首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The hot planetary and satellite coronas are populated by the suprathermal particles produced in the transition region between the collision-dominated and free-molecule atmospheric layers under the external effects of electromagnetic and corpuscular solar radiation and magnetospheric plasma. We construct a numerical stochastic model to investigate both the local formation and kinetics of suprathermal particles and their transport to exospheric heights from underlying atmospheric layers. In contrast to other commonly used approaches, the suggested numerical model is suitable for studying the flows of atmospheric gas weakly and strongly perturbed by suprathermal particles, i.e., for studying the formation of hot planetary and satellite coronas proper. Highly efficient Monte-Carlo algorithms with weighted particles underlie the numerical implementation of the model. This numerical model is used to investigate the following: (i) the hot oxygen corona of Europa, a Jovian satellite, which is an example of a highly nonequilibrium near-surface atmosphere; and (ii) the nonthermal losses of nitrogen from Titan, a Saturnian satellite, when suprathermal atoms and molecules of nitrogen are only a small admixture to the surrounding thermal molecular nitrogen—the main atmospheric component of Titan.  相似文献   

2.
<正>地球高层大气是影响近地卫星运动的主要因素之一.自1957年前苏联发射第1颗人造卫星以来,人类一直开展高层大气的研究,建立了一些著名的经验大气模型,在卫星的轨道预报和定轨中发挥了重要作用.但是由于高层大气变化非常复杂,加上早期的资料精度有限,高层大气的一些基础问题尚未完全解决.论文以CHAMP、GRACE-A/B双星加速仪资料(Reigber et al.2001,Tapley et al.2004)为基础,对高层大气的一些问题进行了系统研究.首先给出了加速仪数据的处理方法,大气点密度计算  相似文献   

3.
在界定行星大气运动范围后,提出行星大气运动三定理。从行星磁场角度研究不完全电离磁流体(incompleteionospheregaseousfluid)得到行星磁力线绝热压缩反弹致冷效应,给出大气运动出现的冷池(coolpool)现象的物理机制。最后从天文学角度讨论和展望大气灾害的可预报性。  相似文献   

4.
The energization of a charged test-particle of mass m in contact with a large ensemble of charged particles of mass M at equilibrium is studied with the Fokker-Planck equation for Coulomb collisions and a quasi-linear diffusion operator for wave-particle interactions. The features of the nonequilibrium steady state velocity distribution of the test-particle system is studied as a function of the mass ratio m/M, and the relative strengths of the wave-particle interactions and Coulomb collisions. It is shown that the steady distribution function is not necessarily a Kappa distribution. The temperature of heavy minor ions given by the model is shown to vary linearly with the mass ratio as observed in the solar wind. The time evolution of the distribution function with and without the energization by wave-particle interactions is calculated and it is demonstrated that the Kullback relative entropy rather than the Tsallis nonextensive entropy rationalizes the results obtained.  相似文献   

5.
Families of asymmetric periodic orbits at the 2/1 resonance are computed for different mass ratios. The existence of the asymmetric families depends on the ratio of the planetary (or satellite) masses. As models we used the Io-Europa system of the satellites of Jupiter for the case m1>m2, the system HD82943 for the new masses, for the case m1=m2 and the same system HD82943 for the values of the masses m1<m2 given in previous work. In the case m1m2 there is a family of asymmetric orbits that bifurcates from a family of symmetric periodic orbits, but there exist also an asymmetric family that is independent of the symmetric families. In the case m1<m2 all the asymmetric families are independent from the symmetric families. In many cases the asymmetry, as measured by and by the mean anomaly M of the outer planet when the inner planet is at perihelion, is very large. The stability of these asymmetric families has been studied and it is found that there exist large regions in phase space where we have stable asymmetric librations. It is also shown that the asymmetry is a stabilizing factor. A shift from asymmetry to symmetry, other elements being the same, may destabilize the system.  相似文献   

6.
Shved  G. M.  Semenov  A. O. 《Solar System Research》2001,35(3):212-226
The standard problem of radiative transfer in a rovibrational band is formulated for an optically semi-infinite plane-parallel planetary atmosphere using a model of a linear molecule with two vibrational states. The solution of the problem describes the variation with height of the population of the excited vibrational state due to the existence of the upper boundary of the atmosphere. We seek this solution as a function of the specially introduced dimensionless parameters—the atmosphere depth and four similarity parameters—and study it for the parameter values that can be realized in the planetary atmospheres, including the atmospheres of extrasolar planets. It is shown that an increase in the optical density of the atmosphere can reduce the population of an excited vibrational state in the band at the upper boundary of the atmosphere by as much as several orders of magnitude as compared to the population corresponding to the optically thin band limit. The anomalous decrease in the opacity of the atmosphere, when only several lines of the band are involved in radiative transfer, is predicted. We also determined the accuracy of calculating the population in the approximation of the Doppler line profile. An approximate formula is obtained for the dimensionless height of the boundary of the layer in which the local thermodynamic equilibrium exists for vibrational states. We propose a model and the formula following from this model to roughly evaluate the decrease in this height due to the impact on the population of additional radiative transitions between the state being considered and the underlying state belonging to another vibrational mode of the molecule.  相似文献   

7.
Previous modeling by Banaszkiewicz et al. (2000a,b) showed that the CH4 thermospheric mixing ratio on Titan could vary as much as 35-40% due to ion-neutral chemical reactions. A new vertical methane profile has been computed by simultaneously modifying the stratospheric methane mixing ratio and the K(z) previously considered by Lara et al. (1996) and Banaszkiewicz et al. (2000a,b). A satisfactory fit of the methane thermospheric abundance and stratospheric mixing ratio of other minor constituents is achieved by placing the homopause at ∼1000 km and increasing the methane stratospheric mixing ratio (qCH4) up to 3.8%. The new proposed eddy diffusion coefficient steadily rises from 1×107 cm2 s−1 at 700 km to 1×1010 cm2 s−1 at 1500 km, whereas the stratospheric values are in the range (4-20)×103 cm2 s−1. Other likely ionization sources that can influence the methane distribution are (i) a metallic ion layer produced by micrometeoroid infall and (ii) frequent X-rays solar flares. Analysis of the effects of these ionization sources on the methane distribution indicates that, unlike previously assumed, CH4 can suffer considerable variations. These variations, although proved in this work, must be cautiously regarded since several assumptions have to be made on the rate of N2 and CH4 ionization by the processes previously mentioned. Hence, these results are only indicative of methane sensitivity to ionospheric chemistry.  相似文献   

8.
This part of a series of papers examines the more general problem in which it is assumed that the fluctuations in the intensity of radiation emerging from a medium are caused by random variations in both the optical thickness of the structural elements and the power of the energy sources contained in them. The frequency dependence of the relative mean square deviation (RelMSD) is investigated for different possible relationships among the parameters of the fine structure components. It is shown that the level of fluctuations at the central frequencies of a line can be greater than or smaller than in the far wings. The dependence of the RelMSD on the number of components and the number of possible realizations of their optical properties is discussed. The influence of random variations in the scattering coefficient on the observed integral intensity of a spectrum line is also examined. Observations of several relatively strong EUV lines from the SOHO/ SUMER space program are presented for comparison. These data indicate that there is a correlation between the frequency dependence of the RelMSD and the characteristic temperature for formation of these lines.__________Translated from Astrofizika, Vol. 48, No. 2, pp. 303–313 (May 2005).  相似文献   

9.
Titan, the main satellite of Saturn, has been observed by remote sensing for many years, both from interplanetary probes (Pioneer and Voyager's flybys) and from the Earth. Its N2 atmosphere, containing a small fraction of CH4 (approximately 2%), with T approximately 90 K and P approximately 1.5 bar at the ground level, is irradiated by solar UV photons and deeply bombarded by energetic particles, i.e. Saturn mangetospheric electrons and protons, interplanetary electrons and cosmic rays. The resulting energy deposition, which takes place mainly below 1000 km, initiates chemical reactions which yield gaseous hydrocarbons and nitriles and, through polymerisation processes, solid aerosol particles which grow by coagulation and settle down to the ground. At the present time, photochemical models strongly require the results of specific laboratory studies. Chemical rate constants are not well known at low temperatures, charged-particle-induced reactions are difficult to model and laboratory simulations of atmospheric processes are therefore of great interest. Moreover, the synthesis of organic compounds which have not been detected to date provides valuable information for future observations. The origin and chemical composition of aerosols depend on the nature of chemical and energy sources. Their production from gaseous species may be monitored in laboratory chambers and their optical or microphysical properties compared to those deduced from the observations of Titan's atmosphere. The development of simulation chambers of Titan's extreme conditions is necessary for a better understanding of past and future observations. Space probes will sound Titan's atmosphere by remote sensing and in situ analysis in the near future (Cassini-Huygens mission). It appears necessary, as a preliminary step to test on-board experiments in such chambers, and as a final step, when new space data have been acquired, to use them for more general scientific purposes.  相似文献   

10.
从知道某些天体具有磁场起,人们就对其磁场的起源提出种种解释,例如有电池说,转子说,化石说,发电机说等等。但由于这些学说都分别与某些观测事实相抵触而未被公认,因此星球磁场的起源一直是未能解决的命题。余先河先生提出,星球的磁场起源可能与所受的引力有关,行星的磁场强度正比于其所受卫星的引力;正比于卫星与行星的引力连线转动的相对角速度。本文对这两方面的命题分别进行了相关分析,得到其相关系数分别为:r=0.8481和r=0.8425,它们都在a=0.01的信度水平上相关。结果表明余新河关于行星磁场起源的设想是有基础的。本文还对其统计结果和可能机制进行了讨论。  相似文献   

11.
This is a study of the kinetics and transport of hot oxygen atoms in the transition region (from the thermosphere to the exosphere) of the Martian upper atmosphere. It is assumed that the source of the hot oxygen atoms is the transfer of momentum and energy in elastic collisions between thermal atmospheric oxygen atoms and the high-energy protons and hydrogen atoms precipitating onto the Martian upper atmosphere from the solar-wind plasma. The distribution functions of suprathermal oxygen atoms by the kinetic energy are calculated. It is shown that the exosphere is populated by a large number of suprathermal oxygen atoms with kinetic energies up to the escape energy 2 eV; i.e., a hot oxygen corona is formed around Mars. The transfer of energy from the precipitating solar-wind plasma protons and hydrogen atoms to the thermal oxygen atoms leads to the formation of an additional nonthermal escape flux of atomic oxygen from the Martian atmosphere. The precipitation-induced escape flux of hot oxygen atoms may become dominant under the conditions of extreme solar events, such as solar flares and coronal mass ejections, as shown by recent observations onboard NASA’s MAVEN spacecraft (Jakosky et al., 2015).  相似文献   

12.
We compare high-resolution 2D and 3D numerical hydrocode simulations of asteroids striking the atmosphere of Venus. Our focus is on aerobraking and its effect on the size of impact craters. We consider impacts both by spheres and by the real asteroid 4769 Castalia, a severely nonspherical body in a Venus-crossing orbit. We compute mass and momentum fluxes as functions of altitude as global measures of the asteroid's progress. We find that, on average, the 2D and 3D simulations are in broad agreement over how quickly an asteroid slows down, but that the scatter about the average is much larger for the 2D models than for the 3D models. The 2D models appear to be rather strongly susceptible to the “butterfly effect,” in which tiny changes in initial conditions (e.g., 0.05% change in the impact velocity) produce quite different chaotic evolutions. By contrast, the global properties of the 3D models appear more reproducible despite seemingly large differences in initial conditions. We argue that this difference between 2D and 3D models has its root in the greater geometrical constraints present in any 2D model, and in particular in the global conservation of enstrophy in 2D that forces energy to pool in large-scale structures. It is the interaction of these artificial large-scale structures that causes slightly different 2D models to diverge so greatly. These constraints do not apply in 3D and large scale structures are not observed to form. A one-parameter modified pancake model reproduces the expected crater diameters of the 3D Castalias reasonably well.  相似文献   

13.
For several years now, an experimental simulation of Titan's atmosphere has been on going at LISA. A cold plasma is established in a gas mixture representative of the atmosphere of the satellite. In these experiments, more than 70 organic compounds have been identified, including the first identification in this type of experimental simulation of C4N2 already detected in its solid form on Titan, which suggests that the setup correctly mimics the chemistry of Titan's atmosphere.We have carried out the first experimental simulation including O-containing compounds in order to study the influence of the presence of CO on the chemical behavior of Titan's atmosphere. With the help of gas chromatography–mass spectrometry (GC–MS) and infrared spectroscopy (IRS) we can thus determine which minor species still undetected in Titan's atmosphere are likely to be present and understand the complex chemistry of the atmosphere of this satellite. Surprisingly we have identified unpredicted O-containing gaseous compounds, mainly ethylene oxide (also named oxirane, C2H4O). This molecule has been observed in the interstellar medium by observation in the millimeter region (Astrophys. J. 489 (1997) 553; Astron. Astrophys. 337 (1998) 275). On the contrary, the predicted O-compounds (formaldehyde and methanol) have not been identified in this experiment. Furthermore, we have identified NH3 in the gaseous products with an initial mixture of N2 (98%) and CH4 (2%).The paper describes the experimental device used in this work, in particular the IRS and GC–MS techniques. We also comment the results related to the detection of the O-containing compounds and NH3 and their implications on our knowledge of the chemistry of Titan's atmosphere and on the retrieval of the future Titan data expected from Cassini-Huygens.  相似文献   

14.
《Planetary and Space Science》2007,55(14):2128-2136
We propose a new approach to study the chemical complexity of Titan's atmosphere. We have developed an evolutionary algorithm-based model that simulates the evolution of interacting elements with different valences. This abstract model mimics a C–H–O–N system that might get an insight into the general properties of the chemistry of Titan's atmosphere. Comparison with detailed models like photochemical models is discussed to evaluate limitations and benefits of each approach. Comparison with observations suggests that Titan's atmosphere might self-organize to produce hydrocarbons with distributions that follow a power-law relation. If confirmed, this property makes possible some prediction about the abundance of heavy hydrocarbons in the atmosphere of Titan.  相似文献   

15.
Solar System Research - An approach that correctly takes into account the contribution of aeronomic reactions due to the direct absorption of hard solar radiation to the energy balance of...  相似文献   

16.
The study of planet formation is a field that uniquely benefits from both astronomical observations and laboratory studies of primitive meteoritic material left over from the forming Solar System. We concisely review the key constraints from these studies and place them in the frame of the theoretical models. Four major open problems are identified that can be addressed with next-generation ground-based telescopes: (1) The injection of radionucleids to protoplanetary disks; (2) Protostellar collapse and the formation of the first solids; (3) Thermal processing of protoplanetary materials; (4) Disk–planet interactions and disk dispersal.  相似文献   

17.
We show that photochemical models of Titan's atmosphere can give rise to bimodal distributions in the abundances of some major compounds, like C2H2 and C2H4. Sensitivity analysis enabled us to identify the causes and conditions of this bimodality. We propose several methods to control this behavior in photochemical models. In particular, we point out the importance of two key reactions and the needs for a critical evaluation of the kinetic data. We also show that the abundances of some compounds are hypersensitive to the ratio [CH4]/[H], suggesting that a time-dependent variation of this ratio might lead to a real bistability in the high atmosphere of Titan.  相似文献   

18.
19.
20.
Cyanoacetylene (HC3N) and diacetylene (C4H2) play an important role in the photochemistry of Titan's atmosphere, in part because of their strong absorption between 110 and 180 nm. Accurate photoabsorption cross-sections at temperatures representative of Titan's atmosphere are required to interprete Cassini observations and to calculate photolysis rates used in photochemical models. Using synchrotron radiation as a tunable vacuum ultraviolet (VUV) light source, we have measured absolute photoabsorption cross-sections of C4H2 and HC3N with a spectral resolution of 0.05 nm in the region between 80 and 225 nm and at different temperatures between 173 and 295 K. The measured cross-sections are used to model transmission spectra of Titan atmosphere in the VUV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号