首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We find a new Tully–Fisher-like relation for spiral galaxies holding at different galactocentric radii. This radial Tully–Fisher relation allows us to investigate the distribution of matter in the optical regions of spiral galaxies. This relation, applied to three different samples of rotation curves of spiral galaxies, directly proves that: (i) the rotation velocity of spirals is a good measure of their gravitational potential and both the rotation curve's amplitudes and profiles are well predicted by galaxy luminosity, (ii) the existence of a dark component, less concentrated than the luminous one, and (iii) a scaling law, according to which, inside the disc optical size:   M dark/ M lum= 0.5( L B /1011 L B )−0.7  .  相似文献   

2.
We present a new determination of the local volume-averaged star formation rate from the 1.4-GHz luminosity function of star forming galaxies. Our sample, taken from the   B ≤12  Revised Shapley–Ames catalogue (231 normal spiral galaxies over an effective area of 7.1 sr) has ≃100 per cent complete radio detections and is insensitive to dust obscuration and cirrus contamination. After removal of known active galaxies, the best-fitting Schechter function has a faint-end slope of  −1.27±0.07  in agreement with the local H α luminosity function, characteristic luminosity   L ∗=(2.6±0.7)×1022 W Hz−1  and density   φ ∗=(4.8±1.1)×10−4 Mpc−3.  The inferred local radio luminosity density of  (1.73±0.37±0.03)×1019 W Hz−1 Mpc−3  (Poisson noise, large-scale structure fluctuations) implies a volume-averaged star formation rate ∼2 times larger than the Gallego et al. H α estimate, i.e.   ρ 1.4 GHz=(2.10±0.45±0.04)×10−2 M yr−1 Mpc−3  for a Salpeter initial mass function from  0.1–125 M  and Hubble constant of 50 km s−1 Mpc−1. We demonstrate that the Balmer decrement is a highly unreliable extinction estimator, and argue that optical–ultraviolet (UV) star formation rates (SFRs) are easily underestimated, particularly at high redshift.  相似文献   

3.
We determine the underlying shapes of spiral and elliptical galaxies in the Sloan Digital Sky Survey Data Release 6 (SDSS DR6) from the observed distribution of projected galaxy shapes, taking into account the effects of dust extinction and reddening. We assume that the underlying shapes of spirals and ellipticals are well approximated by triaxial ellipsoids. The elliptical galaxy data are consistent with oblate spheroids, with a correlation between luminosity and ellipticity: the mean values of minor to middle axis ratios are 0.41 ± 0.03 for   M r ≈−18  ellipticals and 0.76 ± 0.04 for   M r ≈−22.5  ellipticals. Ellipticals show almost no dependence of axial ratio on galaxy colour, implying a negligible dust optical depth.
There is a strong variation of spiral galaxy shapes with colour indicating the presence of dust. The intrinsic shapes of spiral galaxies in the SDSS DR6 are consistent with flat discs with a mean and dispersion of thickness to diameter ratio of (21 ± 2) per cent, and a face-on ellipticity, e , of  ln( e ) =−2.33 ± 0.79  . Not including the effects of dust in the model leads to discs that are systematically rounder by up to 60 per cent. More luminous spiral galaxies tend to have thicker and rounder discs than lower luminosity spirals. Both elliptical and spiral galaxies tend to be rounder for larger galaxies.
The marginalized value of the edge-on r -band dust extinction E 0 in spiral galaxies is   E 0≃ 0.45  mag for galaxies of median colours, increasing to   E 0= 1  mag for   g − r > 0.9  and   E 0= 1.9  for the luminous and most compact galaxies, with half-light radii  <2  h −1 kpc  .  相似文献   

4.
5.
We present intermediate-resolution spectroscopic data for a set of dwarf and giant galaxies in the Coma cluster, with  −20.6 < MR < −15.7.  The photometric and kinematic properties of the brighter galaxies can be cast in terms of parameters which present little scatter with respect to a set of scaling relations known as the fundamental plane. To determine the form of these fundamental scaling relations at lower luminosities, we have measured velocity dispersions for a sample comprising 69 galaxies on the border of the dwarf and giant regime. Combining these data with our photometric survey, we find a tight correlation of luminosity and velocity dispersion,   L ∝σ2.0  , substantially flatter than the Faber–Jackson relation characterizing giant elliptical galaxies. In addition, the variation of mass-to-light ( M / L ) ratio with velocity dispersion is quite weak in our dwarf sample:   M / L ∝σ0.2.  Our overall results are consistent with theoretical models invoking large-scale mass removal and subsequent structural readjustment, e.g. as a result of galactic winds.  相似文献   

6.
We perform a stability test of triaxial models in Modified Newtonian Dynamics (MOND) using N -body simulations. The triaxial models considered here have densities that vary with   r −1  in the centre and   r −4  at large radii. The total mass of the model varies from 108 to  1010 M  , representing the mass scale of dwarfs to medium-mass elliptical galaxies, respectively, from deep MOND to quasi-Newtonian gravity. We build triaxial galaxy models using the Schwarzschild technique, and evolve the systems for 200 Keplerian dynamical times (at the typical length-scale of 1.0 kpc). We find that the systems are virial overheating, and in quasi-equilibrium with the relaxation taking approximately 5 Keplerian dynamical times (1.0 kpc). For all systems, the change of the inertial (kinetic) energy is less than 10 per cent (20 per cent) after relaxation. However, the central profile of the model is flattened during the relaxation and the (overall) axis ratios change by roughly 10 per cent within 200 Keplerian dynamical times (at 1.0 kpc) in our simulations. We further find that the systems are stable once they reach the equilibrium state.  相似文献   

7.
Gravitational lensing magnifies the observed flux of galaxies behind the lens. We use this effect to constrain the total mass in the cluster Abell 1689 by comparing the lensed luminosities of background galaxies with the luminosity function of an undistorted field. Under the assumption that these galaxies are a random sample of luminosity space, this method is not limited by clustering noise. We use photometric redshift information to estimate galaxy distance and intrinsic luminosity. Knowing the redshift distribution of the background population allows us to lift the mass/background degeneracy common to lensing analysis. In this paper we use nine filters observed over 12 h with the Calar Alto 3.5-m telescope to determine the redshifts of 1000 galaxies in the field of Abell 1689. Using a complete sample of 146 background galaxies we measure the cluster mass profile. We find that the total projected mass interior to 0.25  h −1 Mpc is M 2D(<0.25  h −1 Mpc)=(0.48±0.16)×1015  h −1 M, where our error budget includes uncertainties from the photometric redshift determination, the uncertainty in the offset calibration and finite sampling. This result is in good agreement with that found by number-count and shear-based methods and provides a new and independent method to determine cluster masses.  相似文献   

8.
We investigate the role that dry mergers play in the build-up of massive galaxies within the cold dark matter paradigm. Implementing an empirical shut-off mass scale for star formation, we find a nearly constant dry merger rate of  ∼6 × 10−5 Mpc−3 Gyr−1  at   z ≤ 1  and a steep decline at larger z . Less than half of these mergers are between two galaxies that are morphologically classified as early-types, and the other half is mostly between an early- and late-type galaxy. Latter are prime candidates for the origin of tidal features around red elliptical galaxies. The introduction of a transition mass scale for star formation has a strong impact on the evolution of galaxies, allowing them to grow above a characteristic mass scale of   M *, c ∼ 6.3 × 1010 M  by mergers only. As a consequence of this transition, we find that around   M *, c   , the fraction of 1:1 mergers is enhanced with respect to unequal mass major mergers. This suggests that it is possible to detect the existence of a transition mass scale by measuring the relative contribution of equal mass mergers to unequal mass mergers as a function of galaxy mass. The evolution of the high-mass end of the luminosity function is mainly driven by dry mergers at low z . We however find that only 10–20 per cent of galaxies more massive than   M *, c   experience dry major mergers within their last Gyr at any given redshift   z ≤ 1  .  相似文献   

9.
A detailed dynamical analysis of the nearby rich Norma cluster (ACO 3627) is presented. From radial velocities of 296 cluster members, we find a mean velocity of 4871 ± 54 km s−1 and a velocity dispersion of 925 km s−1. The mean velocity of the E/S0 population (4979 ± 85 km s−1) is offset with respect to that of the S/Irr population (4812 ± 70 km s−1) by  Δ v = 164 km s−1  in the cluster rest frame. This offset increases towards the core of the cluster. The E/S0 population is free of any detectable substructure and appears relaxed. Its shape is clearly elongated with a position angle that is aligned along the dominant large-scale structures in this region, the so-called Norma wall. The central cD galaxy has a very large peculiar velocity of 561 km s−1 which is most probably related to an ongoing merger at the core of the cluster. The spiral/irregular galaxies reveal a large amount of substructure; two dynamically distinct subgroups within the overall spiral population have been identified, located along the Norma wall elongation. The dynamical mass of the Norma cluster within its Abell radius is  1–1.1 × 1015  h −173 M  . One of the cluster members, the spiral galaxy WKK 6176 which recently was observed to have a 70 kpc X-ray tail, reveals numerous striking low-brightness filaments pointing away from the cluster centre suggesting strong interaction with the intracluster medium.  相似文献   

10.
It has recently been shown that galaxy formation models within the Λ cold dark matter cosmology predict that, compared to the observed population, small galaxies (with stellar masses  <1011 M  ) form too early, are too passive since   z ∼ 3  and host too old stellar populations at   z = 0  . We then expect an overproduction of small galaxies at   z ≳ 4  that should be visible as an excess of faint Lyman-break galaxies. To check whether this excess is present, we use the morgana galaxy formation model and grasil spectrophotometric  +  radiative transfer code to generate mock catalogues of deep fields observed with Hubble Space Telescope Advanced Camera for Surveys. We add observational noise and the effect of Lyman α emission, and perform colour–colour selections to identify Lyman-break galaxies. The resulting mock candidates have plausible properties that closely resemble those of observed galaxies. We are able to reproduce the evolution of the bright tail of the luminosity function of Lyman-break galaxies (with a possible underestimate of the number of the brightest i -dropouts), but uncertainties and degeneracies in dust absorption parameters do not allow to give strong constraints to the model. Besides, our model shows a clear excess with respect to observations of faint Lyman-break galaxies, especially of   z 850∼ 27 V   -dropouts at   z ∼ 5  . We quantify the properties of these 'excess' galaxies and discuss the implications: these galaxies are hosted in dark matter haloes with circular velocities in excess of 100 km s−1, and their suppression may require a deep rethinking of stellar feedback processes taking place in galaxy formation.  相似文献   

11.
We measure the autocorrelation function, ξ , of galaxies in the IRAS Point Source Catalogue galaxy redshift (PSC z ) survey and investigate its dependence on the far-infrared colour and absolute luminosity of the galaxies. We find that the PSC z survey correlation function can be modelled out to a scale of 10  h −1 Mpc as a power law of slope 1.30±0.04 and correlation length 4.77±0.20 . At a scale of 75  h −1 Mpc we find the value of J 3 to be 1500±400 .
We also find that galaxies with higher 100 μm/60 μm flux ratio, corresponding to cooler dust temperatures, are more strongly clustered than warmer galaxies. Splitting the survey into three colour subsamples, we find that, between 1 and 10  h −1 Mpc, the ratio of ξ is a factor of 1.5 higher for the cooler galaxies compared with the hotter galaxies. This is consistent with the suggestion that hotter galaxies have higher star formation rates, and correspond to later-type galaxies which are less clustered than earlier types.
Using volume-limited subsamples, we find a weak variation of ξ as a function of absolute luminosity, in the sense that more luminous galaxies are less clustered than fainter galaxies. The trend is consistent with the colour dependence of ξ and the observed colour–luminosity correlation, but the large uncertainties mean that it has a low statistical significance.  相似文献   

12.
We present CCD (charge-coupled device) photometry for galaxies around 204 bright ( m Z<15.5) Zwicky galaxies in the equatorial extension of the APM Galaxy Survey, sampling an area over 400 deg2, which extends 6 h in right ascension. We fit a best linear relation between the Zwicky magnitude system, m Z, and the CCD photometry, B CCD, by doing a likelihood analysis that corrects for Malmquist bias. This fit yields a mean scale error in Zwicky of 0.38 mag mag−1: i.e. Δ m Z≃(0.62±0.05)Δ B CCD and a mean zero-point of 〈 B CCD− m Z〉=−0.35±0.15 mag. The scatter around this fit is about 0.4 mag. Correcting the Zwicky magnitude system with the best-fitting model results in a 60 per cent lower normalization and 0.35-mag brighter M * in the luminosity function. This brings the CfA2 luminosity function closer to the other low-redshift estimations (e.g. Stromlo-APM or LCRS). We find a significant positive angular correlation of magnitudes and position in the sky at scales smaller than about 5 arcmin, which corresponds to a mean separation of 120  h −1 kpc. We also present colours, sizes and ellipticities for galaxies in our fields, which provides a good local reference for the studies of galaxy evolution.  相似文献   

13.
Observations of turbulent velocity dispersions in the H  i component of galactic discs show a characteristic floor in galaxies with low star formation rates and within individual galaxies the dispersion profiles decline with radius. We carry out several high-resolution adaptive mesh simulations of gaseous discs embedded within dark matter haloes to explore the roles of cooling, star formation, feedback, shearing motions and baryon fraction in driving turbulent motions. In all simulations the disc slowly cools until gravitational and thermal instabilities give rise to a multiphase medium in which a large population of dense self-gravitating cold clouds are embedded within a warm gaseous phase that forms through shock heating. The diffuse gas is highly turbulent and is an outcome of large-scale driving of global non-axisymmetric modes as well as cloud–cloud tidal interactions and merging. At low star formation rates these processes alone can explain the observed H  i velocity dispersion profiles and the characteristic value of  ∼10 km s−1  observed within a wide range of disc galaxies. Supernovae feedback creates a significant hot gaseous phase and is an important driver of turbulence in galaxies with a star formation rate per unit area  ≳10−3 M yr−1 kpc−2  .  相似文献   

14.
We present XMM–Newton observations of NGC 891, a nearby edge-on spiral galaxy. We analyse the extent of the diffuse emission emitted from the disc of the galaxy, and find that it has a single-temperature profile with best-fitting temperature of 0.26 keV, though the fit of a dual-temperature plasma with temperatures of 0.08 and 0.30 keV is also acceptable. There is a considerable amount of diffuse X-ray emission protruding from the disc in the north-west direction out to approximately 6 kpc. We analyse the point-source population using a Chandra observation, using a maximum-likelihood method to find that the slope of the cumulative luminosity function of point sources in the galaxy is  −0.77+0.13−0.1  . Using a sample of other local galaxies, we compare the X-ray and infrared properties of NGC 891 with those of 'normal' and starburst spiral galaxies, and conclude that NGC 891 is most likely a starburst galaxy in a quiescent state. We establish that the diffuse X-ray luminosity of spirals scales with the far-infrared luminosity as   L X∝ L 0.87±0.07FIR  , except for extreme starbursts, and NGC 891 does not fall in the latter category. We study the supernova SN1986J in both XMM–Newton and Chandra observations, and find that the X-ray luminosity has been declining with time more steeply than expected  ( L X∝ t −3)  .  相似文献   

15.
16.
The kinematics of satellite galaxies reflect the masses of the extended dark matter haloes in which they orbit, and thus shed light on the mass–luminosity relation (MLR) of their corresponding central galaxies. In this paper, we select a large sample of centrals and satellites from the Sloan Digital Sky Survey and measure the kinematics (velocity dispersions) of the satellite galaxies as a function of the r -band luminosity of the central galaxies. Using the analytical framework presented in More, van den Bosch & Cacciato, we use these data to infer both the mean and the scatter of the MLR of central galaxies, carefully taking account of selection effects and biases introduced by the stacking procedure. As expected, brighter centrals on average reside in more massive haloes. In addition, we find that the scatter in halo masses for centrals of a given luminosity,  σlog  M   , also increases with increasing luminosity. As we demonstrate, this is consistent with  σlog  L   , which reflects the scatter in the conditional probability function   P ( L c| M )  , being independent of halo mass. Our analysis of the satellite kinematics yields  σlog  L = 0.16  ±  0.04  , in excellent agreement with constraints from clustering and group catalogues, and with predictions from a semi-analytical model of galaxy formation. We thus conclude that the amount of stochasticity in galaxy formation, which is characterized by  σlog  L   , is well constrained, independent of halo mass and in a good agreement with current models of galaxy formation.  相似文献   

17.
We present the largest publicly available catalogue of compact groups (CGs) of galaxies identified using the original selection criteria of Hickson, selected from the Sixth Data Release of the Sloan Digital Sky Survey (SDSS DR6). We identify 2297 CGs down to a limiting magnitude of   r = 18 (∼0.24 groups  deg−2), and 74 791 CGs down to a limiting magnitude of   r = 21 (∼6.7 groups  deg−2). This represents 0.9 per cent of all galaxies in the SDSS DR6 at these magnitude levels. Contamination due to gross photometric errors has been removed from the bright sample of groups, and we estimate it is present in the large sample at the 14 per cent level. Spectroscopic information is available for 4131 galaxies in the bright catalogue (43 per cent completeness), and we find that the median redshift of these groups is   z med= 0.09  . The median line-of-sight (LOS) velocity dispersion within the CGs from the bright catalogue is  σLOS≃ 230 km s−1  , and their typical intergalactic separations are of the order of 50–100 kpc. We show that the fraction of groups with interloping galaxies identified as members is in good agreement with the predictions from our previous study of a mock galaxy catalogue, and we demonstrate how to select CGs such that the interloper fraction is well defined and minimized. This observational data set is ideal for large statistical studies of CGs, the role of environment on galaxy evolution and the effect of galaxy interactions in determining galaxy morphology.  相似文献   

18.
We analyse a high-redshift sample (0.4 < z < 0.5) of luminous red galaxies (LRGs) extracted from the Sloan Digital Sky Survey data release 4 and their surrounding structures to explore the presence of alignment effects of these bright galaxies with neighbour objects. In order to avoid projection effects, we compute photometric redshifts for galaxies within 3  h −1 Mpc in projection of LRGs and calculate the relative angle between the LRG major axis and the direction to neighbours within 1000 km s−1. We find a clear signal of alignment between LRG orientations and the distribution of galaxies within 1.5  h −1 Mpc. The alignment effects are present only for the red population of tracers; LRG orientation is uncorrelated to the blue population of neighbour galaxies. These results add evidence to the alignment effects between primaries and satellites detected at low redshifts. We conclude that such alignments were already present at z ∼ 0.5.  相似文献   

19.
We present velocity dispersion measurements for 69 faint early-type galaxies in the core of the Coma cluster, spanning  −22.0 ≲ MR ≲−17.5 mag  . We examine the   L –σ  relation for our sample and compare it to that of bright elliptical galaxies (Es) from the literature. The distribution of the the faint early-type galaxies in the   L –σ  plane follows the relation   L ∝σ2.01±0.36  , which is significantly shallower from   L ∝σ4  as defined for the bright Es. While increased rotational support for fainter early-type galaxies could account for some of the difference in slope, we show that it cannot explain it. We also investigate the colour–σ relation for our Coma galaxies. Using the scatter in this relation, we constrain the range of galaxy ages as a function of their formation epoch for different formation scenarios. Assuming a strong coordination in the formation epoch of faint early-type systems in Coma, we find that most had to be formed at least 6 Gyr ago and over a short 1-Gyr period.  相似文献   

20.
One of the predictions of the standard cold dark matter model is that dark haloes have centrally divergent density profiles. An extensive body of rotation curve observations of dwarf and low surface brightness galaxies shows the dark haloes of those systems to be characterized by soft constant-density central cores. Several physical processes have been proposed to produce soft cores in dark haloes, each one with different scaling properties. With the aim of discriminating among them we have examined the rotation curves of dark-matter-dominated dwarf and low surface brightness galaxies and the inner mass profiles of two clusters of galaxies lacking a central cD galaxy and with evidence of soft cores in the centre. The core radii and central densities of these haloes scale in a well-defined manner with the depth of their potential wells, as measured through the maximum circular velocity. As a result of our analysis we identify self-interacting cold dark matter as a viable solution to the core problem, where a non-singular isothermal core is formed in the halo centre surrounded by a Navarro, Frenk & White profile in the outer parts. We show that this particular physical situation predicts core radii in agreement with observations. Furthermore, using the observed scalings, we derive an expression for the minimum cross-section ( σ ) which has an explicit dependence with the halo dispersion velocity ( v ). If m x is the mass of the dark matter particle: σ m x ≈4×10−25 (100 km s−1  v −1) cm2 GeV−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号