and 0·217 mg NH4+N (g dry wt alga)?1 h?1 A considerable quantity of the alga was buried beneath the sediment over the growth season and was calculated to be equivalent to an input of up to 9·52 g N m?2 per month and 32 g N m?2 over one complete growth season. Based on carbon, this latter value represented an input of approximately 320 g C m?2 annually. Low rates of nitrogenase activity (acetylene reduction) were found to be associated with the Enteromorpha. The organisms responsible for the nitrogenase activity were probably heterotrophic bacteria but they did not contribute significant quantities of nitrogen to the alga.  相似文献   

15.
Artificial reefs are spatially complex habitats and serve as good model systems to study patterns of community succession and the response of epibiota to environmental clines over small spatial scales. Here, we quantified spatial heterogeneity in community composition and diversity of fouling communities across a number of environmental gradients that included water depth, surface orientation of habitats, exposure to currents, and shelter. Assemblage structure was quantified by spatially replicated photo transects on a recently scuttled large navy ship off the East Australian coast, lying in 27 m of water. A rich assemblage of epifauna had colonized the wreck within a year, dominated by barnacles, sponges and bryozoans. Community structure varied significantly over small spatial scales of meters to tens of meters. Depth, surface orientation and exposure were the major environmental drivers. Assemblages were substantially less diverse and abundant on the deepest (23 m near the seafloor) part of the hull with residual antifouling paint, on sheltered surfaces inside the wreck, and on the sediment‐laden horizontal surfaces. Overall, the wrecks’ habitat complexity corresponds with small‐scale heterogeneity in the fouling communities. This study supports the notion that wrecks enhance local diversity and biomass within the habitat mosaic of their location, and habitat complexity may be an important mechanism for this, as demonstrated by the large spatial variability in the assemblages documented here.  相似文献   

16.
The present study focuses on horizontal spatial variability of benthic macrofauna associated with Patella ferruginea. Thirty-six samples collected at 12 transects belonging to 4 midlittoral sites along the rocky Tunisian coastline, were examined. A total of 44 species belonging to 5 taxa were found. Multivariate analysis applied on gathered data did not show a horizontal spatial variability at small scale (between transects), but at large scale, between sites as well as sectors. Thus, three groups of communities were identified (GI: Korbous and El Haouaria; GIIa: Zembra Island and GIIb: Kelibia). The distribution of species abundance within these groups revealed that crustaceans were the most abundant taxon, due to the overwhelming dominance of Chthamalus stellatus. This substratum appeared to create favourable micro-habitats for the installation of molluscs including gastropods. Regarding the low diversity index (H') and evenness (J), they seemed to reflect a disturbance and a demographic unbalance within these communities. The heterogeneity of substrate surface, created by C. stellatus specimens appeared to be caused by various complex interactions established between the key components of these communities in particular suspension feeders, predators, herbivorous molluscs and macroalgae. Thus, the dynamic status of each of these communities is the result of these complex interactions.  相似文献   

17.
The Nazaré Canyon on the Portuguese Margin (NE Atlantic) was sampled during spring-summer for three consecutive years (2005–2007), permitting the first inter-annual study of the meiofaunal communities at the Iberian Margin at two abyssal depths (~3500 m and ~4400 m). Using new and already published data, the meiofauna standing stocks (abundance and biomass) and nematode structural and functional diversity were investigated in relation to the sediment biogeochemistry (e.g. organic carbon, nitrogen, chlorophyll a, phaeopigments) and grain size. A conspicuous increase in sand content from 2005 to 2006 and decrease of phytodetritus at both sites, suggested the occurrence of one or more physical disturbance events. Nematode standing stocks and trophic diversity decreased after these events, seemingly followed by a recovery/recolonisation period in 2007, which was strongly correlated with an increase in the quantity and bioavailability of phytodetrital organic matter supplied. Changes in meiofauna assemblages, however, also differed between stations, likely because of the contrasting hydrodynamic and food supply conditions. Higher meiofauna and nematode abundances, biomass and trophic complexity were found at the shallowest canyon station, where the quantity, quality and bioavailability of food material were higher than at the deeper site. The present results suggest that even though inter-annual variations in the sedimentary environment can regulate the meiofauna in the abyssal Nazaré Canyon, heterogeneity between sampling locations in the canyon were more pronounced.  相似文献   

18.
Mangroves along the Sudanese Red Sea coast are under constant anthropogenic pressure. To better understand the influence of mangrove clearance on the intertidal benthic community, we investigated the composition, biodiversity and standing stock of the macrofauna communities at high‐, mid‐ and low‐water levels in three contrasting habitats: a bare sand flat, a cleared mangrove and an intact mangrove. In addition, a community‐wide metric approach based on taxon‐specific carbon and nitrogen isotope values was used to compare the trophic structure between the three habitats. The habitats differed significantly in terms of macrofaunal standing stock, community composition and trophic structure. The high‐ and mid‐water levels of the intact mangroves showed a distinct macrofaunal community characterized by elevated densities and biomass, largely governed by higher decapod and gastropod abundances. Diversity was similar for cleared and intact mangroves, but much lower for the bare sand flat. Community‐wide metrics indicated highest trophic diversity and community niche breadth in the intact mangroves. Differences between the cleared and intact mangroves can be partly attributed to differences in sediment characteristics resulting from mangrove clearance. These results suggest a significant impact of mangrove clearance on the macrofaunal community and trophic structure. This study calls for further investigations and management actions to protect and restore these habitats, and ensure the survival of this ecologically valuable coastal ecosystem.  相似文献   

19.
This study was carried out to learn about differences in the sessile macrobenthic fauna communities between the artificial and natural habitats. There were some differences in terms of species composition and dominant species and community structure between two habitat types. The dominant species include Pollicipes mitella and Granuilittorina exigua in natural rocky intertidal zones; Monodonta labio confusa, Ligia exotica, Tetraclita japonica in the artificial rocky intertidal zones. Among all the species, L. exotica and T. japonica occurred only in the artificial rocky intertidal zone. The results of cluster analysis and nMDS analysis showed a distinct difference in community structure between artificial and natural rocky intertidal zones. The fauna in the natural rocky intertidal zones were similar to each other and the fauna in the artificial rocky intertidal zones were divided depending on the slope of the substratum. In the case of a sloping tetrapod, M. labio confusa and P. mitella were dominant, but at the vertical artificial seawall, Cellana nigrolineata, L. exotica T. japonica were dominant. The analysis of the species presented in natural and artificial rocky intertidal areas showed the exclusive presence of 10 species on natural rocks and 12 species on artificial rocks. The species in the natural rocky intertidal area included mobile gastropods and cnidarians (i.e. rock anemones), and the species in the artificial rocky intertidal area mostly included non-mobile attached animals. The artificial novel structure seems to contribute to increasing the heterogeneity of habitats for marine invertebrate species and an increase the species diversity in rocky coastal areas.  相似文献   

20.
In order to identify environmental factors driving the distribution and functioning of deep-sea fauna and the spatial scales of interactions, we carried out a multiple-scale investigation in the Mediterranean basin in which we compared two bathyal plains, located at the same depth (ca. 3000 m), but characterised by contrasting trophic conditions. We investigated meiofaunal abundance, biomass, community structure and biodiversity (expressed as richness of taxa) in relation to sediment characteristics, downward fluxes and food availability in the sediment. Samples were collected at all spatial scales (from small to macroscale) in two seasons. Our results indicated that deep-sea systems with different trophic conditions displayed different responses to the distribution of available energy and its spatio-temporal variability in the sediment. The analysis at a macroscale (>1000 km) indicated that meiofauna were controlled primarily by the trophic inputs to the deep-sea system. Spatial variability of meiofaunal parameters at a mesoscale (>50 km) was highest in the eastern Mediterranean and lowest in the western Mediterranean. Such differences are the consequence of the unpredictable inputs of organic matter in the oligotrophic eastern Mediterranean versus a more homogeneous distribution of food inputs in the mesotrophic western Mediterranean. At a smaller scale (local scale 7 km), in the western Mediterranean, the distribution of meiofaunal parameters was highly homogeneous, reflecting the homogeneous distribution of the food availability in the sediment. Our results indicated that the highly variable input and distribution of food sources in the deep eastern Mediterranean did not provide any “insurance” for the sustainability of the deep-sea faunal assemblages in the long term, thus leading to an uncoupling between resource availability and distribution of organisms. We conclude that the influence of energy availability on the deep-sea faunal distributions change at different spatial scales and that the analysis of spatial variability at mesoscales is crucial for understanding the relationships between deep-sea benthic fauna and environmental drivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号