首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Geochimica et cosmochimica acta》1999,63(11-12):1723-1734
Factors controlling the burial of organic carbon (OC) in Late Quaternary sediments on the NW Mexican continental margin are assessed using a suite of box and piston cores strategically located on the shelf-slope rise with respect to the intense oxygen minimum in this region. An OC concentration maximum occurs on the mid-slope, below the core of an intense water-column O2 minimum, due to current winnowing on the outer shelf, the preferential accumulation of organic matter in fine-grained deposits, and the offshore decrease in the settling flux of organic detritus. The organic matter at all water depths is overwhelmingly marine. Hydrogen indices (HI) are higher on the slope (>300 mg HC/g TOC) than on the shelf (<300 mg HC/g TOC), where current winnowing has promoted organic matter degradation, but there is no difference in HI in slope sediments accumulating under well oxygenated and O2-deficient conditions. The degree of winnowing appears to be the primary factor affecting the preservational quality of organic matter deposited on this margin.Rates of accumulation of OC and opal are all higher in the interglacial intervals when compared with the glacial deposits over the last 140,000 yr. However, matrix-corrected HI values in the mid- and lower-slope cores are invariant and are similar to values in the laminated intervals from the oxygen-minimum site. Thus, cyclic changes in organic carbon accumulation on this margin have been controlled by production variations rather than differential preservation. HI values in Late Quaternary sediments from several continental margins, including NW Mexico, and euxinic basins correspond to type II kerogen, irrespective of bottom water O2 concentrations. Therefore, the preservation of oil-prone kerogen in productive margin settings does not appear to be restricted to sediments deposited under conditions of low bottom water O2 concentrations as envisioned in models of petroleum source-rock deposition.  相似文献   

2.
The contribution of soil organic matter (SOM) to continental margins is largely ignored in studies on the carbon budget of marine sediments. Detailed geochemical investigations of late Quaternary sediments (245-0 ka) from the Niger and Congo deep-sea fans, however, reveal that Corg/Ntot ratios and isotopic signatures of bulk organic matter (δ13Corg) in both fans are essentially determined by the supply of various types of SOM from the river catchments thus providing a fundamentally different interpretation of established proxies in marine sciences. On the Niger fan, increased Corg/Ntot and δ13Corg (up to −17‰) were driven by generally nitrogen-poor but 13C-enriched terrigenous plant debris and SOM from C4/C3 vegetation/Entisol domains (grass- and tree-savannah on young, sandy soils) supplied during arid climate conditions. Opposite, humid climates supported drainage of C3/C4 vegetation/Alfisol/Ultisol domains (forest and tree-savannah on older/developed, clay-bearing soils) that resulted in lower Corg/Ntot and δ13Corg (< −20‰) in the Niger fan record. Sediments from the Congo fan contain a thermally stable organic fraction that is absent on the Niger fan. This distinct organic fraction relates to strongly degraded SOM of old and highly developed, kaolinite-rich ferallitic soils (Oxisols) that cover large areas of the Congo River basin. Reduced supply of this nitrogen-rich and 12C-depleted SOM during arid climates is compensated by an elevated input of marine OM from the high-productive Congo up-welling area. This climate-driven interplay of marine productivity and fluvial SOM supply explains the significantly smaller variability and generally lower values of Corg/Ntot and δ13Corg for the Congo fan records. This study emphasizes that ignoring the presence of SOM results in a severe underestimation of the terrigenous organic fraction leading to erroneous paleoenvironmental interpretations at least for continental margin records. Furthermore, burial of SOM in marine sediments needs more systematic investigation combining marine and continental sciences to assess its global relevance for long-term sequestration of atmospheric CO2.  相似文献   

3.
Stable carbon isotopic composition of organic matter (δ13Corg) and compound-specific δ13C values of biomarkers from 15 lacustrine source rocks were analyzed to identify the original paleoenvironment and source organisms. The δ13C values of hopanes (δ13Chop) ranged from −68.7‰ to −32‰ and exhibit strongly 13C-depleted values in the lower part of Member 1 of the Nenjiang Formation (K2n1, up to −68.7‰), suggesting an origin from predominantly methanotrophic bacteria. 13C-enriched δ13CGa values and significantly 13C-depleted δ13Chop in K2n1, which coincide with water stratification and an intermittent anoxic photic zone, represents a shallow chemocline. The presence of an intermittent anoxic photic zone, which means that the anoxia expanded into the euphotic zone, is beneficial for OM preservation and results in high values of TOC and HI in this section. However, the absence of gammacerane and 13C-enrichment of δ13Chop in Member 2 of Nenjiang Formation (K2n2) reflect a deeper chemocline, corresponding to relatively oxidizing conditions and low values of TOC and HI. Moreover, the negative correlation of TOC vs δ13Corg and HI vs δ13Corg reflects the control of OM formation by sedimentary environments rather than productivity in the water column. Thus, the depth of the chemocline not only controls the abundance of OM but also affects the development of the microbial community, such as chemoautotrophic bacteria in the deep chemocline and chemoautotrophic and methanotrophic bacteria in the shallow chemocline. Moreover, δ13CGa and δ13C values for 4-methyl steranes are related to water salinity, with a higher salinity accompanied by 13C-enrichment in gammacerane and 4-methyl steranes.  相似文献   

4.
This paper presents isotopic, bulk geochemical and biomarker data measured on organic matter accumulated in a narrow extensional basin developed at the oceanward margin of the huge Triassic carbonate platform in the Alps–Appenines domain. The integration of isotope signatures, organic petrographical and biomarker evidence together with the composition of kerogen pyrolysates suggests immature organic matter predominantly of algal origin with a minor, but not negligible, higher plant derived and moderate bacterial contribution for the entire sequence. The mineral sources are dominated by platform-derived subtidal Dachstein limestone with a minor palaeosol input and a moderate contribution of autochtonous quartz. Nevertheless, parallel variations observed in the mineral content, as well as in the amount and the quality of the organic matter reflect variations in the palaeoenvironment. The increased humidity, existing in the period of the accumulation of the upper section of the sequence, led to the restriction of dolomitization. A slightly greater higher plant derived contribution, in this section, is evidenced by the composition of bitumen and the results on GC and GC/MS analyses on the non-aromatic hydrocarbon fraction of bitumen. Moreover, the climate-induced weathering enchanced the primary productivity and resulted in a pronounced increase in the TOC content. The average estimated value of the planktonic productivity is about three times higher for the calcite-rich sequence than the dolomite-rich one, being 44.2 and 15.3 tCorg/m2/Ma, respectively. The low to moderate planktonic productivity shows that anoxic conditions, observed for the entire succession, are a consequence of the stagnant water stratification rather than high planktonic productivity. Depth trends in the data measured on kerogens (HI, OI, δ13Corg values, composition of pyrolysate) together with the δ18O excursions and Δδ13C values appear to be controlled by sea-level fluctuations. Consistent with the high abundance of alkyltiophenes in kerogen pyrolysates, the high Sorg/C ratios (ranging between 0.05 and 0.10) suggest the importance of natural sulfurization in the formation of the sulfur-rich type-II-S kerogen occurring in all of the samples.  相似文献   

5.
The sources and enrichment of organic matter in a sediment core in the first member of the Xiagou Formation (K1g1) from the Chang 2-2 borehole of the Jiuquan Basin, NW China, have been examined using Rock–Eval, maceral, carbon isotopes and biomarker data. This data indicates that highly variable organic matter sources and preservation conditions in response to climate change. TOC content, HI, and δ13C value were strongly correlated with the abundance of gammacerane, woody organic matter content, steranes/hopanes ratio, and C29 sterane content. This correlation demonstrates the importance that the control of the salinity of the depositional environment and organic matter sources can have upon the enrichment, type, and carbon isotopic composition of organic matter. In the Jiuquan Basin’s relatively high temperature and arid climate, high salinity lakes with high primary productivity of algae, planktons, and bacteria, and good organic matter preservation conditions (anoxic bottom water) resulted in the enrichment of isotopically-light algae-bacterial organic matter. In the Jiuquan Basin’s regions with a relatively low temperature and wet climate, fresh lakes with low primary productivity of algae, planktons, and bacteria received significant terrigenous high plants input, resulting in the deposition of a low abundance of isotopically heavier terrestrial organic matter.  相似文献   

6.
The reported source rocks for the abundant petroleum in the Tarim Basin, China range from Cambrian to Lower Ordovician and/or Upper Ordovician in age. However, the difference between the two groups of source rocks is not well characterized. In this study, pyrite was removed from eleven mature to over mature kerogen samples from source rocks using the method of CrCl2 reduction and grinding. The kerogen and coexisting pyrite samples were then analyzed for δ34S values. Results show that the kerogen samples from the Cambrian have δ34S values between +10.4‰ and +19.4‰. The values are significantly higher than those from the Lower Ordovician kerogen (δ34S of between +6.7‰ and +8.7‰), which in turn are generally higher than from the Upper Ordovician kerogen samples (δ34S of between ?15.3 and +6.8‰). The associated pyrite shows a similar trend but with much lower δ34S values. This stratigraphically controlled sulfur isotope variation parallels the evolving contemporary marine sulfate and dated oil δ34S values from other basins, suggesting that seawater sulfate and source rock age have an important influence on kerogen and pyrite δ34S values. The relatively high δ34S values in the Cambrian to Lower Ordovician source rocks are associated with abundant aryl isoprenoids, gammacerane and C35 homohopanes in the extractable organic matter, indicating that these source rocks were deposited in a bottom water euxinic environment with water stratification. Compared with the Upper Ordovician, the Cambrian to Lower Ordovician source rocks show abundance in C28 20R sterane, C23 tricyclic terpanes, 4,23,24-trimethyl triaromatic dinosteroids and depletion in C24 tetracyclic terpane, C29 hopane. Thus, δ34S values and biomarkers of source rock organic matter can be used for distinguishing the Cambrian and Upper Ordovician source rocks in the Tarim Basin.  相似文献   

7.
Unlike long-term heating in subsiding sedimentary basins, the near-instantaneous thermal maturation of sedimentary organic matter near magmatic intrusions is comparable to artificial thermal maturation in the laboratory in terms of short duration and limited extent. This study investigates chemical and H, C, N, O isotopic changes in high volatile bituminous coal near two Illinois dike contacts and compares observed patterns and trends with data from other published studies and from artificial maturation experiments. Our study pioneers in quantifying isotopically exchangeable hydrogen and measuring the D/H (i.e., 2H/1H) ratio of isotopically non-exchangeable organic hydrogen in kerogen near magmatic contacts. Thermal stress in coal caused a reduction of isotopically exchangeable hydrogen in kerogen from 5% to 6% in unaltered coal to 2-3% at contacts, mostly due to elimination of functional groups (e.g., OH, COOH, NH2). In contrast to all previously published data on D/H in thermally matured organic matter, the more mature kerogen near the two dike contacts is D-depleted, which is attributed to (i) thermal elimination of D-enriched functional groups, and (ii) thermal drying of hydrologically isolated coal prior to the onset of cracking reactions, thereby precluding D-transfer from relatively D-enriched water into kerogen. Maxima in organic nitrogen concentration and in the atomic N/C ratio of kerogen at a distance of ∼2.5 to ∼3.5 m from the thicker dike indicate that reactive N-compounds had been pyrolytically liberated at high temperature closer to the contact, migrated through the coal seam, and recombined with coal kerogen in a zone of lower temperature. The same principle extends to organic carbon, because a strong δ13Ckerogen vs. δ15Nkerogen correlation across 5.5 m of coal adjacent to the thicker dike indicates that coal was functioning as a flow-through reactor along a dynamic thermal gradient facilitating back-reactions between mobile pyrolysis products from the hot zone as they encounter less hot kerogen. Vein and cell filling carbonate is most abundant in highest rank coals where carbonate δ13CVPDB and δ18OVSMOW values are consistent with thermal generation of 13C-depleted and 18O-enriched CO2 from decarboxylation and pyrolysis of organic matter. Lower background concentrations of 13C-enriched carbonate in thermally unaffected coal may be linked to 13C-enrichment in residual CO2 in the process of CO2 reduction via microbial methanogenesis.Our compilation and comparison of available organic H, C, N isotopic findings on magmatic intrusions result in re-assessments of majors factors influencing isotopic shifts in kerogen during magmatic heating. (i) Thermally induced shifts in organic δD values of kerogen are primarily driven by the availability of water or steam. Hydrologic isolation (e.g., near Illinois dikes) results in organic D-depletion in kerogen, whereas more common hydrologic connectivity results in organic D-enrichment. (ii) Shifts in kerogen (or coal) δ13C and δ15N values are typically small and may follow sinusoidal patterns over short distances from magmatic contacts. Laterally limited sampling strategies may thus result in misleading and non-representative data. (iii) Fluid transport of chemically active, mobile carbon and nitrogen species and recombination reactions with kerogen result in isotopic changes in kerogen that are unrelated to the original, autochthonous part of kerogen.  相似文献   

8.
The presence of partially oxidized algal organic matter in oil-prone marine source rocks, is the rule rather than the exception. Partially oxidized, algal kerogen can still act as a significant source of liquid hydrocarbons. However, the corresponding peak of C12 + hydrocarbon generation is shifted to a considerably lower maturity level compared with that of the classical Type II kerogen. The extent of primary alteration-oxidation of marine algal kerogen is monitored by means of solid state microfluorescence spectroscopy. A new parameter, the Primary Alteration Factor (PAF) is established, and the relationships between PAF and H/C, O/C, HI, TOC and between PAF and %0δ13C are determined. The present data show large variations in the bulk chemistry of immature marine algal kerogens, and reveal evidence for gradational dehydrogenation/oxidation of the source organic matter. This contrasts with the recently proposed mechanism for kerogen formation. SEM analysis reveals a relationship between the physical breakdown of algal organic matter and the formation of liptodetrinite. FTIR analysis shows that the incorporation of primary oxygen in the kerogen macromolecules is not in the form of carbonyl or carboxyl functionalities. The presence of highly unreactive, stable oxygen, associated with aromatic structures in partially oxidized algal kerogen, is suggested by resistance of the kerogen to graphitization. The FTIR data also suggest the presence of aryl ether oxygen. The present findings raise fundamental questions regarding the mechanisms of kerogen cracking and kerogen formation, and have important implications for petroleum exploration.  相似文献   

9.
Ocean Drilling Program Leg 207 recovered thick sequences of Albian to Santonian organic-carbon-rich claystones at five drill-sites on the Demerara Rise in the western equatorial Atlantic Ocean. Dark-colored, finely laminated, Cenomanian–Santonian black shale sequences contain between 2% and 15% organic carbon and encompass Oceanic Anoxic Events 2 and 3. High Rock-Eval hydrogen indices signify that the bulk of the organic matter in these sequences is marine in origin. However, δ13Corg values lie mostly between −30‰ and −27‰, and TOC/TN ratios range from 15 to 42, which both mimic the source signatures of modern C3 land plants. The contradictions in organic matter source indicators provide important implications about the depositional conditions leading to the black shale accumulations. The low δ13Corg values, which are actually common in mid-Cretaceous marine organic matter, are consequences of the greenhouse climate prevailing at that time and an associated accelerated hydrologic cycle. The elevated C/N ratios, which are also typical of black shales, indicate depressed organic matter degradation associated with low-oxygen conditions in the water column that favored preservation of carbon-rich forms of marine organic matter over nitrogen-rich components. Underlying the laminated Cenomanian–Santonian sequences are homogeneous, dark-colored, lower to middle Albian siltstones that contain between 0.2% and 9% organic carbon. The organic matter in these rocks is mostly marine in origin, but it occasionally includes large proportions of land-derived material.  相似文献   

10.
As an indicator for terrestrial paleovegetation, the stable isotopic composition of total organic matter (δ13Corg) in loess sediments has been widely used for paleoclimatic reconstruction in western Europe, the Great Plains of North America and the Chinese Loess Plateau (CLP). However, little is known about the variation and paleoclimatic significance of the loess δ13Corg in arid Central Asia (ACA). We report δ13Corg data from an Axike (AXK) loess/paleosol profile from the eastern Ili Basin, eastern Central Asia. Along the profile, the δ13Corg values were more negative in the paleosol layers observed in the field and were confirmed by environmental magnetic proxies and a higher concentration of total organic carbon (TOC), consistent with results for western Europe and the northwestern CLP. Our results demonstrate that the loess δ13Corg in this region documents mainly the response of δ13C of locally predominant C3 plants to paleoclimatic variation, especially paleoprecipitation. Our results also suggest that the loess δ13Corg values in the area have the potential for quantitative paleoprecipitation reconstruction on the basis of detailed δ13Corg results from modern plants and surface soils in the future.  相似文献   

11.
通过对中国西北干旱区石羊河流域民勤盆地三角城古湖泊沉积物有机质碳同位素组成(δ13Corg)分析,表明末次冰期与全新世时气候和植被有明显的差异,末次冰期δ13Corg总体偏轻(-30‰~-25‰),而全新世碳同位素组成则有较大的变化,在早全新世碳同位素组成有多次短期快速变重(-10‰左右)的变化,中全新世碳同位素组成总体偏重(-20‰~-10‰),晚全新世碳同位素组成偏轻(-25‰左右)。分析表明湖泊沉积物有机质碳同位素组成反映了陆生C3植物和湖泊内源水生植物变化的关系,末次冰期以来西北干旱区C4植物不发育,偏重的有机质碳同位素值与C4植物无关。从沉积物中有机质组分、元素等分析表明,末次冰期时主要以河流相沉积为主,湖泊中有机质主要来源于上游祁连山的陆生C3植物,有机碳含量较低,表明当时的上游的陆生植被不繁盛,区域气候较干冷;从全新世开始,三角城古湖泊开始形成,沉积物中碳同位素组成偏重的有机质主要来源于湖泊中的沉水植物,此时湖泊水体较大,湖泊生产力较高。而沉积物中有机质碳同位素组成偏轻时期的有机质主要来源于挺水植物、陆生C3植物,较低的有机碳含量说明该时期陆生植被不发育,气候较干冷,湖泊水体较小  相似文献   

12.
With the purpose of tracing the variations of the organic matter sources of sediments, a sample column (25.96 m in size) from the Hemudu Area of Hangzhou Bay was put through AMS14C dating and biogeochemical analysis. TOC and TN presented similar variation trends, suggesting the same and stable sources of organic matter; the bad correlation between the grain size and TOC content indicated that the organic matter occurrence was neither controlled by the grain size nor the surface absorption of the fine particles, but it may has something to do with the complicated sedimentary hydrodynamic force, the input of organic matter and microbial action. Judging on the basis of C/N ratio and δ13CTOC, the organic carbon in sediments was a mixture of terrigenous and marine organic carbon, testifying to the land-sea interaction characteristic of the study area. The indexes experienced abrupt changes at about 6.5 ka BP, when the lighter terrigenous organic carbon made an increased proportion to the heavier marine organic carbon. The phenomenon reflected the enclosure of the lagoon and the reduced exchange interactions with the seawater of open seas.  相似文献   

13.
By combining the carbon cycle model with the records of carbonate and organic (kerogen) carbon isotope, this paper presents the calculation of the fraction of organic carbon burial (f org) of beds 23–40 at the global boundary stratotype section and point (GSSP) of the Permian-Triassic boundary at Meishan, Zhejiang Province. The resulting calculation produces two episodes of f org maxima observed to occur at beds 23–24 and 27–29, which respectively corresponds to the two episodic anoxic events indicated by the flourish of green sulfur bacteria. Two episodic f org minima occurred at beds 25–26 and 32–34, generally coincident with the flourish of cyanobacteria (bed 26 and upper part of beds 29 to 34) as shown by the high value of 2-melthyhopnoanes. It appears that the f org is related to the redox conditions, with greater f org values observed under the reductive condition. The relationship between f org and the total organic carbon (TOC) content was complex. The f org value was low at some beds with a high TOC content (such as bed 26), while high observed at some beds with a low TOC content (e.g. bed 27). This association infers the important contribution of primary productivity to the TOC content. The original organic burial could be thus calculated through the configuration of the function of the primary productivity and f org, which can be used to correct the residual TOC measured today. This investigation indicates that compiling the organic-inorganic carbon isotopes with the carbon cycle model favors to understand the fraction of organic carbon burial, providing information for the reconstruction of the coupling among biota, environments and organic burial. Journal of China University of Geosciences, 2007, 32(6): 767–773 [译自: 地球科学—中国地质大学学报]  相似文献   

14.
《Organic Geochemistry》1987,11(5):351-369
The amount of “gas-prone” kerogen (woody, fungal and “inert”) and the organic carbon content (TOC) are the two predominant factors affecting the hydrogen index (HI) in the 226 samples of lacustrine and marine oil shales and source rocks studied. HI decreases as a function of the amount of “gas-prone” kerogen and increases as a function of TOC. In addition, the type of amorphous kerogen influences the hydrogen index, and this can be roughly estimated from the fluorescence intensity of the amorphous kerogen. Nearly eighty percent of the variation in HI in these samples can be accounted for by the percentage of “gas-prone” kerogen, the TOC content, and the fluorescence of the amorphous kerogen in a multiple regression analysis.Hydrogen index increases as a function of TOC up to about 10% TOC (the relationship can be approximated by a quadratic equation) and then levels off. A possible explanation for this is that the capability of a rock to generate and expel hydrocarbons during pyrolysis increases with TOC. When the retention capacity of the rock matrix is saturated (at about 10% TOC) further increases in TOC have no effect on HI. It is also possible that the quality (i.e. oil-proneness) of the amorphous kerogen is poorer in low TOC samples than in high TOC samples.The samples came from the following oil shales and source rocks: Rundle (Queensland Eocene-Miocene), Mae Sot (northwestern Thailand, Eocene-Pliocene), River River (northwestern Colorado, Eocene), Toolebuc (western Queensland, Late Albian), the “Posidonienschiefer” (southwestern Germany, Toarcian), an Argentinian lacustrine deposit (Eocene-Miocene), the Kimmeridgian sections from four North Sea wells (blocks 21, 30, and 210), Monterey Shale (California, Miocene), and sections from six wells from the Alaskan Tertiary (North Slope, North Aleutian Shelf, Navarin Basin, Norton Sound). Most samples appear to be thermally immature (T.A.I. less than 1.8; Ro less than 0.6%) so they should be considered only potential source rocks.The lacustrine oil shales have a higher conversion ratio (yeild/TOC or S1 + S2/TOC) than do the marine oil shales in samples with only amorphous and algal kerogen. These, in turn, have a higher conversion ratio than the marine source rocks. These differences are roughly reflected in the fluorescence intensity of the amorphous kerogen. Free hydrocarbons are higher in the marine source rocks than in the marine oil shales, and are lowest in the lacustrine oil shales.  相似文献   

15.
The characteristics of nitrogen fractions in the surface sediments of lakes from Eastern Plain Region, Yunnan-Guizhou Plateau Region, Northeast China Region, Qinghai-Tibet Plateau Region and Mongolia-Xinjiang Plateau Region were investigated and the differences of five lake regions on nitrogen fractionation were discussed. The results indicated that organic nitrogen (Norg) was the major nitrogen fraction accounting for 76.38–92.02 % of Ntot in sediments. The rank order of average Norg and Ntot of sediments in five lake regions was: Yunnan-Guizhou Plateau Region > Northeast China Region > Mongolia-Xinjiang Plateau Region > Qinghai-Tibet Plateau Region > Eastern Plain Region. The exchangeable nitrogen had a similar distribution as organic nitrogen in the studied sediments. NH4 +–N is the main exchangeable nitrogen of sediments in the studied lakes except in Lake Qinghai and Lake Yamdrok which contained higher nitrate concentrations than ammonium. Fixed ammonium (Nfix) in the sediments of studied lakes was irregularly distributed with the values ranging from 99.45 to 329.02 mg/kg. TOC was significantly and positively correlated with ammonium, nitrate, Norg and Ntot, while Nfix was negatively correlated with nitrate probably due to electrostatic attraction between Nfix and nitrate in layers of sediments.  相似文献   

16.
Small rivers draining mountain islands are important in the transfer of terrestrial particulate organic carbon (POC) to the oceans. This input has implications for the geochemical stratigraphic record. We have investigated the stable isotopic composition of POC (δ13Corg) in rivers draining the mountains of Taiwan. In 15 rivers, the suspended load has a mean δ13Corg that ranges from −28.1±0.8 to −22.0±0.2 (on average 37 samples per river) over the interval of our study. To investigate this variability we have supplemented suspended load data with measurements of POC in bedrock and river bed materials, and constraints on the composition of the terrestrial biomass. Fossil POC in bedrock has a range in δ13Corg from −25.4±1.5 to −19.7±2.3 between the major geological formations. Using coupled δ13Corg and N/C we have found evidence in the suspended load for mixing of fossil POC with non-fossil POC from the biosphere. In two rivers outside the Taiwan Central Range anthropogenic land use appears to influence δ13Corg, resulting in more variable and lower values than elsewhere. In all other catchments, we have found that 5 variability in δ13Corg is not controlled by the variable composition of the biomass, but instead by heterogeneous fossil POC.In order to quantify the fraction of suspended load POC derived from non-fossil sources (Fnf) as well as the isotopic composition of fossil POC (δ13Cfossil) carried by rivers, we adapt an end-member mixing model. River suspended sediments and bed sediments indicate that mixing of fossil POC results in a negative trend between N/C and δ13Corg that is distinct from the addition of non-fossil POC, collapsing multiple fossil POC end-members onto a single mixing trend. As an independent test of the model, Fnf reproduces the fraction modern (Fmod) in our samples, determined from 14C measurements, to within 0.09 at the 95% confidence level. Over the sampling period, the mean Fnf of suspended load POC was low (0.29 ± 0.02, n = 459), in agreement with observations from other mountain rivers where physical erosion rates are high and fossil POC enters river channels. The mean δ13Cfossil in suspended POC varied between −25.2±0.5 and −20.2±0.6 from catchment to catchment. This variability is primarily controlled by the distribution of the major geological formations. It also covers entirely the range of δ13Corg found in marine sediments which is commonly thought to derive from mixing between marine and terrigenous POC. If land-sourced POC is preserved in marine sediments, then changes in the bulk δ13Corg observed offshore Taiwan could instead be explained by changes in the onshore provenance of sediment. The range in δ13Corg of fossil organic matter in sedimentary rocks exposed at the surface is large and given the importance of these rocks as a source of clastic sediment to the oceans, care should be taken in accounting for fossil POC in marine deposits supplied by active mountain belts.  相似文献   

17.
《Applied Geochemistry》2004,19(1):55-72
Bulk and molecular stable C isotopic compositions and biomarker distributions provide evidence for a diverse community of algal and bacterial organisms in the sedimentary organic matter of a carbonate section throughout the Permian–Triassic (P/Tr) transition at the Idrijca Valley, Western Slovenia. The input of algae and bacteria in all the Upper Permian and Lower Scythian samples is represented by the predominance of C15–C22 n-alkanes, odd C-number alkylcyclohexanes, C27 steranes and substantial contents of C21–C30 acyclic isoprenoids. The occurrence of odd long-chain n-alkanes (C22–C30) and C29 steranes in all the samples indicate a contribution of continental material. The decrease of Corg and Ccarb contents, increase of Rock-Eval oxygen indices, and 13C-enrichment of the kerogen suggest a decrease in anoxia of the uppermost Permian bottom water. The predominance of odd C-number alkylcycloalkanes, C27 steranes, and C17 n-alkanes with δ13C values ∼−30‰, and 13C-enrichment of the kerogens in the lowermost Scythian samples are evidence of greater algal productivity. This increased productivity was probably sustained by a high nutrient availability and changes of dissolved CO2 speciation associated to the earliest Triassic transgression. A decrease of Corg content in the uppermost Scythian samples, associated to a 13C-depletetion in the carbonates (up to 4‰) and individual n-alkanes (up to 3.4‰) compared to the Upper Permian samples, indicate lowering of the primary productivity (algae, cyanobacteria) and/or higher degradation of the organic matter.  相似文献   

18.
Nine rock samples from three Jurassic stratigraphic units of a shallow core from NW Germany were analyzed by pyrolysis-gas chromatography. The units contain a mixed Type-II/III kerogen (Dogger-α), a hydrogen-rich Type-II kerogen (Lias-), and a hydrogen-poor Type-III kerogen (Lias-δ). All of the kerogen was immature (Ro = 0.5%). Two sets of kerogen concentrates (“AD”: HCl/HF followed by a density separation, and “A”: only acid treatment) prepared from the rock samples were also analyzed to make a detailed comparison of the pyrolysates of rock and corresponding kerogen-concentrates.Hydrogen-index (HI) values of the kerogen concentrates prepared from organic-carbon poor rock were nearly 200% higher than HI values of the rock samples. Changes in HI were minimal for the samples containing Type-II kerogen. The A and AD samples from the Corg-poor rock yielded pyrolysates with n-alkane series of very different molecular lengths. Pyrograms of the rock samples had n-alkane series extending to n-C14; the chromatograms of the A samples reached the n-C14-nC20 range. The AD samples from Corg-poor rock and all three sample types from the Corg-rich rock had n-alkane series up to n-C29. The benzene/hexane and toluene/heptane ratios for the Corg-poor rock and A samples were far higher than for the AD samples, which had ratios similar to those of all three sample types from the Corg-rich rocks. These results indicate that choice of kerogen preparation method is critical when Corg-poor samples are analyzed.  相似文献   

19.
This study presents data on the composition of organic matter from the Late Silurian sediments of the Chernov uplift. These sediments are characterized by low Corg contents, which may reach 1–3% in individual layers. A relatively high thermal maturity of organic matter is confirmed by polycyclic biomarker distributions and Rock-Eval pyrolyisis data. Despite its higher thermal maturity level (T max = 456°C), kerogen in carbonaceous shales from the Padymeityvis River exhibits good preservation of long-chain n-alkyl structures, which are readily identified in the 13C NMR spectra and by the molecular analysis of the kerogen pyrolysis products.  相似文献   

20.
Organic geochemical proxies have been studied in a 45-cm-long core retrieved from Lake Naukuchiyatal in Kumaun Himalayas, India. Increase in TOC, N, hydrocarbons and pigments concentration from bottom to surface sediments of the core indicates increase in the lake productivity. Stable isotopes (δ13C and δ 15 N), biomarkers (TAR, CPI and n-ΣC15,17,19) and C/N atomic (between 9 and 12) suggest dominance of algal derived organic matter in these sediments. Decrease in organic δ13C values (between ?27 and ?31‰) in surface sediments indicate influence of sewage and land runoff in shifting organic δ13C values, whereas low (between ?0.23 and 2.2‰) δ15N values together with high pigment concentrations (zeaxanthin and echinenone) represent dominance of cyanobacteria in the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号