首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The post-orogenic Yzerfontein pluton, in the Saldania Belt of South Africa was constructed through numerous injections of shoshonitic magmas. Most magma compositions are adequately modelled as products of fractionation, but the monzogranites and syenogranites may have a separate origin. A separate high-Mg mafic series has a less radiogenic mantle source. Fine-grained magmatic enclaves in the intermediate shoshonitic rocks are autoliths. The pluton was emplaced between 533 ± 3 and 537 ± 3 Ma (LA-SF-ICP-MS U–Pb zircon), essentially synchronously with many granitic magmas of the Cape Granite Suite (CGS). Yzerfontein may represent a high-level expression of the mantle heat source that initiated partial melting of the local crust and produced the CGS granitic magmas, late in the Saldanian Orogeny. However, magma mixing is not evident at emplacement level and there are no magmatic kinships with the I-type granitic rocks of the CGS. The mantle wedge is inferred to have been enriched during subduction along the active continental margin. In the late- to post-orogenic phase, the enriched mantle partially melted to produce heterogeneous magma batches, exemplified by those that formed the Yzerfontein pluton, which was further hybridised through minor assimilation of crustal materials. Like Yzerfontein, the small volumes of mafic rocks associated with many batholiths, worldwide, are probably also low-volume, high-level expressions of crustal growth through the emplacement of major amounts of mafic magma into the deep crust.  相似文献   

2.
Geological, petrologeochemical, and geochronological studies of the rocks from the Shivei alkali-granitic pluton were conducted. A pluton about 500 km2 in area is a part of the larger (more than 30 000 km2) Kaakhem magmatic area. The data obtained allow us to characterize the magmatic complex of the Shivei pluton as a bimodal association with picrobasalts, subalkali basalts, and subalkali and alkali granitic rocks differentiated from syenites to leucogranites. The SHRIMP_II zircon dating from quartz syenites and alkali granites indicate the Permian age of the pluton (293.8 ± 3.8 Ma and 297.1 ± 3.8 Ma, respectively). Mafic-alkali-granitic associations similar in age and type, which are traced in the meridional direction along the Eastern Sayan toward the Siberian Platform, were distinguished as the Eastern Sayan zone of the Late Paleozoic alkaline magmatism. Its location corresponds to the western periphery of the Angaro-Vitim batholite and fits well into the zonal structure of the Barguzin magmatic province. We relate the geodynamic position of the Barguzin province with the mantle plume that was overlapped by the edge of the Siberian Pale-ocontinent in the course of its Paleozoic migration above the African hot spot.  相似文献   

3.
东天山觉罗塔格地区岩浆岩非常发育,以花岗岩类分布最为广泛,对其研究还较为薄弱。本文对觉罗塔格地区主要的花岗岩类岩体系统开展了地质特征研究并进行了同位素精确测年,报道了区内16个主要花岗岩类岩体的锆石LA-ICPMS U-Pb年龄:镜儿泉岩体376.9±3.1Ma、西凤山岩体349.0±3.4Ma、石英滩岩体342±11Ma、长条山岩体337.4±2.8Ma、天目岩体320.2±3.1Ma、百灵山岩体317.7±3.7Ma、白石泉岩体303±18Ma、迪坎岩体288.0±2.5Ma、黄山岩体288±17Ma、白山东岩体284.5±4.5Ma、管道岩体284.1±5.8Ma、红石岩体282.7±4.2Ma、陇东岩体276.2±2.5Ma、多头山岩体271.7±5.5Ma、双岔沟岩体252.4±2.9Ma、土墩岩体246.2±2.6Ma,上述定年结果为研究区岩浆活动与区域构造演化及深部过程的关系研究提供了可靠的年代学支持。结合前人已有的部分年代学成果认为,觉罗塔格地区花岗岩类的形成年龄分布在386~230Ma之间,岩浆活动可分为晚泥盆世(386.5~369.5Ma)、早石炭世(349~330Ma)、晚石炭世-晚二叠世(320~252Ma)、早中三叠世(246~230Ma)等4个阶段。前3个阶段岩浆活动具有持续时间逐渐变长、岩浆活动逐渐加剧的特点,并在第三阶段达到顶峰,而第四阶段岩浆活动则明显变弱。花岗岩类岩浆活动在时空分布上表现为,自哈尔里克-大南湖岛弧带→阿奇山-雅满岛弧带→康古尔-黄山韧性剪切带,岩体侵位由早到晚; 自研究区东部→中西部→沿韧性剪切带,岩体侵位由老到新。结合区域构造演化研究成果认为,觉罗塔格地区花岗质岩浆活动与区域构造演化具有很强的耦合关系,花岗岩类在前碰撞阶段、主碰撞阶段、后碰撞阶段、板内阶段等4个构造演化阶段均有发育,与花岗岩类在时间分布上的4个阶段完全对应,其中尤以后碰撞构造演化阶段花岗岩类的分布最广泛、岩浆活动最强烈。觉罗塔格地区与4个阶段花岗岩类有关的成矿作用由早到晚具有无明显矿化→斑岩型铜矿、火山岩型铁矿→韧性剪切带型金矿、夕卡岩型银(铜)矿→斑岩-石英脉型钼矿的演化特点,其中以对应于主碰撞阶段的斑岩型铜矿和后碰撞阶段的韧性剪切带型金矿最为发育。本文系统阐述了东天山觉罗塔格地区中酸性岩体的时空格架、与区域构造演化的耦合、与成矿作用的关系,为北疆地区晚古生代特别是后碰撞背景下的岩浆演化及其成矿关系的研究提供了有力支持。  相似文献   

4.
The Khan Bogd alkali granite pluton, one of the world’s largest, is situated in the southern Gobi Desert, being localized in the core of the Late Paleozoic Syncline, where island-arc calc-alkaline differentiated volcanics (of variable alkalinity) give way to the rift-related bimodal basalt-comendite-alkali granite association. The tectonic setting of the Khan Bogd pluton is controlled by intersection of the near-latitudinal Gobi-Tien Shan Rift Zone with an oblique transverse fault, which, as the rift zone, controls bimodal magmatism. The pluton consists of the eastern and the western ring bodies and comes into sharp intrusive contact with rocks of the island-arc complex and tectonic contact with rocks of the bimodal complex. The inner ring structure is particularly typical of the western body and accentuated by ring dikes and roof pendants of the country island-arc complex. According to preliminary gravity measurements, the pluton is a flattened intrusive body (laccolith) with its base subsiding in stepwise manner northwestward. Reliable geochronologic data have been obtained for both plutonic and country rocks: the U-Pb zircon age of alkali granite belonging to the main intrusive phase is 290 ± 1 Ma, the 40Ar/39Ar ages of amphibole and polylithionite are 283 ± 4 and 285 ± 7 Ma, and the Rb-Sr isochron yields 287 ± 3 Ma; i.e., all these estimates are close to 290 Ma. Furthermore, the U-Pb zircon age of red normal biotite granite (290 ± 1 Ma) and the Rb-Sr age of the bimodal complex in the southern framework of the pluton are the same. The older igneous rocks of the island-arc complex in the framework and roof pendants of the pluton are dated at 330 Ma. The geodynamic model of the Khan Bogd pluton formation suggests collision of the Hercynian continent with a hot spot in the paleoocean; two variants of this model are proposed. According to the first variant, the mantle plume, after collision with the margin of the North Asian paleocontinent, reworked the subducted lithosphere and formed a structure similar to an asthenospheric window, which served as a source of rift-related magmatism and the Khan Bogd pluton proper. In compliance with the second variant, the emergence of hot mantle plume resulted in flattening of the subducted plate; cessation of the island-arc magmatism; and probably in origin of a local convective system in the asthenosphere of the mantle wedge, which gave rise to the formation of a magma source. The huge body of the Khan Bogd alkali granite pluton and related volcanic rocks, as well as its ring structure, resulted from the caldera mechanism of the emplacement and evolution of magmatic melts.  相似文献   

5.
鞍山地区太古代岩石同位素地质年代学研究   总被引:23,自引:4,他引:23       下载免费PDF全文
乔广生 《地质科学》1990,(2):158-165
鞍山本溪地区太古代变质岩可分为三套,即含铁的表壳岩建造、侵入于铁建造中的花岗质片麻岩和铁架山奥长花岗质-花岗质片麻岩,后者为表壳岩的基底。原划为上鞍山群樱桃园组(齐大山矿带)和山城子组(歪头山-北台矿带)的斜长角闪岩分别获得2729Ma和2724Ma的Sm-Nd等时线年龄。这就为有争议的鞍本地区铁建造属于同一时代提供了依据,并讨论了表壳岩中的变质沉积岩以及铁架山基底片麻岩的同位素年代。  相似文献   

6.
The Pb-Pb whole-rock geochronology of Archaean granitic and gneissic rocks from the Diemals area in the Central Yilgarn granite-greenstone terrain provides important constraints on crustal evolution. The regionally extensive banded gneisses, previously considered as candidates for basement to the greenstones give a Pb-Pb whole-rock age of 2700 ± 97 Ma (2σ errors). This is within error of previously published Rb-Sr and Sm-Nd gneiss ages and also within error of the Sm-Nd ages on the greenstones in the Eastern Goldfields Province. Two synkinematic plutons give Pb-Pb whole-rock ages (2737 ± 62 Ma and 2700 ± 100 Ma) and Pb isotopic compositions consistent with the hypothesis, based on field and geochemical relations, that these plutons were derived by partial melting of the precursors to the banded gneisses. Assuming this, the combined data date the melting event at 2723 ± 25 Ma with a model source μ value of 8.18 ± 0.02. This source μ value is close to the range postulated for mantle values and restricts the crustal history of the precursors to less than ~200 Ma. A post-kinematic pluton with a whole-rock Pb-Pb age of 2685 ± 26 Ma and μ value of 8.26 ± 0.02 puts a younger limit on this relatively short lived crustal accretion-differentiation event.Comparison of Pb-Pb and Rb-Sr whole-rock dates for the plutons suggests that the latter became closed systems up to 200 Ma after the Pb-Pb ages, and that the plutons gained or lost Rb or Sr at this time.  相似文献   

7.
Geological observations in combination with previously published and new isotopic data allowed us to reconstruct the history of geological events that eventually gave rise to the formation of the Berdyaush pluton situated on the western slope of the South Urals: (1) emplacement of gabbro into Lower Riphean sedimentary rocks (1410–1390 Ma); an enriched mantle source of gabbro arising in the Archean or Paleoproterozoic; (2) formation of granitic melt in the lower crust; Archean TTG association subsequently enriched in K and correlative elements as a result of interaction with enriched mantle-derived magmas and related fluids was a magma source; mixing of mantle and crustal magmas in the course of their synchronous ascent with formation of hybrid intrusive rocks; injections of mafic and hybrid melts into incompletely solidified granite; fragmentation of such injections with the formation of melanocratic nodules; emplacement of basic dikes into the cooled granite—all these events took place 1410–1360 Ma ago; (3) discrete episodes of partial melting of enriched mantle source with waning intensity; formation of minor volumes of melt, which solidified under auto- and paraautochthonous conditions as local domains highly enriched in incompatible elements (1360–1270 Ma); (4) partial melting of those domains resulting in the formation of minor nepheline syenite intrusions (915–800 Ma), containing relict zircon grains dated at >1270 Ma; (5) injections of mantle-derived alkaline melt contaminated with crustal granitic material as microsyenite and syenite porphyry dikes (700–500 Ma ?). Thus, the Berdyaush pluton is a projection of a local domain of mantle and crustal magma generation, which periodically resumed its activity over almost a billion years.  相似文献   

8.
莫干山花岗岩体位于东天目山晚中生代火山盆地东端,用LA-ICPMS进行锆石U-Pb定年得到年龄为128.1±2.1Ma,全岩Rb Sr等时线定年结果为135.4±4.3 Ma,表明其属燕山晚期岩浆活动产物.莫干山花岗岩的Sr-Nd-O同位素分析结果为:初始87Sr/86Sr=0.70933;εNd(t)=-3.75~ - 6.4;δ18O=8.86‰~10.78‰,表明其成因类型属Ⅰ型花岗岩,是壳-幔物质混合形成的.按Sr Nd双变量二元混合模型计算得出源区物质中地壳端员和亏损地幔端员的贡献份额分别为47%~49%、51%~53%.莫干山花岗岩与建德群黄尖组火山岩的锆石U-Pb年龄、全岩Rb Sr等时线年龄基本一致,其Nd-Sr同位素组成也很相似,表明它们来自同一岩浆源.  相似文献   

9.
龙泉岩体是浙南地区少有的加里东期花岗质岩体.岩石学、 地球化学和年代学研究显示,龙泉岩体由花岗岩-二长花岗岩组合(花岗岩类)和英云闪长岩-奥长花岗岩-花岗闪长岩组合(TTG)组成,两类岩石组分普遍富集大离子亲石元素Rb、Ba、Th、U、K,亏损高场强元素Nb、Ta、P、Ti,显示岛弧岩浆岩的特征.TTG岩石的地球化学特...  相似文献   

10.
大兴安岭东北部哈拉巴奇花岗岩体锆石U-Pb年龄及其成因   总被引:13,自引:4,他引:13  
哈拉巴奇岩体主要由二长花岗岩钾长花岗岩和花岗闪长岩组成。样品的LAICPMS锆石UPb年龄测定和主量及微量元素的分析结果表明,哈拉巴奇岩体为两次侵位的早古生代花岗岩体,其中二长花岗岩钾长花岗岩的侵位时间较早(500Ma),花岗闪长岩的侵位时间相对较晚(461Ma);岩体具有后造山花岗岩类的岩石组合特征和地球化学特征,为额尔古纳地块与兴安地块碰撞拼贴作用结束后的后造山阶段的产物;二长花岗岩钾长花岗岩和花岗闪长岩起源于相同的岩浆源区,其源区物质可能是中元古代期间地幔中新增生的地壳物质,二者地球化学特征的差别是源岩部份熔融程度不同所致。  相似文献   

11.
对伊通地区的放牛沟火山岩,以及后期侵入该火山岩的后庙岭花岗质侵入体进行了LA-ICP-MS锆石U-Pb年代学研究。3个样品中的锆石均呈自形-半自形晶,CL图像显示出明显的岩浆振荡生长环带,结合大多数锆石具有较高的Th/U比值(0.23~3.55),暗示了它们的岩浆成因。放牛沟火山岩由变玄武安山岩和变安山岩组成,其中变安山岩样品中锆石22个测点的~(206)Pb/~(238)U年龄加权平均值分为3组:420±4 Ma,402±3 Ma及280±1 Ma,其中280±1 Ma代表了安山岩的形成年龄;变玄武安山岩样品中锆石30个测点的~(206)Pb/~(238)U年龄加权平均值分为两组:401±1 Ma及279±1 Ma,后者代表了玄武安山岩的形成年龄;后庙岭花岗质侵入体中锆石18个测点的~(206)Pb/~(238)U年龄加权平均值为256±2 Ma。上述锆石U-Pb定年结果表明,放牛沟火山岩形成于早二叠世,而非前人认为的早古生代。对后庙岭侵入体的定年结果,进一步暗示放牛沟多金属硫铁矿床的成矿时代为二叠纪。  相似文献   

12.
大兴安岭地区显生宙花岗岩分布广泛,但区内中生代花岗岩的研究相对薄弱.通过对大兴安岭中段扎兰屯以西的毕家店岩体和神山岩体进行年代学和地球化学研究,探讨了本区早白垩世花岗岩的成因及构造背景.其中毕家店岩体主要由正长花岗岩和花岗斑岩组成,神山岩体主要由碱长花岗岩组成.毕家店岩体的锆石U-Pb年龄为136±3 Ma、139.5±0.9 Ma和128.1±0.8 Ma,神山岩体为119.3±0.8 Ma,均形成于早白垩世.地球化学特征上,两岩体均呈现高硅、低钙、富碱、Eu负异常等特征,亏损Nb、Ta,富集Rb、Th和U,属于弱过铝质高钾钙碱性系列,为岩浆演化晚期的高分异I型花岗岩.两岩体具有活动大陆边缘构造属性,结合大兴安岭地区同时期I型、A型花岗岩特征,认为早白垩世花岗质岩石的形成与太平洋板块俯冲背景下的拆沉作用密切相关.  相似文献   

13.
The paper systematizes and integrates the results of geological, isotopic geochronological, and geochemical studies of the igneous rocks that make up the Ulkan-Dzhugdzhur anorthosite-rapakivi granite-peralkaline granite association and related mineralization. This association is a typical example of anorogenic igneous rocks that formed in the within-plate geodynamic setting most likely under effect of the mantle superplume, which was active in the territory of the Siberian Craton 1.75–1.70 Ga ago. The igneous rock association formed in a discrete regime that reflected the pulsatory evolution of a sublithospheric mantle source. The prerift (1736–1727 Ma) and rift proper (1722–1705 Ma) stages and a number of substages are distinguished. All igneous rocks pertaining to this association have mixed mantle-crustal origin. Basic rocks crystallized from the OIB-type basaltic magma, which underwent crustal contamination at various depths. Felsic rocks are products of mantle and crustal magma mixing. The contribution of mantle component progressively increased in a time-dependent sequence: moderately alkaline subsolvus granite → moderately alkaline and alkaline hypersolvus granites → peralkaline hypersolvus granite. All endogenic deposits in the studied district are related to a single source represented by the mantle plume and its derivatives. The Fe-Ti-apatite deposits hosted in anorthosite formed as a result of intense lower crustal contamination of basaltic magma near the Moho discontinuity and two stages of fractional crystallization at lower and upper crustal depth levels. The rare-metal deposits are genetically related to peralkaline granite. Formation of uranium deposits was most likely caused by Middle Riphean rejuvenation of the region, which also involved rocks of the Ulkan-Dzhugdzhur association.  相似文献   

14.
On the eastern extremity of the Jiaodong peninsula, China, shoshonitic magmas have been injected into the supracrustal rocks of the Sulu ultra-high pressure (UHP) terrane during the crustal exhumation phase. These granitoids (collectively termed the Shidao igneous complex or Jiazishan alkaline complex) show geochemical and isotopic signatures of an enriched subcontinental lithospheric mantle and intruded soon after the subducted Yangtze crust had reached peak metamorphic pressure conditions (240–220 Ma). We have applied various geochronometers to an alkali-gabbro sample from the Jiazishan pluton and the results allow reconstruction of the Triassic-to-present thermal history. Initial rapid cooling of the gabbro at crustal depths is indicated by the close agreement between the Sm-Nd mineral isochron age (228?±?36 Ma) and the Rb-Sr biotite age (207?±?1) Ma. This interpretation is confirmed by previously published U-Pb zircon ages (225–209 Ma), and 40Ar/39Ar amphibole and K-feldspar ages (~214 Ma) from the Jiazishan syenites. A titanite fission-track age of 166?±?8 Ma (closure temperature range 285–240°C) records widespread Jurassic magmatism in the Jiaodong peninsula, indicating that the gabbro reached upper crustal levels before it was reheated by nearby Jurassic plutons. A subsequent cooling and reheating event is indicated by an apatite fission-track age of 106?±?6 Ma which coincides with the emplacement of the adjacent Weideshan pluton (108?±?2 Ma) and postdates a period of regional lithospheric thinning beneath eastern China. A period of slow cooling (or thermal stability) from late Cretaceous to early Tertiary, documented by an apatite (U-Th)/He age of 39?±?5 Ma, was followed by a final stage of more enhanced cooling since the late Eocene. Results of this work imply that the eastern Sulu terrane has experienced a complex cooling and reheating history. Our data are consistent with a model of initial rapid cooling (sudden exhumation) of the UHP terrane, driven by the release of buoyancy forces, followed by two progressively slower cooling intervals (both after renewed crustal reheating) during the Jurassic and Cretaceous.  相似文献   

15.
西天山阿吾拉勒石炭纪火山岩年代学和地球化学研究   总被引:4,自引:0,他引:4  
西天山阿吾拉勒裂谷带内广泛发育石炭纪火山岩, 主要由玄武岩、粗面玄武岩、玄武质粗安岩、玄武质安山岩、粗面岩和流纹岩组成。以中基性岩为主, 多为钙碱性系列。LA-ICP-MS锆石U-Pb测年结果显示, 区内流纹岩形成于(316.1±2.2) Ma, 为早石炭世晚期。微量和稀土元素特征表明, 本区的火山岩具有俯冲带大陆边缘岛弧火山岩的典型特征, 应形成于早石炭世晚期的准噶尔洋向伊犁板块俯冲的大陆边缘弧环境。可能是由受俯冲流(熔)体交代的地幔楔尖晶石二辉橄榄岩发生1%~5%的部分熔融, 并在上升过程中经历了不同程度的结晶分离和同化混染作用而形成的。  相似文献   

16.
In the Panxi region of the Late Permian (~ 260 Ma) Emeishan large igneous province (ELIP) there is a bimodal assemblage of mafic and felsic plutonic rocks. Most Emeishan granitic rocks were derived by differentiation of basaltic magmas (i.e. mantle-derived) or by mixing between crustal melts and primary basaltic magmas (i.e. hybrid). The Yingpanliangzi granitic pluton within the city of Panzhihua intrudes Sinian (~ 600 Ma) marbles and is unlike the mantle-derived or hybrid granitic rocks. The SHRIMP zircon U–Pb ages of the Yingpanliangzi pluton range from 259 ± 8 Ma to 882 ± 22 Ma. Younger ages are found on the zircon rims whereas older ages are found within the cores. Field relationships and petrography indicate that the Yingpanliangzi pluton must be < 600 Ma, therefore the older zircons are interpreted to represent the protolith age whereas the younger analyses represent zircon re-crystallization during emplacement. The Yingpanliangzi granites are metaluminous and have negative Ta–NbPM anomalies, low εNd(260 Ma) values (? 3.9 to ? 4.4), and high ISr (0.71074 to 0.71507) consistent with a crustal origin. The recognition of a crustally-derived pluton along with mantle-derived and mantle–crust hybrid plutons within the Panxi region of the ELIP is evidence for a complete spectrum of sources. As a consequence, the types of Panxi granitoids can be distinguished according to their ASI, Eu/Eu*, εNd(T), εHf(T), TZr(°C) and Nb–TaPM values. The diverse granitic magmatism during the evolution of the ELIP from ~ 260 Ma to ~ 252 Ma demonstrates the complexity of crustal growth associated with LIPs.  相似文献   

17.
Xiba granitic pluton is located in South Qinling tectonic domain of the Qinling orogenic belt and consists mainly of granodiorite and monzogranite with significant number of microgranular quartz dioritic enclaves. SHRIMP zircon U–Pb isotopic dating reveals that the quartz dioritic enclaves formed at 214±3 Ma, which is similar to the age of their host monzogranite (218±1 Ma). The granitoids belong to high-K calc-alkaline series, and are characterized by enriched LILEs relative to HFSEs with negative Nb, Ta and Ti anomalies, and right-declined REE patterns with (La/Yb)N ratios ranging from 15.83 to 26.47 and δEu values from 0.78 to 1.22 (mean= 0.97). Most of these samples from Xiba granitic pluton exhibit εNd(t) values of ?8.79 to ?5.38, depleted mantle Nd model ages (TDM) between 1.1 Ga and 1.7 Ga, and initial Sr isotopic ratios (87Sr/86Sr)i from 0.7061 to 0.7082, indicating a possible Meso- to Paleoproterozoic lower crust source region, with exception of samples XB01-2-1 and XB10-1 displaying higher (87Sr/86Sr)i values of 0.779 and 0.735, respectively, which suggests a contamination of the upper crustal materials. Quartz dioritic enclaves are interpreted as the result of rapid crystallization fractionation during the parent magmatic emplacement, as evidenced by similar age, texture, geochemical, and Sr-Nd isotopic features with their host rocks. Characteristics of the petrological and geochemical data reveal that the parent magma of Xiba granitoids was produced by a magma mingling process. The upwelling asthenosphere caused a high heat flow and the mafic magma was underplated into the bottom of the lower continent crust, which caused the partial melting of the lower continent crustal materials. This geodynamic process generated the mixing parent magma between mafic magma from depleted mantle and felsic magma derived from the lower continent crust. Integrated petrogenesis and tectonic discrimination with regional tectonic evolution of the Qinling orogen, it is suggested that the granitoids are most likely products in a post-collision tectonic setting.  相似文献   

18.
北秦岭新元古代后碰撞花岗岩的确定及其构造意义   总被引:42,自引:0,他引:42  
应用LA ICPMS获得北秦岭蔡凹花岗岩体锆石U Pb年龄 ( 889± 1 0 )Ma ,代表岩体的形成时代。该岩体富集LILE、贫化HFSE ,显示活动陆缘俯冲带I型花岗岩体地球化学特征。同时岩体又具有富铝、高钾和锶、明显亏损Nb、Ti、P等元素的大陆造山带后碰撞演化阶段花岗岩特征。根据区域构造资料并结合岩体的变形特征分析 ,蔡凹岩体为碰撞造山过程地壳增厚背景下 ,在后碰撞拉张阶段由卷入有消减带物质的下部地壳部分熔融所形成 ,指示了秦岭在该时期已进入由主碰撞挤压转向后碰撞伸展演化阶段 ,为进一步精细确定北秦岭新元古代陆块汇聚碰撞造山过程提供了新的依据  相似文献   

19.
The Zhongchuan district is an important component of the metallogenic belt in the Western Qinling. The Zhongchuan granite pluton occurring in the centre of the Zhongchuan metallogenic area has been poorly constrained, though the Triassic granite in Western Qinling has been well documented. In‐situ zircon U–Pb ages, Hf isotopic compositions and whole‐rock geochemical data are presented for host granite and mafic microgranular enclaves (MMES) from the Zhongchuan pluton, in order to constrain its sources, petrogenesis and tectonic setting of the pluton. The distribution of major, trace and rare earth elements apparently reflect exchange between the MMES and the host granitic rocks mainly due to interactions between coeval felsic host magma and mafic magma. The zircon U–Pb age of host granite (231.6 ± 1.5 to 235.8 ± 2.3 Ma) has overlapping uncertainty with that of the MMES (236.6 ± 1.3 Ma), establishing that the mafic and felsic magmas were coeval. The Hf isotopic composition of the MMES (εHf(t) = −13.4 to 4.0) is distinct from the host granite (εHf(t) = −15.7 to 0.0), indicating that both enriched subcontinental lithosphere mantle (SCLM) and crustal sources contributed to their origin. The zircons have two‐stage Hf model ages of 1064 to 1798 Ma for the host granite and 858 to 1747 Ma for the MMES. This suggests that the granitic pluton was likely derived from partial melting of a Late Mesoproterozoic crust, with subsequent interaction with the SCLM‐derived mafic magmas in tectonic affinity to the South China Block. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The Baishiding molybdenum deposit is located in the Central-Middle Guangxi depression zone of the South China Caledonian fold zone. Orebodies occur as quartz-molybdenite veins within the Guiling monzonite pluton and arkosic quartz sandstone of Zhengyuanling Group in the northeastern Guangxi. They are NEE-trending with a dip angle of 75–80°. Zircon SHRIMP U-Pb geochronologic analyses of the Guiling monzonite show age of 424.4 ± 5.6 Ma. It indicates that the Guiling monzonite was emplaced in Silurian. The ore minerals in quartz-molybdenite veins contain molybdenite, pyrite, chalcopyrite and scheelite. Six molybdenite samples yield Re-Os ages between 433.3 ± 6.3 Ma and 417.2 ± 5.7 Ma, with a weighted mean age of 424.6 ± 5.7 Ma, which agrees with the zircon age of the Guiling monzonite pluton. It suggests that the deposit was formed in the Silurian, not the Jurassic as previously thought. The Baishiding deposit is the only Silurian molybdenum deposit so far recognized in the South China. It was probably formed in a crustal shortening setting along the continental margin in the Silurian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号