首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An attempt has been made to estimate the east-west component (Ew) of the magnetospheric equatorial electric field near L = 1.12 during a magnetic storm period from the whistlers observed at our low latitude ground station, Nainital (geomag.lat. 19°1'N), on March 25, 1971 in the 0130–0500 IST sector. The method of measuring Ew from the observed cross L-motions of whistler ducts within the plasmasphere, indicated by changes in nose frequency of whistlers, has been outlined. The nose frequencies of non-nose whistlers under consideration have been deduced from Dowden-Allcock linear Q-technique. The variation of (?n)23 with local time has been shown, the slope of which can be directly related to the convection electric field. The estimated equatorial electric field at L? 1.12 is in the range 0.1–0.5 mV m?1 (in the 0130–0500 IST sector) during a storm period, which is in agreement with the results reported by earlier workers. The departure from a dipole field and the contribution of an induced electric field from the temporal changes have been discussed. The importance of an electric field study has been indicated.  相似文献   

2.
Observations of whistlers during quiet times made at low-latitude ground station Nainital (geomag. lat. 19 1 N) are used to deduce plasmasphere-ionosphere coupling fluxes. The whistler data from 3 magnetically quiet days are presented that show a smooth decrease in dispersion with time. This decrease in dispersion is interpreted in terms of a corresponding decrease in electron content of tubes of ionization. The electron densities, electron tube contents (1016 el/m2-tube) and coupling fluxes (10 el m–1 s–2) are computed by means of an accurate curve fitting method developed by Tarcsai (1975) and are in good agreement with the results reported by other workers.  相似文献   

3.
The effect of ions on whistler dispersion characteristics has been studied. It is shown that the significant changes in the dispersion characteristics of low-latitude whistlers are brought about by the presence of ions. The dispersions for Nainital (geomagnetic lat. 19°1'N) and Gulmarg (geomagnetic lat. 24°10'N) are found to peak around 800 Hz. The short whistler sonograms recorded at Nainital and Gulmarg have been analysed, using the complete dispersion equation and the effect of ions has been shown. At higher frequencies the dispersion is found to decrease steadily and becomes independent of ions. Some examples of short whistlers have been found whose characteristics do not conform to the general trend of low-latitude whistlers, and, on the other hand, these whistlers show a constant dispersion unaffected by ions up to a fairly low frequency and thereafter decrease sharply at lower frequencies.  相似文献   

4.
Morphological features of whistlers recorded at low latitude ground station Gulmarg (geomag. lat., 24 26N) are studied to deduce information about ducts. The morphological characteristics of low latitude whistlers are discussed and compared with the characteristics of middle and high latitude whistlers. The maximum electron density (N m ) at the height of the ionosphere obtained from whistler dispersion comes out to be higher than that of the background, which is in accordance with the characteristics of the whistler duct. The equivalent width of the whistler duct at the maximum height of its path is found to be close to the value obtained from satellite observations. The characteristics of whistler ducts in low latitude ionosphere are similar to those in middle and high latitude ionosphere. The width of ducts estimated from the diffuseness of the whistler track observed during magnetic storm is found to lie in the range of 50–200 km.  相似文献   

5.
Stepanov  A.V.  Tsap  Y.T. 《Solar physics》2002,211(1-2):135-154
Interaction of the 30–300 keV electrons with whistlers in solar coronal loops is studied using a quasi-linear approach. We show that the electron–whistler interaction may play a dominant role in the formation of fast electron spectra within the solar flare loops with the plasma temperature 107 K and plasma density 1011 cm–3. It is found that Landau damping of whistlers provides weak and intermediate pitch-angle diffusion regimes of fast electrons in coronal loops. The level of whistler turbulence in the weak diffusion regime under flare conditions is estimated as 10–7 of the energy density in the thermal particles. The `top – footpoint' relations between the hard X-ray flux densities and spectra are derived. The reason for a `broken' spectrum of the flare microwave emission is discussed.  相似文献   

6.
This paper presents discrete chorus type emissions observed in January/July, 1970 during the routine recording of whistlers and VLF emissions at our low latitude ground station Gulmarg (geomag. lat., 24°26N; geomag. long., 147°09 E). The chorus type emissions are comprised of discrete, sometimes overlapping, tones of one or more spectral shapes (risers, falling tones, hooks, etc.). It is shown that these emissions are generated in the equatorial plane (L1.2) by cyclotron resonance between the propagating wave and gyrating electrons.  相似文献   

7.
There are indications that less than 10–3 of the spin-down energy of the millisecond pulsar PSR 1937+214 emerges as electromagnetic radiation. The implications of this result are discussed. The surface magnetic field would then be 107 G, making the pulsar optically undetectable, and casting aspersions on the accretion disc spin-up neutron star models for the pulsar. The pulsar should have an equatorial ellipticity 10–9, which can be accounted for if the equatorial magnetic field departs from axisymmetry by one part in 103.  相似文献   

8.
It is found from analysis of the position angles of the plane of polarization of about 3000 stars (¦b¦ 5° andP 0.5%) that the angle between the magnetic field and the equatorial plane of the galaxy is approximately 0–5°. The distance within which the local magnetic fields of the galaxy have a greater effect on the position angles of the plane of polarization than the galactic magnetic field is estimated to be about 500 pc. The effect of the galactic magnetic field becomes dominant for distancesr 1000 pc.Translated fromAstrofizika, Vol. 39, No. 4, pp. 553–559, November, 1996.  相似文献   

9.
Daily observations of Doppler line shifts made with very low spatial resolution (3) with the Stanford magnetograph have been used to study the equatorial rotation rate, limb effect on the disk, and the mean meridonial circulation. The equatorial rotation rate was found to be approximately constant over the interval May 1976–January 1977 and to have the value 2.82 rad s–1 (1.96 km s–1). This average compares favorably with the results of Howard (1977) of 2.83 rad s–1 for the same time period. The RMS deviation of the daily measurements about the mean value was 1% of the rate (20 m s–1), much smaller than the fluctuations reported by Howard and Harvey (1970) of several per cent. These 1% fluctuations are uncorrelated from day-to-day and may be due to instrumental problems. The limb effect on the disk was studied in equatorial scans (after suppressing solar rotation). A redshift at the center of the disk relative to a position 0.60R from the center of 30 m s–1 was found for the line Fe i 5250 Å. Central meridian scans were used (after correcting for the limb effect defined in the equatorial scans) to search for the component of mean meridonial circulation symmetric across the equator. A signal is found consistent with a polewards flow of 20 m s–1 approximately constant over the latitude range 10–50°. Models of the solar differential rotation driven by an axisymmetric meridonial circulation and an anisotropic eddy viscosity (Kippenhahn, 1963; Cocke, 1967; Köhler, 1970) predict an equatorwards flow at the surface. However, giant cell convection models (Gilman, 1972, 1976, 1977) predict a mean polewards flow (at the surface). The poleward-directed meridonial flow is created as a by-product of the giant cell convection and tends to limit the differential rotation. The observation of a poleward-directed meridonial circulation lends strong support to the giant cell models over the anisotropic eddy viscosity models.Now at Kitt Peak National Observatory, Tucson, Ariz., U.S.A.  相似文献   

10.
Axisymmetrical models for protoplanetary nebulae are produced. We discuss the mechanism for mass loss from evolved cool stars and the characteristics of the gas outflow. By using two-dimensional magnetohydrodynamics, we find that the gas is preferentially ejected in a so-called equatorial plane. For a grid of models, the expansion velocities are found to be of the order ofv escape/2 and the mass loss rates tilde 10–5-10–4 M /year which appear consistent with the available observational data. Magnetic fields intensities in the 10–4 to 10–3 gauss range are obtained in circumstellar envelopes, in good agreement with observations (Nedoluha and Bowers, 1992).  相似文献   

11.
T. Moran  P. Foukal 《Solar physics》1991,135(1):179-191
We describe an electrograph instrument designed for measurement of macroscopic electric fields in solar plasmas, using the polarization dependence of line width in Stark-broadened hydrogen Paschen emission lines. Observations of quiescent prominences and limb chromosphere with our electrograph at the NSO/Sac Peak Evans Coronal Facility provide upper limits of 5–10 V cm–1 for transverse macroscopic electric fields in these structures, averaged over an area of about 5 × 7 arc sec. Random thermal motions of hydrogen ions across magnetic field lines generate a quasi-static electric field, which should be distinguishable from pressure broadening in the intensely magnetized chromosphere over a sunspot, given an electrograph sensitivity a factor 2–3 better than that achieved here. Future electrograph measurements of limb flares, post-flare loops and eruptive prominences, even at 5 V cm–1 sensitivity, could provide a useful new test of reconnection and discharge effects in such dynamic structures.  相似文献   

12.
Meaurements of solar flare spectra have allowed the electric field strengths in two flares to be determined, using the Inglis-Teller formula. Further, an independently estimated value for the electron density has allowed the two components of this field, that is, the interionic component and the external component that arises, for example, through plasma instabilities, to be separately extracted. External electric field strengths 0.5 kV cm–1 for a limb flare and 1.3 kV cm–1 for a white-light flare are found. Estimates of electric fields strengths generated by the resistive magnetic tearing instability indicate that this process could account for a significant part of the electric field if pre-existing magnetic field strengths in the flaring regions are characterized by a few kilogauss. Other plasma processes probably contribute measurably as well.Operated by the Association of Universities for Research in Astronomy, Inc., under contract NSF AST84-18716 with the National Science Foundation.  相似文献   

13.
Observations of current disruptions and strong electric fields along the magnetic field in a high-density (2×1019 m–3), highly-ionized, moving, and expanding plasma column are reported. The electric field is interpreted in terms of propagating, strong electric double layers (3–5 kV).An initial plasma column is formed in an axial magnetic field (0.1 T) by means of a conical theta-pinch plasma gun. When an axial current (max 5 kA, 3–5 kV) is drawn through the column spontaneous disruptions and double-layer formation occur within a few microseconds.Floating, secondary emitting Langmuir probes are used. They often indicate very high positive potential peaks (1–2 kV above the anode potential during a few s) in the plasma on the positive side of the double layer. Short, intense bursts of HF radiation are detected at the disruptions.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

14.
In the region of the formation of weak and medium-strong lines, the microturbulence increases with height (V ver=0.7–0.9 km s-1, V hor= 1.1–1.5 km s-1), the macroturbulence decreases (V ver=1.6–1.4 km s-1, V hor= 2.4–1.5 km s-1), and the total velocity field (vertical component) is depth-independent (1.7 km s-1). The empirical damping constants for Fe, Ti, Cr, Ni lines are equal 1.36, 1.76, 1.66, 1.66, respectively. The correlation length (the Kubo-Anderson process has been used) in the solar photosphere is 520–550 km.  相似文献   

15.
A computer routine using rigorous Güttler theory was developed to consider effects of concentric cavities and organic mantles within and around graphite spheres, with a view to assessing the stability of the extinction peak near 4.60 m–1. The newly discovered stable carbon molecule of 60 atoms gives an absorption band at 4.60 m–1 which closely agrees with the observed; moreover, it leads to the observed extinction rise in the far UV and can possibly explain the fine structure around the 5.5–7 m–1 dip, while its own structure deals successfully with the main objections to previous carbon-graphite models. The role of the electric vector component perpendicular to the basal plane of the crystal in achieving the fit is stressed.  相似文献   

16.
A series of telescopes having approximately a 30° half opening angle and responding to neutrons in the energy range 50 MeV to 350 MeV has been flown to the top of the atmosphere on balloons released from an equatorial launching site at Kampala, Uganda, between 1967 and 1969. The aim of the experiment was to attempt to detect solar neutrons during periods of enhanced solar activity. No neutrons of solar origin were detected, but an upper limit of the order of 30 neutrons m–2 s–1 at the Earth has been placed on the continuous solar neutron flux in the above energy range, and a limit of four photons m–2 s–1 has also been placed on the corresponding -ray flux above 80 MeV. Limits have likewise been placed on the total emission from various flares. For a 1B flare the values were 23 × 104 neutrons m–2 and 6 × 104 photons m–2.  相似文献   

17.
Karlický  Marian  Kotrč  Pavel  Kupryakov  Yurij A. 《Solar physics》2001,199(1):145-155
Large Doppler velocities with unique, almost regular elliptical features were observed in the H spectra of the May 15, 2000 eruptive prominence. These features were interpreted in the frame of axially symmetric models of the eruptive prominence. The rotational (7–60 km s–1), expansion (30–44 km s–1), axial (3–19 km s–1), and global (66–160 km s–1) prominence plasma velocities were derived. The plasma velocity patterns were compared with the observed helical structures of the H prominence. The velocities of selected H blobs in the image plane were determined. The axially symmetric detwisting process of the magnetic flux rope of the eruptive prominence was recognized.  相似文献   

18.
The differential rotation of the corona as indicated by coronal holes   总被引:1,自引:0,他引:1  
The rotation of the corona can be determined either directly by using Doppler methods or indirectly by using tracers, i.e., structures within the corona. In this study the rotational characteristics of the corona are determined using coronal holes as tracers, for the period 1978–1991. The coronal data used here are from an atlas of coronal holes mapped in Hei 10830 data. A comparison is made between our results and previous determinations of the coronal rotation rate, e.g., by Sime (1986), using white-light K-coronameter observations, by Timothy, Krieger, and Vaiana (1975), using soft X-ray observations, and by Shelke and Pande (1985) and Navarro-Peralta and Sanchez-Ibarra (1994), using Hei 10830 data. For the atlas of coronal holes used in this study the nature of the coronal hole distributions in number and latitude, in yearly averages, has been determined. These distributions show that at solar minimum the polar coronal holes dominate and the few non-polar holes are confined to a narrow band near the equator. At solar maximum, however, mid-latitude coronal holes dominate, with a large spread in latitudes. Given these distributions we consider the differential rotation data only as an average over a solar cycle. This removes spurious effects caused by having only a small number of coronal holes contributing to the results, or by having a narrow latitude band for the observations, thus limiting the results to that narrow latitude band. By considering these coronal holes as tracers of the differential rotation we show that the mid-latitude corona rotates more rigidly than the photosphere, but still exhibits significant differential rotation, with an equatorial rate of 13.30 ± 0.04° day–1, and at 45° latitude a rate of 12.57 ± 0.13° day–1. These results are comparable, within errors, to the Sime (1986) results which have an equatorial rate of approximately 13.2 ± 0.2° day–1 and a rate of approximately 12.9 ± 0.3° day–1 at 45° latitude.  相似文献   

19.
Cluster analysis (a Bayesian iteration procedure) was used to study the space-time distribution of sunspot groups in the time interval from 1965 to 1977. (Data were taken from the Greenwich and Debrecen Heliographic Results.) The distribution proved to be significantly non-random for the 8–10 groups cluster–1 (gr cl–1) level of clustering. Convincing evidence also favours non-random behaviour for other levels of clustering from the lowest (3–4 gr cl–1) up to the highest ( 150 gr cl–1) level. The rotation rate of the non-random pattern is generally slightly lower than the Carrington rate.The 8–10 gr cl–1 level, crudely corresponding to the sunspot nests investigated earlier, was studied in more detail. The cycle- and latitude-averaged rotational rate of the nests is slightly ( 1%) but significantly lower than the Carrington rate. Their differential rotation is strongly reduced: the cycle-averaged rotational rate varies only by 2–3% within the sunspot belt. A slight but significant bimodality is seen in the differential rotation curve: the intermediate latitudes ( 10°–20°) show a somewhat slower rotation than both the equatorial and the higher latitude regions. This might be explained by a time-dependence of the rotation rate coupled with the butterfly diagram.  相似文献   

20.
The diffuse far UV radiation ( 1350–1480 Å) observed in the sky region ofl II180°, 0°b II40° is analyzed in connection with the distributions of stars and dust grains as well as with optical properties of grains. Its intensity (starlight+scattered light) is about 6×10–7 erg cm–2 sec–1 sr–1 Å–1 in the direction ofb II0° andl II180°. The latitude dependence of the intensity is in approximate agreement with the plane parallel slab model of the galaxy with a reasonable set of parameters. The interstellar scattering gives an albedo close to unity and forward phase function of about 0.6, which are not inconsistent with the model of interstellar grains of Wickramasinghe. The upper limit of the extragalactic UV is 2×10–8 erg cm–2 sec–1 sr–1 Å–1 in the same region of wave-length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号