首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a series of sensitivity experiments with a quasi-geostrophic model of the interaction of stationary planetary waves with the mean zonal flow in the stratosphere and mesosphere. The model is of the Matsuno type, which neglects wave-wave interaction and includes only a single zonal harmonic of the planetary wave spectrum in each simulation. We employed the model to investigate the source of the double-layer structure previously obtained by several authors for the stratospheric sudden warming with wavenumber one. Our results suggest that this characteristic of the model-produced warming is a property only of models without damping. When reasonable dissipation is included in the model, the double-layer structure disappears. This implies the importance of the drag parameterization in properly simulating warming events and, since the actual drag very probably is effected by breaking internal waves, it suggests that future analysis should include a specific representation of this effect. We also investigated the dependence of stratospheric warming on the structure of the zonal wind field. Our analyses show in particular that substantial reduction of the height of the polar night jet mitigates strongly against the occurrence of a sudden warming event.  相似文献   

2.
The results of measurements of the temperature of the [OI] 557.7 nm emission conducted from December 2002 to March 2003 at the Maimaga optical site near Yakutsk (geographic latitude and longitude are 63° N and 129.7° E, respectively) with the help of a Fabry-Pérot spectrometer are presented. The temperature measurements were conducted continuously during moonless and moonshine nights. To analyze the behavior of the 557.7 nm emission, Doppler temperature during localized in height stratospheric warming events, the data on the stratospheric temperatures (a height-time cut at the 1, 2, 5, 10, 30, 50, and 70 hPa levels and charts of the contour lines of the temperature horizontal field at a level of 50 hPa) obtained from NOAA via the Internet were attracted. During the 2002/2003 winter, localized in height weak stratospheric warming events showing no signs of the vertical mixing were observed. From this point of view, it was interesting to find how the thermal regime of the lower thermosphere behaves in the periods of a localized stratospheric warming. It is shown that in the periods of localized at heights stratospheric warming events, the temperature regime of the lower thermosphere undergoes no changes. The mean temperature at the background of short-period oscillations remains at the level of its model values.  相似文献   

3.
Irregular variations in the temperature of the subauroral lower thermosphere during the winter stratospheric warming, which began in the first decade of December 2001 and continued to the end of the observational season (February 19, 2002), have been analyzed. The temperature measurements were based on the thermal broadening of the 557.7 nm oxygen emission measured during moonless nights at Maimaga optical station in the vicinity of Yakutsk (?=63°N, λ=129.7° E) using the Fabry-Pérot spectrometer. Isolated fragments of the map of contour lines of the horizontal temperature field and the globally averaged height-time section of the temperature at the levels of the 1, 2, 5, 10, 30, 50, and 70 hPa isobaric surfaces, obtained by the NOAA Meteorological Satellite Systems, as well as the F 10.7 and Ap indices have been used to analyze the cause-effect relation between the variations in the temperature of the subauroral lower thermosphere and winter stratospheric warming events. It is shown that, when warming is detected at heights of the lower thermosphere, the temperature can become higher than its model values by up to 20 K, which indicates that the planetary waves can penetrate to heights of the lower thermosphere and then propagate downward. In this case the atmosphere cools at heights of the lower thermosphere and tends to heat up above 10 hPa and to cool below 30 and 50 hPa; i.e., we observe the well-known fact of vertical alternation of cold and warm atmospheric regions detected during winter stratospheric warming events.  相似文献   

4.
The zonally averaged UK Meteorological Office (UKMO) zonal mean temperature and zonal winds for the latitudes 8.75°N and 60°N are used to investigate the low-latitude dynamical response to the high latitude sudden stratospheric warming (SSW) events that occurred during winter of the years 1998–1999, 2003–2004 and 2005–2006. The UKMO zonal mean zonal winds at 60°N show a short-term reversal to westward winds in the entire upper stratosphere and lower mesosphere and the low-latitude winds (8.75°N) show enhanced eastward flow in the upper stratosphere and strong westward flow in the lower mesosphere during the major SSW events at high latitudes. The mesosphere and lower thermosphere (MLT) zonal winds acquired by medium frequency (MF) radar at Tirunelveli (8.7°N, 77.8°E) show a change of wind direction from eastward to westward several days before the onset of SSW events and these winds decelerate and weak positive (eastward) winds prevail during the SSW events. The time variation of zonal winds over Tirunelveli is nearly similar to the one reported from high latitudes, except that the latter shows intense eastward winds during the SSW events. Besides, the comparison of daily mean meridional winds over Tirunelveli with those over Collm (52°N, 15°E) show that large equatorial winds are observed over Tirunelveli during the 2005–2006 event and over Collm during the 1998–1999 events. The variable response of MLT dynamics to different SSW events may be explained by the variability of gravity waves.  相似文献   

5.
Based on the daily NCEP/DOE reanalysis II data,dates of the boreal spring Stratospheric Final Warming(SFW) events during 1979–2010 are defined as the time when the zonal-mean zonal wind at the central latitudes(65°–75°N) of the westerly polar jet drops below zero and never recovers until the subsequent autumn.It is found that the SFW events occur successively from the mid to the lower stratosphere and averagely from the mid to late April with a temporal lag of about 13 days from 10 to 50 hPa.Over the past 32 years,the earliest SFW occurs in mid March whereas the latest SFW happens in late May,showing a clear interannual variability of the time of SFW.Accompanying the SFW onset,the stratospheric circulation transits from a winter dynamical regime to a summertime state,and the maximum negative tendency of zonal wind and the strongest convergence of planetary-wave are observed.Composite results show that the early/late SFW events in boreal spring correspond to a quicker/slower transition of the stratospheric circulation,with the zonal-mean zonal wind reducing about 20/5 m s-1 at 30 hPa within 10 days around the onset date.Meanwhile,the planetary wave activities are relatively strong/weak associating with an out-of-/in-phase circumpolar circulation anomaly before and after the SFW events in the stratosphere.All these results indicate that,the earlier breakdown of the stratospheric polar vortex(SPV),as for the winter stratospheric sudden warming(SSW) events is driven mainly by wave forcing;and in contrast,the later breakdown of the SPV exhibits more characteristics of its seasonal evolution.Nevertheless,after the breakdown of SPV,the polar temperature anomalies always exhibit an out-of-phase relationship between the stratosphere and the troposphere for both the early and late SFW events,which implies an intimate stratosphere–troposphere dynamical coupling in spring.In addition,there exists a remarkable interdecadal change of the onset time of SFW in the mid 1990s.On average,the SFW onset time before the mid 1990s is 11 days earlier than that afterwards,corresponding to the increased/decreased planetary wave activities in late winter-early spring before/after the 1990s.  相似文献   

6.
Continuous MF and meteor radar observations allow detailed studies of winds in the mesosphere and lower thermosphere (MLT) as well as temperatures around the mesopause. This height region is characterized by a strong variability in winter due to enhanced planetary wave activity and related stratospheric warming events, which are distinct coupling processes between lower, middle and upper atmosphere. Here the variability of mesospheric winds and temperatures is discussed in relation with major and minor stratospheric warmings as observed during winter 2005/06 in comparison with results during winter 1998/99.Our studies are based on MF radar wind measurements at Andenes (69°N, 16°E), Poker Flat (65°N, 147°W) and Juliusruh (55°N, 13°E) as well as on meteor radar observations of winds and temperatures at Resolute Bay (75°N, 95°W), Andenes (69°N, 16°E) and Kühlungsborn (54°N, 12°E). Additionally, energy dissipation rates have been estimated from spectral width measurements using a 3 MHz Doppler radar near Andenes. Particular attention is directed to the changes of winds, turbulence and the gravity wave activity in the mesosphere in relation to the planetary wave activity in the stratosphere.Observations indicate an enhancement of planetary wave 1 activity in the mesosphere at high latitudes during major stratospheric warmings. Daily mean temperatures derived from meteor decay times indicate that strong warming events are connected with a cooling of the 90 km region by about 10–20 K. The onset of these cooling processes and the reversals of the mesospheric circulation to easterly winds occur some days before the changes of the zonal circulation in the stratosphere start indicating a downward propagation of the circulation disturbances from the MLT region to the stratosphere and troposphere during the stratospheric warming events. The short-term reversal of the mesospheric winds is followed by a period of strong westerly winds connected with enhanced turbulence rates and an increase of gravity wave activity in the altitude range 70–85 km.  相似文献   

7.
平流层爆发性增温(SSW)期间,低层大气温度场和风场等的剧烈变化会直接影响潮汐和风剪切作用.此举可能会导致电离层Es的相应变化.本文以2009年1月事件为例,分析了SSW期间Es层的响应.首先,在排除太阳活动和地磁活动对Es层影响的前提下,分析了昆明站附近MLT区域行星波和潮汐波的波动特性,发现此期间存在显著的2日行星波,并伴有日潮汐减弱和半日潮汐增强等波动现象;随后,分析相应时间段内Es层的变化特性发现,重庆和昆明站附近Es层强度明显减弱,且其高度显著抬升.这一现象与低层大气的波动变化具有同步性.最后,通过模拟经典风剪切理论下Es层金属离子的汇聚过程和运动轨迹,再现了SSW期间Es层与低层大气波动的耦合演化过程.该分析结果为研究低层-中层-高层大气的耦合过程提供了一种新的思路.  相似文献   

8.
本文利用热层-电离层-中间层能量和动力学卫星TIMED中宽带发射辐射计SABER观测的临边大气长波红外背景辐射数据来研究平流层增温效应,基于2012/2013年1—3月在20~100 km高度内的临边大气长波红外背景辐射数据,采用微扰方法,得到辐射扰动的时空分布.结果显示:大气长波红外背景辐射扰动数据能够更精细的展示平流层增温事件的发生,2013年平流层爆发性增温效应下最大辐射扰动幅度出现在40 km处可达160%,而利用温度扰动数据表征此事件的发生时最大温度扰动幅度出现在40 km处只有21%.针对2012年弱平流层增温效应,温度扰动幅度最大值出现在40 km处为16.4%,而辐射扰动幅度的最大值在40 km处可达91%.大气长波红外背景辐射的纬度分布体现出此事件发生于高纬度地区;其经度分布在20~50 km范围内呈现"w"形状;而50 km和80 km处大气长波红外背景辐射的极值区域范围随着事件的发生在高纬度地区都是先扩大随后缩小的过程.这表明高层大气临边红外辐射信号可用于研究平流层增温效应,尤其是对于温度弱起伏的小扰动事件.这对于掌握临近空间环境辐射形成机理及其变化特性亦具有重要意义.  相似文献   

9.
A detailed test of a simple nonlinear quasi-geostrophic model of stratospheric sudden warming has been performed. The model is of Matsuno's type, which includes only the interaction between a single planetary wave and the zonal mean flow. Given this limitation, the 1979 major stratospheric sudden warming has been employed to test the ability of the model to simulate an actual warming event. This event proved to be an especially appropriate testing ground for the model, since its main assumptions were reasonably well satisfied by the observational evidence. Results from the model simulations demonstrate (a) that such simple quasi-geostrophic dynamics are completely capable of providing a rather detailed simulation of the 1979 major warming event and (b) that the ability of the model to simulate successfully the observed evolution of the warming is extremely sensitive to the magnitude and form of the dissipation mechanism that is assumed to operate in the middle atmosphere.  相似文献   

10.
热带印度洋增暖对南极平流层极涡的影响   总被引:2,自引:0,他引:2  
李双林 《中国科学D辑》2009,39(6):813-822
过去几十年,在全球变暖的大背景下,全球大部分海洋,特别是热带印度洋,显著增暖.同时,南极平流层极涡呈现发展加深的趋势.以前的模拟结果显示,臭氧耗损的辐射冷却效应是南极极涡加深的主导因子,但模拟的臭氧耗损单独引起的南极极涡加深比实际观测到的要强.这说明有其他因子参与影响了南极极涡的趋势变化,其作用是部分抵消臭氧耗损的影响.是否热带印度洋增暖是其中的因子之一,这个问题还不清楚.利用4个大气环流模式,通过给定理想的、与观测到的强度相当的热带印度洋增暖强迫,进行集合试验,研究了这一问题.结果表明:热带印度洋增暖有利于南半球春、夏季极地平流层增暖、南极极涡减弱,于是倾向于部分抵消臭氧耗损的辐射冷却效应.这一结果能部分解释以前的模拟发现~臭氧耗损单独导致的南极极涡加深比观测到的要强.鉴于平流层变暖不利于极地平流层冰晶云的形成、遂有利于臭氧恢复,现在的结果暗示:在全球变暖的大背景下,气候系统的内部动力调整过程将有利于南极臭氧洞的恢复.  相似文献   

11.
During the past decades, concurrent with global warming, most of global oceans, particularly the tropical Indian Ocean, have become warmer. Meanwhile, the Southern Hemispheric stratospheric polar vortex (SPV) exhibits a deepening trend. Although previous modeling studies reveal that radiative cooling effect of ozone depletion plays a dominant role in causing the deepening of SPV, the simulated ozone-depletion-induced SPV deepening is stronger than the observed. This suggests that there must be other factors canceling a fraction of the influence of the ozone depletion. Whether the tropical Indian Ocean warming (IOW) is such a factor is unclear. This issue is addressed by conducting ensemble atmospheric general circulation model (AGCM) experiments. And one idealized IOW with the amplitude as the observed is prescribed to force four AGCMs. The results show that the IOW tends to warm the southern polar stratosphere, and thus weakens SPV in austral spring to summer. Hence, it offsets a fraction of the effect of the ozone depletion. This implies that global warming will favor ozone recovery, since a warmer southern polar stratosphere is un-beneficial for the formation of polar stratospheric clouds (PSCs), which is a key factor to ozone depletion chemical reactions. Supported by National Natural Science Foundation of China (Grant Nos. 40775053 and 90711004), National Basic Research Program of China (Grant No. 2009CB421401), and Innovation Key Program of Chinese Academy of Sciences (Grant Nos. KZCXZ-YW-Q11-03, KZCZ2-YW-Q03-08)  相似文献   

12.
13.
The stratosphere–mesosphere response to the major sudden stratospheric warming (SSW) in the winter of 2003/2004 has been studied. The UKMO (UK Meteorological Office) data set was used to examine the features of the large-scale thermodynamic anomalies present in the stratosphere of the Northern Hemisphere. The vertical and latitudinal structure of the genuine anomalies, emphasized by removing the UKMO climatology, has been investigated as well. The features of the stratospheric anomalies have been related to the mesospheric ones in measured neutral winds from radars and temperatures from meteor radars (90 km). It was found that the stratospheric warming spread to the lower mesosphere, while cooling occurred in the upper mesosphere, a feature that may be related to the large vertical scales of the stationary planetary waves (SPWs). It was shown also that the beginning of the eastward wind deceleration in the stratosphere–mesosphere system coincided with the maximum amplification of the SPW1 accompanied by short-lived bursts of waves 2 and 3.  相似文献   

14.
基于Sondrestrom站(67°N,51°W)非相干散射雷达观测数据,研究了2013年平流层爆发性增温(SSW)事件发生后高纬地区电离层F层和E层半日潮汐波.同时,对1月非SSW发生期间和不同太阳活动期间高纬电离层中的半日潮汐波进行了统计分析,并和2013年SSW事件发生后的结果进行了比较.研究发现,SSW发生后F...  相似文献   

15.
本文利用地磁台站和卫星磁场数据,对平流层爆发性增温(Sudden Stratospheric Warming,SSW)期间赤道电集流(Equatorial Electrojet,EEJ)中太阴半日潮汐的经度变化进行了统计学分析.结果显示,SSW期间秘鲁和印度扇区的EEJ中太阴半日潮汐明显增强,且存在显著的经度差异.秘鲁扇区的EEJ中太阴半日潮汐达到峰值的时间要早于印度扇区,进一步分析发现峰值时间的经度差异与太阳活动和准两年振荡相位有关.此外,SSW期间秘鲁扇区EEJ的太阴半日潮汐峰值强度比印度扇区高.对比不同经度带背景磁场的强度与太阴半日潮汐的峰值幅度的关系,可以看出SSW期间EEJ太阴半日潮汐峰值幅度的经度差异与背景磁场强度有关,但也存在其他物理过程的影响.  相似文献   

16.
The effect of anomalously high average nighttime intensities of the atomic oxygen 557.7-nm atmospheric emission (luminescence heights 85–115 km) during sudden winter stratospheric warming events (SWEs) in Eastern Siberia is considered. Analysis of the variations in the 557.7-nm emission intensity (I 557.7) revealed the interdaily I 557.7-nm variations during SWEs and high average monthly I 557.7-nm values in the winter months in conditions of high solar activity. It has finally been found that the variations with periods of several days, at a maximum of which anomalously high daily values of I 557.7 are observed, are superposed on the average I 557.7-level during SWEs at high solar activity. A high average level of I 557.7 in the winter months in Eastern Siberia can be related to the fact that the atomic oxygen concentration at altitudes of the 557.7 nm emission luminescence increases by a factor of 2–3 in years of high solar activity.  相似文献   

17.
Summary The meteorological microseisms recorded at Prague are found to be essentially independent of the occurrence of the major midwinter stratospheric warmings. This finding contributes to studying the downward propagation mechanism of some extraterrestrial influences.  相似文献   

18.
Stratospheric temperatures show distinct trends, not necessarily monotonically upward or downward. At the North Pole, trends were large only during winter and spring and were different for different months; downward for November, December, mixed for January and upward for February, March and April. For the 10°-90°N belt, the trends were variable, viz., downward during 1971-1975, upward during 1975–1978 and downward again from 1978 onwards up to date, opposite to the upward trend of ground temperature in the Northern hemisphere in recent years. Twelve-monthly running averages revealed strong QBO (quasi-biennial oscillation). For the North Pole, the QBO showed colder (lower) temperatures during 50-mb wind QBO westerly phase maxima. For the 10°-90°N belt, the QBO was similar for 30 mb and 50 mb but the QBO phases did not match well with 50-mb wind QBO phases.  相似文献   

19.
Published papers reporting the use of ozone as a tracer are reviewed, and we conclude, as have the authors themselves, that the results are limited by lack of data. The results of a Meteorological Office experiment in which soundings were made at 12-hour intervals from four stations are also reported. In the light of these we are of the opinion that little further progress is likely unless campaigns involving sixty stations and soundings every 3 hours can be launched. This would be a formidable undertaking, and raises the question of whether it would be worth the effort and expense. A more modest approach might be to use aircraft and balloons in conjunction.  相似文献   

20.
The solid and liquid particles which constitute polar stratospheric clouds (PSCs) are of manifold importance to the meteorology of the stratosphere. The heterogeneous reactions which take place on and within these particles release halogens from relatively inert reservoir species into forms which can destroy ozone in the polar spring. In addition, solid PSC particles are instrumental in the physical removal of nitrogen oxides (denitrification) and water (dehydration) of regions of the polar stratosphere. Denitrification, in particular, allows extended ozone destruction by slowing the conversion of chlorine radicals back into reservoir species.We review the historical development of PSC studies, with particular emphasis on results from the last decade, encompassing developments in observations, in laboratory experiments, and in theoretical treatments. The technical challenge of measuring sufficient of the parameters describing any given PSC, to allow its microphysics to be understood, has driven forward balloon-borne, aircraft, and satellite instrumentation. The technical challenge of finding suitable laboratory proxies for PSCs, in order to observe the microphysics under controlled conditions, has resulted in a wide variety of experimental designs, some of which maximise the probability of observing phase change, others which mimic the surface–volume ratios of PSCs more closely. The challenge to theory presented by PSCs has resulted in improvements in the thermodynamics of concentrated inorganic solutions of volatile compounds, and a new general theory of freezing of water ice from concentrated aqueous solutions. Of the major processes involving PSCs, heterogeneous reaction probabilities for ternary HNO3/H2SO4/H2O solutions, and heterogeneous freezing to produce nitric-acid hydrates, are the least well understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号