首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Regional‐scale, high‐resolution terrain data permit the study of landforms across south‐central Ontario, where the bed of the former Laurentide Ice Sheet is well exposed and passes downflow from irregular topography on Precambrian Shield highlands to flat‐lying Palaeozoic carbonate bedrock, and thick (50 to >200 m) unconsolidated sediment substrates. Rock drumlins and megagrooves are eroded into bedrock and mega‐scale glacial lineations (MSGL) occur on patchy streamlined till residuals in the Algonquin Highlands. Downflow, MSGL pass into juxtaposed rock and drift drumlins on Palaeozoic bedrock and predominantly till‐cored drumlins in areas of thick drift. The Lake Simcoe Moraines, now traceable for more than 80 km across the Peterborough drumlin field (PDF), form a distinct morphological boundary: downflow of the moraine system, drumlins are larger, broader and show no indication of subsequent reworking by the ice, whereas upflow of the moraines, a higher degree of complexity in bedform pattern and morphology is distinguished. Discrete radial and/or cross‐cutting flowset terminate at subtle till‐cored moraine ridges downflow of local topographic lows, indicating multiple phases of late‐stage ice flow with strong local topographic steering. More regional‐scale flow switching is evident as NW‐orientated bedforms modify drumlins south of the Oak Ridges Moraine, and radial flowset emanate from areas within the St. Lawrence and Ottawa River valleys. Most of the drumlins in the PDF formed during an early, regional drumlinization phase of NE–SW flow that followed the deposition of a thick regional till sheet. These were subsequently modified by local‐scale, topographically controlled flows that terminate at till‐cored moraines, providing evidence that the superimposed bedforms record dynamic ice (re)advances throughout the deglaciation of south‐central Ontario. The patterns and relationships of glacial landform distribution and characteristics in south‐central Ontario hold significance for many modern and palaeo‐ice sheets, where similar downflow changes in bed topography and substrate lithology are observed.  相似文献   

2.
Hummocky terrain composed of boulder gravel and a wavy contact between stratified till and sand are described and explained as products of subglacial meltwater activity beneath the Saginaw Lobe of the Laurentide Ice Sheet in south-central Michigan. Exposures and geophysical investigations of hummocky terrain in a tunnel channel reveal that hummocks (˜100m diameter) are glaciofluvial bedforms with a supraglacial melt-out till or till flow veneer. The hummocky terrain is interpreted as a subglacial glaciofluvial landscape rather than one of stagnant ice processes commonly assumed for hummocky landscapes. Sandy bedforms at another site are in-phase with a wavy contact at the base of a stratified till exposed for 50m along the margin of a tunnel channel. The 0.4m thick stratified till is overlain by up to 5m of compact, pebble-rich, sandy subglacial melt-out till. The contact between the till and sand has a wave form with a 0.5m amplitude and 3-5m wavelength. Bedding within the stratified till, sandy bedforms and melt-out till are mostly in-phase with each other. Clasts from the overlying stratified till penetrate and deform the underlying sand recording recoupling of the ice to its bed. Ice ripples cut into the base of river ice have a similar morphology and are considered analogs for cavities cut into the base of the glacier and subsequently filled with sand. Subglacial meltwater activity was not coeval at each study site, indicating that subglacial meltwater played important roles in the evolution of the subglacial environment beneath the Saginaw Lobe at different times.  相似文献   

3.
The Chippewa and Wisconsin Valley Lobes of the Laurentide Ice Sheet reached their maximum extent in north-central Wisconsin about 20 000 years ago. Their terminal positions are marked by a broad area of hummocky topography, containing many ice-walled-lake plains, which is bounded on the up-ice and down-ice sides by ice-contact ridges and outwash fans. The distribution of these ice-disintegration landforms shows that a wide zone of stagnant, debris-covered, debris-rich ice separated from the active margins of both lobes as they wasted northward during deglaciation. Accumulation of thick, uncollapsed sediment in ice-walled lakes high in the ice-cored landscape indicates a period of stability. In contrast, hummocky disintegration topography indicates unstable conditions. Thus, we interpret two phases of late-glacial landscape evolution. During the first phase, ice buried beneath thick supraglacial sediment was stable. Supraglacial lakes formed on the ice surface and some melted their way to solid ground and formed ice-walled lakes. During the second phase, buried ice began to melt rapidly, hummocky topography formed by topographic inversion, and supraglacial and ice-walled lakes drained. We suggest that ice wastage was controlled primarily by climatic conditions and supraglacial-debris thickness. Late-glacial permafrost in northern Wisconsin likely delayed wastage of buried ice until after about 13 000 years ago, when climate warmed and permafrost thawed.  相似文献   

4.
Eyles, N., Eyles, C., Menzies, J. & Boyce, J. 2010: End moraine construction by incremental till deposition below the Laurentide Ice Sheet: Southern Ontario, Canada. Boreas, 10.1111/j.1502‐3885.2010.00171.x. ISSN 0300‐9483. Just after 13 300 14C a BP in central Canada, the retreating Ontario lobe of the Laurentide Ice Sheet briefly re‐advanced westwards through the Lake Ontario basin to build a large end moraine. The Trafalgar Moraine (27 km long, 4 km wide) is composed of a distinctly red‐coloured silt‐rich till (Wildfield Till, up to 16.5 m thick) formed by the reworking of proglacial lake deposits and soft shale bedrock. The moraine has a pronounced ramp‐like longitudinal form passing upglacier into fluted till resting on exposed shale. Analysis of water well stratigraphic data, drilled sediment cores, downhole gamma‐ray logs and exposures in deep test pits shows that within the moraine the Wildfield Till is built of superposed beds up to 7 m in thickness. These are inferred to result from the repeated incremental deposition of fine‐grained debris being moved towards the ice margin as a deforming bed such as identified at modern glaciers. A total till volume of 0.81 km3 was produced in a very brief time‐span along a transport path probably no greater than 10 km in length. Subglacial mixing of pre‐existing sediment and soft shale was clearly a very effective process for generating and moving large volumes of till to the ice margin. Similar till‐dominated end moraines occur widely around the margins of the Great Lake basins, where the markedly lobate margin of the retreating Laurentide Ice Sheet re‐advanced repeatedly into proglacial lakes and over fine‐grained sediment. This suggests the wider applicability of the till transport and incremental depositional model presented here.  相似文献   

5.
The prominent Ungava Bay landform swarm (UBLS), covering an area of ˜260000 km2 south of Ungava Bay, Canada, is defined by drumlins, crag-and-tails, horned crag-and-tails and flutes indicating convergent ice flow towards Ungava Bay. The UBLS has been difficult to interpret in terms of ice-sheet configuration, dynamics and age. Aerial photograph and satellite image interpretations of the Labrador-Ungava region reveal a previously unrecognized level of complexity within the UBLS consisting of several well-defined segments, most interpreted as representing discrete stream-flow events. Each of the segments is characterized by one or more of the criteria (convergent flow patterns at their heads, attenuated till lineations and abrupt lateral margins) previously suggested as diagnostic for formation by fast-flowing ice (ice streams). The UBLS reflects the most direct and probably fastest contact (in terms of sediment transport) between the Laurentide Ice Sheet interior and the ocean. It is therefore a prime candidate for abrupt changes in glacial-age northwest Atlantic seafloor sedimentation.  相似文献   

6.
Graphical and numerical reconstructions of the Rainy and Superior lobes of the Laurentide Ice Sheet suggest that drumlin formation was time transgressive. Suites of glacial landforms including drumlins, tunnel valleys, eskers, and ice-collapse features can be correlated with specific recessional ice margins and are used as boundary conditions in the modeling. A contour map of the ice surface is then drawn using a specified basal shear stress. The shear stress can be constant or allowed to vary with position on the bed and is chosen to be consistent with the subglacial regime indicated by field evidence. Assuming that ice flow is parallel to drumlin orientations and perpendicular to the ice surface contours and moraines, the trend of drumlin axes is best accommodated by time transgressive drumlin formation during minor stillstands in the overall ice recession. The alternative, that drumlins were formed while the ice was at the Late Wisconsin maximum limit, requires large spatial variations in the basal shear stress distribution and therefore implies large mass-balance gradients or large variations in basal sliding velocities over small distances, for which there is little evidence.  相似文献   

7.
Three‐dimensional (3D) seismic datasets, 2D seismic reflection profiles and shallow cores provide insights into the geometry and composition of glacial features on the continental shelf, offshore eastern Scotland (58° N, 1–2° W). The relic features are related to the activity of the last British Ice Sheet (BIS) in the Outer Moray Firth. A landsystem assemblage consisting of four types of subglacial and ice marginal morphology is mapped at the seafloor. The assemblage comprises: (i) large seabed banks (interpreted as end moraines), coeval with the Bosies Bank moraine; (ii) morainic ridges (hummocky, push and end moraine) formed beneath, and at the margins of the ice sheet; (iii) an incised valley (a subglacial meltwater channel), recording meltwater drainage beneath former ice sheets; and (iv) elongate ridges and grooves (subglacial bedforms) overprinted by transverse ridges (grounding line moraines). The bedforms suggest that fast‐flowing grounded ice advanced eastward of the previously proposed terminus of the offshore Late Weichselian BIS, increasing the size and extent of the ice sheet beyond traditional limits. Complex moraine formation at the margins of less active ice characterised subsequent retreat, with periodic stillstands and readvances. Observations are consistent with interpretations of a dynamic and oscillating ice margin during BIS deglaciation, and with an extensive ice sheet in the North Sea basin at the Last Glacial Maximum. Final ice margin retreat was rapid, manifested in stagnant ice topography, which aided preservation of the landsystem record. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Ice streams are major dynamic elements of modern ice sheets, and are believed to have significantly influenced the behaviour of past ice sheets. Funen Island exhibits a number of geomorphological and geological features indicative of a Late Weichselian ice stream, a land-based, terminal branch of the major Baltic Ice Stream that drained the Scandinavian Ice Sheet along the Baltic Sea depression. The ice stream in the study area operated during the Young Baltic Advance. Its track on Funen is characterized by a prominent drumlin field with long, attenuated drumlins consisting of till. The field has an arcuate shape indicating ice-flow deflection around the island's interior. Beneath the drumlin-forming till is a major erosional surface with a boulder pavement, the stones of which have heavily faceted and striated upper surfaces. Ploughing marks are found around the boulders. Exact correspondence of striations, till fabric and drumlin orientation indicates a remarkably consistent flow direction during ice streaming. We infer that fast ice flow was facilitated by basal water pressure elevated to the vicinity of the flotation point. The ice movement was by basal sliding and bed deformation under water pressure at the flotation level or slightly below it, respectively. Subglacial channels and eskers post-dating the drumlins mark a drainage phase that terminated the ice-stream activity close to the deglaciation. Identification of other ice streams in the Peribaltic area is essential for better understanding the dynamics of the land-based part of the Scandinavian Ice Sheet during the last glaciation.  相似文献   

9.
For the past half-century, reconstructions of North American ice cover during the Last Glacial Maximum have shown ice-free land distal to the Laurentide Ice Sheet, primarily on Melville and Banks islands in the western Canadian Arctic Archipelago. Both islands reputedly preserve at the surface multiple Laurentide till sheets, together with associated marine and lacustrine deposits, recording as many as three pre-Late Wisconsinan glaciations. The northwest corner of Banks Island was purportedly never glaciated and is trimmed by the oldest and most extensive glaciation (Banks Glaciation) considered to be of Matuyama age (>780 ka BP). Inside the limit of Banks Glaciation, younger till sheets are ascribed to the Thomsen Glaciation (pre-Sangamonian) and the Amundsen Glaciation (Early Wisconsinan Stade). The view that the western Canadian Arctic Archipelago remained largely ice-free during the Late Wisconsinan is reinforced by a recent report of two woolly mammoth fragments collected on Banks and Melville islands, both dated to ~22 ka BP. These dates imply that these islands constitute the northeast extremity of Beringia.A fundamental revision of this model is now warranted based on widespread fieldwork across the adjacent coastlines of Banks and Melville islands, including new dating of glacial and marine landforms and sediments. On Dundas Peninsula, southern Melville Island, AMS 14C dates on ice-transported marine molluscs within the most extensive Laurentide till yield ages of 25–49 ka BP. These dates require that Late Wisconsinan ice advanced northwestward from Visount Melville Sound, excavating fauna spanning Marine Isotope Stage 3. Laurentide ice that crossed Dundas Peninsula (300 m asl) coalesced with Melville Island ice occupying Liddon Gulf. Coalescent Laurentide and Melville ice continued to advance westward through M'Clure Strait depositing granite erratics at ≥235 m asl that require grounded ice in M'Clure Strait, as do streamlined bedforms on the channel floor. Deglaciation is recorded by widespread meltwater channels that show both the initial separation of Laurentide and Melvile ice, and the successive retreat of Laurentide ice southward across Dundas Peninsula into Viscount Melville Sound. Sedimentation from these channels deposited deltas marking deglacial marine limit. Forty dates on shells collected from associated glaciomarine rhythmites record near-synchronous ice retreat from M'Clure Strait and Dundas Peninsula to north-central Victoria Island ~11.5 ka BP. Along the adjacent coast of Banks Island, deglacial shorelines also record the retreat of Laurentide ice both eastward through M'Clure Strait and southward into the island's interior. The elevation and age (~11.5 ka BP) of deglacial marine limit there is fully compatible with the record of ice retreat on Melville Island. The last retreat of ice from Mercy Bay (northern Banks Island), previously assigned to northward retreat into M'Clure Strait during the Early Wisconsinan, is contradicted by geomorphic evidence for southward retreat into the island's interior during the Late Wisconsinan. This revision of the pattern and age of ice retreat across northern Banks Island results in a significant simplification of the previous Quaternary model. Our observations support the amalgamation of multiple till sheets – previously assigned to at least three pre-Late Wisconsinan glaciations – into the Late Wisconsinan. This revision also removes their formally named marine transgressions and proglacial lakes for which evidence is lacking. Erratics were also widely observed armouring meltwater channels originating on the previously proposed never-glaciated landscape. An extensive Late Wisconsinan Laurentide Ice Sheet across the western Canadian Arctic is compatible with similar evidence for extensive Laurentide ice entering the Richardson Mountains (Yukon) farther south and with the Innuitian Ice Sheet to the north. Widespread Late Wisconsinan ice, in a region previously thought to be too arid to sustain it, has important implications for paleoclimate, ice sheet modelling, Arctic Ocean ice and sediment delivery, and clarifying the northeast limit of Beringia.  相似文献   

10.
The extent and behaviour of the southeast margin of the Laurentide Ice Sheet in Atlantic Canada is of significance in the study of Late Wisconsinan ice sheet-ocean interactions. Multibeam sonar imagery of subglacial, ice-marginal and glaciomarine landforms on German Bank, Scotian Shelf, provides evidence of the pattern of glacial-dynamic events in the eastern Gulf of Maine. Northwest-southeast trending drumlins and megaflutes dominate northern German Bank. On southern German Bank, megaflutes of thin glacial deposits create a distinct northwest-southeast grain. Lobate regional moraines (>10km long) are concave to the northwest, up-ice direction and strike southwest-northeast, normal to the direction of ice flow. Ubiquitous, overlying De Geer moraines (<10 km long) also strike southwest-northeast. The mapped pattern of moraines implies that, shortly after the last maximum glaciation, the tidewater ice sheet began to retreat north from German Bank, forming De Geer moraines at the grounding line with at least one glacial re-advance during the general retreat. The results indicate that the Laurentide Ice Sheet extended onto the continental shelf.  相似文献   

11.
Advance of the Late Weichselian (Valdaian) Scandinavian Ice Sheet (SIS) in northwestern Russia took place after a period of periglacial conditions. Till of the last SIS, Bobrovo till, overlies glacial deposits from the previous Barents and Kara Sea ice sheets and marine deposits of the Last Interglacial. The till is identified by its contents of Scandinavian erratics and it has directional properties of westerly provenance. Above the deglaciation sediments, and extra marginally, it is replaced by glaciofluvial and glaciolacustrine deposits. At its maximum extent, the last SIS was more restricted in Russia than previously outlined and the time of termination at 18-16 cal. kyr BP was almost 10 kyr delayed compared to the southwestern part of the ice sheet. We argue that the lithology of the ice sheets' substrate, and especially the location of former proglacial lake basins, influenced the dynamics of the ice sheet and guided the direction of flow. We advocate that, while reaching the maximum extent, lobe-shaped glaciers protruded eastward from SIS and moved along the path of water-filled lowland basins. Ice-sheet collapse and deglaciation in the region commenced when ice lobes were detached from the main ice sheet. During the Lateglacial warming, disintegration and melting took place in a 200-600 km wide zone along the northeastern rim of SIS associated with thick Quaternary accumulations. Deglaciation occurred through aerial downwasting within large fields of dead ice developed during successively detached ice lobes. Deglaciation led to the development of hummocky moraine landscapes with scattered periglacial and ice-dammed lakes, while a sub-arctic flora invaded the region.  相似文献   

12.
Pleistocene ice sheets can be reconstructed through three separate approaches: (1) Evidence based on glacial geological studies, such as erratic trains, till composition, crossing striations and exposures of multiple tills/nonglacial sediments. (2) Reconstructions based on glaciological theory and observations. These can be either two- or three-dimensional models; they can be constrained by ‘known’ ice margins at specific times; or they can be ‘open-ended’ with the history of growth and retreat controlled by parameters resting entirely within the model. (3) Glacial isostatic rebound after deglaciation provides a measure of the distribution of mass (ice) across a region. A ‘best fit’ ice sheet model can be developed that closely approximates a series of relative sea level curves within an area of a former ice sheet; in addition, the model should also provide a reasonable sea level fit to relative sea level curves at sites well removed from glaciation.This paper reviews some of the results of a variety of ice sheet reconstructions and concentrates on the various attempts to reconstruct the ice sheets of the last (Wisconsin, Weischelian, Würm, Devensian) glaciation. Evidence from glacial geology suggests flow patterns at variance with simple, single-domed ice sheets over North America and Europe. In addition, reconstruction of ice sheets from glacial isostatic sea level data suggests that the ice sheets were significantly thinner than estimates based on 18 ka equilibrium ice sheets (cf. Denton and Hughes, 1981). The review indicates it is important to differentiate between ice divides, which control the directions of glacial flow, and areas of maximum ice thickness, which control the glacial isostatic rebound of the crust upon deglaciation. Recent studies from the Laurentide Ice Sheet region indicate that the center of mass was not over Hudson Bay; that a major ice divide lay east of Hudson Bay so that flow across the Hudson Bay and James Bay lowlands was from the northeast; that Hudson Bay was probably open to marine invasions two or three times during the Wisconsin Glaciation; and that the Laurentide Ice Sheet was thinner than an equilibrium reconstruction would suggest.  相似文献   

13.
波堆藏布谷地冰碛丘陵形成机制及其环境意义   总被引:6,自引:4,他引:2  
波堆藏布谷地中分布着大面积的冰碛丘陵, 通过考察发现其个体大小、外形、分布规模及内部砾石组成等方面都与高纬大冰盖外围形成的冰碛丘陵有很大的区别. 以冰川沉积学理论为基础, 从沉积动力学的角度讨论中低纬度波堆藏布谷地中冰碛丘陵的形成机制. 结果表明: 气候变化造成冰川的大面积死冰加之宽阔的河谷、海洋性冰川的特性促使波堆藏布谷中形成如此大面积的冰碛丘陵; 同时,大规模的冰碛丘陵表明气候转暖(抑或变干)的过程是突变的.  相似文献   

14.
The Charlevoix region, in southeastern Québec, is characterized by a dramatic landscape formed by the junction of the Laurentian Highlands, the Charlevoix Astrobleme and the St Lawrence Estuary. At the Last Glacial Maximum (LGM), the region was completely covered by the Laurentide Ice Sheet (LIS). The complex topography of the region was the stage of many of the major deglacial events of southern Quebec (e.g. Goldthwait Sea Invasion, St Lawrence Ice‐Stream, Saint‐Narcisse Episode). We present a detailed reconstruction of the pattern of retreat of the LIS in the Charlevoix region based on the interpretation of ice‐marginal features (e.g. moraines, fans) and glaciolacustrine landforms and deposits, two extensive field campaigns, and the interpretation of high‐resolution 3D digital aerial photographs and LiDAR data. Our results indicate five moraine complexes in the region: the Rochette, the Brûlée, the Sainte‐Anne, the Saint‐Narcisse and the Mars‐Batiscan complexes. Deltas, fans, fine‐grained sediments, littoral deposits, drainage breaches and deposits were used to identify 91 palaeo‐proglacial lakes. The identification of these lakes and their relation to moraine complexes enabled the reconstruction of six stages of lake development during the Charlevoix deglaciation. The development of proglacial lakes occurred in all types of terrain (highlands, lowlands, transitory levels above marine limit). We conclude that local topography had a decisive effect on promoting both moraine deposition and lake development. We suggest that similar topographical regions (hilly‐mountainous) that were affected by major ice‐margin stabilizations during glacial retreat should have experience small lakes dominating valleys and topographical lows.  相似文献   

15.
David J.A.  Chris D.  Wishart A. 《Earth》2005,70(3-4):253-312
This paper reviews the evidence presently available (as at December 2003) for the compilation of the Glacial Map of Britain (see [Clark C.D., Evans D.J.A., Khatwa A., Bradwell T., Jordan C.J., Marsh S.H., Mitchell W.A., Bateman, M.D. , 2004. Map and GIS database of glacial landforms and features related to the last British Ice Sheet. Boreas 33, 359–375] and http://www.shef.ac.uk/geography/staff/clark_chris/britice.html) in an effort to stimulate further research on the last British Ice Sheet and promote a reconstruction of ice sheet behaviour based on glacial geology and geomorphology. The wide range of evidence that has been scrutinized for inclusion on the glacial map is assessed with respect to the variability of its quality and quantity and the existing controversies in ice sheet reconstructions. Landforms interpreted as being of unequivocal ice-marginal origin (moraines, ice-contact glacifluvial landforms and lateral meltwater channels) and till sheet margins are used in conjunction with available chronological control to locate former glacier and ice-sheet margins throughout the last glacial cycle. Subglacial landforms (drumlins, flutings and eskers) have been used to demarcate former flow patterns within the ice sheet. The compilation of evidence in a regional map is crucial to any future reconstructions of palaeo-ice sheet dynamics and will provide a clearer understanding of ice sheet configuration, ice divide migration and ice thickness and coverage for the British Ice Sheet as it evolved through the last glacial cycle.  相似文献   

16.
A complex of glacial landforms on northeastern Victoria Island records diverse flows within the waning late Wisconsinan Laurentide Ice Sheet over an area now divided by marine straits. Resolution of this ice flow pattern shows that dominant streamlined landforms were built by three radically different ice flows between 11,000 and 9000 BP. Subsequent to the glacial maximum, the marine-based ice front retreated at least 300 km to reach northeast Victoria Island by 10,400 BP. Disequilibration at the rapidly retreating margin induced minor surges on western Storkerson Peninsula (Flow 1). Next, a readvance into Hadley Bay transported 10,300 BP shells, while a major ice stream over eastern Storkerson Peninsula (Flow 2) remoulded till into a drumlin field several hundred kilometres long and at least 80 km wide until flow ceased prior to 9600 BP. The ice stream surged into Parry Channel, covering 20,000 km2 with the Viscount Melville Sound Ice Shelf. Finally, Flow 2 drumlins on the northwest shore of M'Clintock Channel were cross-cut c . 9300 BP by advance of the grounded margin of a buoyant glacier (Flow 3), possibly an analogue of Flow 2 displaced farther south.  相似文献   

17.
We report evidence for a major ice stream that operated over the northwestern Canadian Shield in the Keewatin Sector of the Laurentide Ice Sheet during the last deglaciation 9000–8200 (uncalibrated) yr BP. It is reconstructed at 450 km in length, 140 km in width, and had an estimated catchment area of 190000 km2. Mapping from satellite imagery reveals a suite of bedforms ('flow-set') characterized by a highly convergent onset zone, abrupt lateral margins, and where flow was presumed to have been fastest, a remarkably coherent pattern of mega-scale glacial lineations with lengths approaching 13 km and elongation ratios in excess of 40:1. Spatial variations in bedform elongation within the flow-set match the expected velocity field of a terrestrial ice stream. The flow pattern does not appear to be steered by topography and its location on the hard bedrock of the Canadian Shield is surprising. A soft sedimentary basin may have influenced ice-stream activity by lubricating the bed over the downstream crystalline bedrock, but it is unlikely that it operated over a pervasively deforming till layer. The location of the ice stream challenges the view that they only arise in deep bedrock troughs or over thick deposits of 'soft' fine-grained sediments. We speculate that fast ice flow may have been triggered when a steep ice sheet surface gradient with high driving stresses contacted a proglacial lake. An increase in velocity through calving could have propagated fast ice flow upstream (in the vicinity of the Keewatin Ice Divide) through a series of thermomechanical feedback mechanisms. It exerted a considerable impact on the Laurentide Ice Sheet, forcing the demise of one of the last major ice centres.  相似文献   

18.
Lusardi, B. A., Jennings, C. E. & Harris, K. L. 2011: Provenance of Des Moines lobe till records ice‐stream catchment evolution during Laurentide deglaciation. Boreas, 10.1111/j.1502‐3885.2011.00208.x. ISSN 0300‐9483. Mapping and analysis of deposits of the Des Moines lobe of the Laurentide Ice Sheet, active after the Last Glacial Maximum (LGM), reveal several texturally and lithologically distinct tills within what had been considered to be a homogeneous deposit. Although the differences between tills are subtle, minor distinctions are predictable and mappable, and till sheets within the area covered by the lobe can be correlated for hundreds of kilometres parallel to ice flow. Lateral till‐sheet contacts are abrupt or overlap in a narrow zone, coincident with a geomorphic discontinuity interpreted to be a shear margin. Till sheets 10 to 20 m thick show mixing in their lower 2 to 3 m. We suggest that: (i) lithologically distinct till sheets correspond to unique ice‐stream source areas; (ii) the sequence of tills deposited by the Des Moines lobe was the result of the evolution and varying dominance of nearby and competing ice streams and their tributaries; and (iii) in at least one instance, more than one ice stream simultaneously contributed to the lobe. Therefore the complex sequence of tills of subtly different provenances, and the unconformities between them record the evolution of an ice‐catchment area during Laurentide Ice Sheet drawdown. Till provenance data suggest that, after till is created in the ice‐stream source area, the subglacial conditions required for transporting till decline and incorporation of new material is limited.  相似文献   

19.
Eskers were investigated in an area with overall terrestrial deglaciation - the eastern part of the province of Skåne and adjacent areas in southern Sweden. On the basis of the proposed model of esker formation, the dynamics of the receding Weichselian Ice Sheet are discussed. The deglaciation was characterized by the gradual retreat of an active ice sheet, bordered by a zone of thin, stagnant ice. For the most part, the ice sheet was probably at the pressure melting point in a marginal zone, where it was penetrated by surface meltwater which constituted most of the subglacially flowing meltwater. The esker sediments, consisting of glaciofluvially reworked basal debris and basal till, accumulated progressively in an up-glacier direction. Deposition took place close to the live ice boundary in the zone with stagnant ice that fringed the receding ice sheet. The time-transgressive formation of the eskers is reflected by repeated sediment sequences (morphosequences), i.e. sedimentary units composed of ridges that merge into extended hummocky deposits in a down-glacier direction. They represent the momentary deposition of stratified drift in the proximal portion of the zone with stagnant ice.  相似文献   

20.
The range of genetic and climatic interpretations of Scottish ‘hummocky moraine’ is reviewed, and new data are presented from the Isle of Skye, western Scotland, which are used as the basis of a genetic classification. ‘Hummocky moraine’ on Skye is shown to consist of three principal sediment-landform associations: (1) recessional moraines; (2) chaotic ice-stagnation moraines; and (3) drumlins and fluted moraines. The recessional moraines consist of transverse moraine ridges and chains of mounds, and were formed by a combination of glaciotectonics and debris accumulation at active ice margins. Second, chaotic moraines consist of randomly-distributed hummocks, mounds and rim-ridges and record deposition in contact with inactive ice. Finally, drumlins and fluted moraines are longitudinally-oriented subglacial bedforms formed by a combination of lodgement and sediment deformation. Individual occurrences of ‘hummocky moraine’ may comprise one, two or all of these associations. The detailed study and differentiation of Scottish ‘hummocky moraine’ provides a valuable source of information on former glacier dynamics and landscape change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号