共查询到13条相似文献,搜索用时 62 毫秒
1.
红树林作为热带和亚热带海岸带上特有的森林群落,具有独特的生态功能以及重大的社会、经济价值。中国红树林经历了反复的破坏与保护,遥感监测手段可以为实施大规模的红树林生态系统保护和恢复行动提供科学技术支撑。本研究依托Google Earth Engine平台提出一种时空概率阈值法对中国红树林范围进行提取。研究选取2015年516景Landsat 8数据,首先使用非监督分类法进行水陆分离,其次通过生成缓冲区确定红树林潜在生长区,然后协同多种指数与光谱信息构建多特征决策树提取红树林粗略的生长范围,最后基于长时序的红树林粗略范围数据计算红树林生长概率,并通过实验确定概率阈值对红树林进行精细提取。通过实验对比发现时空概率阈值法的红树林生产者精度达90.36%,且能较好地提取幼小、分散的红树林。研究得到了2015年中国红树林分布结果,全国红树林面积为21932 ha,广西和广东两省红树林面积占中国红树林总面积的73.22%,为中国红树林主要分布区域。 相似文献
2.
本文首先基于1992-2019年的夜间灯光数据(DMSP-OLS、NPP-VIIRS),参考粤港澳大湾区建成区面积数据,对比确定灯光阈值,提取出大湾区建成区边界;然后从扩张模式、扩张速度、扩张程度3个方面定量分析了大湾区建成区扩展时空特征;最后结合景观生态学方法分析了大湾区建成区扩展的时空格局特征。研究表明:①粤港澳大湾区城市群重心1992年位于东莞市内,2019年迁移至广州市,形成了以广州市为中心的珠三角地区发展核心区域;②整区扩展区域一体化,蔓延速度有所下降,蔓延程度增强,珠三角地区向周围城市的辐射能力不断增强;③城市扩展主要以珠三角地区为中心沿交通线呈倒"V"发展。 相似文献
3.
4.
夜光遥感影像数据可有效反映城市空间格局变化。本文基于1992—2012年的DSMP-OLS夜光遥感影像和2018年的珞珈一号遥感影像,利用分层阈值法提取粤港澳大湾区内各城市建成区;通过计算平均灯光强度、平均灯光增长速率、城市建成区面积、城市建成区增长速率、城市重心、城市重心偏移距离等一系列指数,揭示区内各城市的空间格局演变过程。研究结果表明:①1992—2018年,粤港澳大湾区的城市规模大幅增长,沿珠江口两侧形成了以澳门、广州、深圳和香港为核心的倒“U”形城市群,并呈辐射状向周边扩张。②以珠江口为界,粤港澳大湾区东部各个城市的发展水平整体高于西部各个城市,广州、深圳、香港等核心城市发展水平明显高于江门、肇庆、惠州等外围城市。③1992—2018年,粤港澳大湾区建成区的增长速率由小变大,最后逐渐趋于稳定,2002—2007年是城市扩张最迅猛时期。④1992—2018年,粤港澳大湾区的各城市重心迁移方式表现为3种类型:持续向区域中心迁移;持续向相邻城市邻接区迁移;持续向海洋方向迁移。大部分城市的重心迁移方向呈“震荡”特征。 相似文献
5.
6.
7.
8.
城市化及其生态效应已成为生态文明建设的核心。本文以粤港澳大湾区(GBA)为研究区,以1987—2017年的Landsat系列影像和社会经济数据为主要数据源,综合遥感、景观生态学及GIS技术,揭示了大湾区尺度的城市扩张的时空特征、城市尺度的城市扩张异质性及协调度,厘清了粤港澳大湾区与其他3个世界著名湾区(纽约、旧金山和东京湾区)城市群演变差异;与此同时,构建了综合生态质量评价指数(CEEI)分析了大湾区城市扩张背景下的生态质量演变规律及其驱动力,并提出了湾区城市群规划及生态保护策略。 相似文献
10.
2019年末至2020年初新型冠状病毒(COVID-19)的快速传播对中国与世界的公共卫生带来巨大的挑战。如何科学合理地评估新型冠状病毒传播风险并制定相应防疫管控措施,是各国所面临的难题,也是科学防治与精准施策的重要依据之一。作为我国最重要的城市群之一,粤港澳大湾区受本次新型冠状病毒影响较大,且春节假期后大量的复工回流人口进一步带来潜在的传播风险。本文面向粤港澳大湾区新型冠状病毒传播风险评估的紧迫需求,结合大湾区多源城市时空大数据与流行病动力学模型,构建适宜大湾区的改进模型,并对新型冠状病毒在大湾区的传播风险和各类防疫管控措施效果进行评估与模拟。首先,引入动态复工回流人口和聚集热点改进现有动力学模型(SEIR模型),对现有动力学模型在不同空间评估单元的传播参数进行纠偏,加强模型在大湾区评估中的适宜性;利用手机信令等多源城市大数据,构建更精细化的人口、疾病流动矩阵和相应的传染病动力学模型,以满足各级防疫部门精细化(如村(社区)级)风险评估的迫切需求。模拟结果表明,相对经典SEIR模型,改进模型在大湾区的传播风险评估中具有更强的适宜性;大湾区高强度的人口流动为病毒的传播带来较高的风险;防疫... 相似文献
11.
Since the collapse of the Soviet Union, the crop cultivation structure in the Aral Sea Basin has changed dramatically, and these changes are worth studying. However, historical crop remote sensing mapping at the watershed scale remains challenging, especially crop misclassification at the cropland edge due to mixed pixels. Therefore, we proposed a field segmentation approach to constrain field edges based on time-series Sentinel-2 remote sensing images and the Google Earth Engine platform and then employed the random forest algorithm to perform crop classification based on time series Landsat/Sentinel-2 images and crop phenology information to produce historical crop maps in the Aral Sea Basin from the 1990s onward. The results showed that the intersection over union between the extracted field edges and in situ-measured field size data was 0.65. The overall accuracy of crop mapping was 95.2% in 2019. Then, we extended our method to historical mapping over the 1991–2015 period with accuracies ranging from 82.8% to 91.3%. Moreover, our method applied to historical mapping works well in terms of accuracy and policy matching. These findings indicate that our method can accurately distinguish cropland edges to reduce classification errors due to mixed pixels. This method is promising for solving the cropland edge problem for historical crop mapping in the Aral Sea Basin and can potentially provide a reference for historical crop classification in other watersheds of the world. 相似文献
12.
本文利用Sentinel-1数据获得了2016-2020年月度长江干流上海-宜宾段水域面积,并分析其年际、年内变化规律。分析结果表明,①月度变化规律为1-5月水面面积变化相对平稳,6-8月水域面积逐步增加,在7月达到峰值;9月稍有回落,10月再次达到峰值后逐步减少至稳定。②季节性变化规律为冬季水域面积最小,夏季水域面积最大,夏季和冬季呈现明显的季节差异。③年际变化规律为2016年后水域面积呈增长趋势,其中2017-2019年水域面积相对稳定且缓慢增长,2020年面积急剧增长。分段而言,水域面积随时间的变化幅度为下游>中游>上游,中上游变化相对平稳,下游较显著。④易发生洪涝的断面主要分布在中下游段,需引起重视并做好监测预警。 相似文献
13.
下龙湾西岸是越南北部沿海的养殖大区,随着水产养殖用地规模的逐渐扩大,周边三生用地(生产用地、生活用地、生态用地)空间格局受到影响。本文以下龙湾西岸的5个沿海地区为研究区,利用1990、2000、2010、2015年4期无云Landsat TM/OLI遥感数据,采用分类回归树方法,对1990—2015年的土地利用变化进行监测。通过土地利用净变化量、土地利用动态度模型、相关性分析等方法,定量分析养殖塘时空格局演变特征及对三生用地的影响。结果表明:①25年间,养殖塘面积呈"单峰"式先增后减变化,净增加66.65 km2,2000年面积为156.65 km2,较1990年面积增长113%,2015年较2000年面积减少11%。总体呈现数量上"北增南减"、速率上"东快西慢"的面积变化特征。②养殖塘转入面积中,生产用地对养殖塘转移面积占31%,生活用地占4%,生态用地占65%。空间格局整体以白藤江及陆地中轴为界线,呈南北分区、东西分界的转入转出规律。③养殖塘占用生活用地7.24 km2,二者呈正相关关系,R2为0.46;养殖塘分别占用生产用地和生态用地55.14、115.14 km2,并与两者成负... 相似文献