首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We use the recently completed one billion particle Via Lactea II Λ cold dark matter simulation to investigate local properties like density, mean velocity, velocity dispersion, anisotropy, orientation and shape of the velocity dispersion ellipsoid, as well as the structure in velocity space of dark matter haloes. We show that at the same radial distance from the halo centre, these properties can deviate by orders of magnitude from the canonical, spherically averaged values, a variation that can only be partly explained by triaxiality and the presence of subhaloes. The mass density appears smooth in the central relaxed regions but spans four orders of magnitude in the outskirts, both because of the presence of subhaloes as well as of underdense regions and holes in the matter distribution. In the inner regions, the local velocity dispersion ellipsoid is aligned with the shape ellipsoid of the halo. This is not true in the outer parts where the orientation becomes more isotropic. The clumpy structure in local velocity space of the outer halo cannot be well described by a smooth multivariate normal distribution. Via Lactea II also shows the presence of cold streams made visible by their high 6D phase space density. Generally, the structure of dark matter haloes shows a high degree of graininess in phase space that cannot be described by a smooth distribution function.  相似文献   

3.
If dark haloes are composed of dense gas clouds, as has recently been inferred, then collisions between clouds lead to galaxy evolution. Collisions introduce a core in an initially singular dark matter distribution, and can thus help to reconcile scale-free initial conditions – such as are found in simulations – with observed haloes, which have cores. A pseudo-Tully–Fisher relation, between halo circular speed and visible mass (not luminosity), emerges naturally from the model: M vis∝ V 7/2.
Published data conform astonishingly well to this theoretical prediction. For our sample of galaxies, the mass–velocity relationship has much less scatter than the Tully–Fisher relation, and holds as well for dwarf galaxies (where diffuse gas makes a sizeable contribution to the total visible mass) as it does for giants. It seems very likely that this visible-mass/velocity relationship is the underlying physical basis for the Tully–Fisher relation, and this discovery in turn suggests that the dark matter is both baryonic and collisional.  相似文献   

4.
Accepted 1998 January 26. Received 1998 January 26; in original form 1997 August 13This paper presents a stochastic approach to the clustering evolution of dark matter haloes in the Universe. Haloes, identified by a Press–Schechter-type algorithm in Lagrangian space, are described in terms of 'counting fields', acting as non-linear operators on the underlying Gaussian density fluctuations. By ensemble-averaging these counting fields, the standard Press–Schechter mass function as well as analytic expressions for the halo correlation function and corresponding bias factors of linear theory are obtained, extending the recent results by Mo & White. The non-linear evolution of our halo population is then followed by solving the continuity equation, under the sole hypothesis that haloes move by the action of gravity. This leads to an exact and general formula for the bias field of dark matter haloes, defined as the local ratio between their number density contrast and the mass density fluctuation. Besides being a function of position and 'observation' redshift, this random field depends upon the mass and formation epoch of the objects and is both non-linear and non-local. The latter features are expected to leave a detectable imprint on the spatial clustering of galaxies, as described, for instance, by statistics like the bispectrum and the skewness. Our algorithm may have several interesting applications, among which is the possibility of generating mock halo catalogues from low-resolution N -body simulations.  相似文献   

5.
6.
Using the Millennium N -body Simulation we explore how the shape and angular momentum of galaxy dark matter haloes surrounding the largest cosmological voids are oriented. We find that the major and intermediate axes of the haloes tend to lie parallel to the surface of the voids, whereas the minor axis points preferentially in the radial direction. We have quantified the strength of these alignments at different radial distances from the void centres. The effect of these orientations is still detected at distances as large as 2.2 R void from the void centre. Taking a subsample of haloes expected to contain disc-dominated galaxies at their centres we detect, at the 99.9 per cent confidence level, a signal that the angular momentum of those haloes tends to lie parallel to the surface of the voids. Contrary to the alignments of the inertia axes, this signal is only detected in shells at the void surface  (1 < R < 1.07  R void)  and disappears at larger distances. This signal, together with the similar alignment observed using real spiral galaxies, strongly supports the prediction of the Tidal Torque theory that both dark matter haloes and baryonic matter have acquired, conjointly, their angular momentum before the moment of turnaround.  相似文献   

7.
8.
This paper presents the properties of a family of scale-free triaxial haloes. We adduce arguments to suggest that the velocity ellipsoids of such models are aligned in conical coordinates. We provide an algorithm to find the set of conically aligned velocity second moments that support a given density against the gravity field of the halo. The case of the logarithmic ellipsoidal model – the simplest triaxial generalization of the familiar isothermal sphere – is examined in detail. The velocity dispersions required to hold up the self-consistent model are analytic. The velocity distribution of the dark matter can be approximated as a triaxial Gaussian with semiaxes equal to the velocity dispersions.
There are roughly 20 experiments worldwide that are searching for evidence of scarce interactions between weakly interacting massive-particle dark matter (WIMP) and detector nuclei. The annual modulation signal, caused by the Earth's rotation around the Sun, is a crucial discriminant between WIMP events and the background. The greatest rate is in June, the least in December. We compute the differential detection rate for energy deposited by the rare WIMP–nucleus interactions in our logarithmic ellipsoidal halo models. Triaxiality and velocity anisotropy change the total rate by up to ∼40 per cent, and have a substantial effect on the amplitude of the annual modulation signal. The overall rate is greatest, but the amplitude of the modulation is weakest, in our radially anisotropic halo models. Even the sign of the signal can be changed. Restricting attention to low energy events, the models predict that the maximum rate occurs in December, and not in June.  相似文献   

9.
10.
11.
We derive analytic merger rates for dark matter haloes within the framework of the extended Press–Schechter (EPS) formalism. These rates become self-consistent within EPS once we realize that the typical merger in the limit of a small time-step involves more than two progenitors, contrary to the assumption of binary mergers adopted in earlier studies. We present a general method for computing merger rates that span the range of solutions permitted by the EPS conditional mass function, and focus on a specific solution that attempts to match the merger rates in N -body simulations. The corrected EPS merger rates are more accurate than the earlier estimates of Lacey & Cole by ∼20 per cent for major mergers and by up to a factor of ∼3 for minor mergers of mass ratio 1:104. Based on the revised merger rates, we provide a new algorithm for constructing Monte Carlo EPS merger trees, which could be useful in semi-analytic modelling. We provide analytic expressions and plot numerical results for several quantities that are very useful in studies of galaxy formation. This includes (i) the rate of mergers of a given mass ratio per given final halo, (ii) the fraction of mass added by mergers to a halo and (iii) the rate of mergers per given main progenitor. The creation and destruction rates of haloes serve for a self-consistency check. Our method for computing merger rates can be applied to conditional mass functions beyond EPS, such as those obtained by the ellipsoidal collapse model or extracted from N -body simulations.  相似文献   

12.
We use the Millennium Simulation, a large, high-resolution N -body simulation of the evolution of structure in a Λ cold dark matter cosmology, to study the properties and fate of substructures within a large sample of dark matter haloes. We find that the subhalo mass function departs significantly from a power law at the high-mass end. We also find that the radial and angular distributions of substructures depend on subhalo mass. In particular, high-mass subhaloes tend to be less radially concentrated and to have angular distributions closer to the direction perpendicular to the spin of the host halo than their less massive counterparts. We find that mergers between subhaloes occur. These tend to be between substructures that were already dynamically associated before accretion into the main halo. For subhaloes larger than 0.001 times the mass of the host halo, it is more likely that the subhalo will merge with the central or main subhalo than with another subhalo larger than itself. For lower masses, subhalo–subhalo mergers become equally likely to mergers with the main subhalo. Our results have implications for the variation of galaxy properties with environment and for the treatment of mergers in galaxy formation models.  相似文献   

13.
14.
15.
We study the mass assembly history (MAH) of dark matter haloes. We compare MAHs obtained using (i) merger trees constructed with the extended Press–Schechter (EPS) formalism, (ii) numerical simulations and (iii) the Lagrangian perturbation code pinocchio . We show that the pinocchio MAHs are in excellent agreement with those obtained using numerical simulations, while the EPS formalism predicts MAHs that occur too late. pinocchio , which is much less CPU intensive than N -body simulation, can be run on a simple personal computer, and does not require any labour intensive post-simulation analysis, therefore provides a unique and powerful tool to investigate the growth history of dark matter haloes. Using a suite of 55 pinocchio simulations, with 2563 particles each, we study the MAHs of 12 924 cold dark matter (CDM) haloes in a ΛCDM concordance cosmology. This is by far the largest set of haloes used for any such analysis. For each MAH we derive four different formation redshifts, which characterize different epochs during the assembly history of a dark matter halo. We show that haloes less massive than the characteristic non-linear mass scale establish their potential wells much before they acquire most of their mass. The time when a halo reaches its maximum virial velocity roughly divides its mass assembly into two phases, a fast-accretion phase which is dominated by major mergers, and a slow-accretion phase dominated by minor mergers. Each halo experiences about 3 ± 2 major mergers since its main progenitor had a mass equal to 1 per cent of the final halo mass. This major merger statistic is found to be virtually independent of halo mass. However, the average redshift at which these major mergers occur is strongly mass dependent, with more massive haloes experiencing their major mergers later.  相似文献   

16.
High-redshift galaxies and quasi-stellar objects (QSOs) are most likely to be strongly lensed by intervening haloes between the source and the observer. In addition, a large fraction of lensed sources is expected to be seen in the submillimetre region, as a result of the enhanced magnification bias on the steep intrinsic number counts. We extend in three directions Blain's earlier study of this effect.
First, we use a modification of the Press–Schechter mass function and detailed lens models to compute the magnification probability distribution. We compare the magnification cross-sections of populations of singular isothermal spheres and Navarro, Frenk & White (NFW) haloes and find that they are very similar, in contrast to the image-splitting statistics which were recently investigated in other studies. The distinction between the two types of density profile is therefore irrelevant for our purposes.
Secondly, we discuss quantitatively the maximum magnification, μ max, that can be achieved for extended sources (galaxies) with realistic luminosity profiles, taking into account the possible ellipticity of the lensing potential. We find that μ max plausibly falls into the range     for sources of     effective radius at redshifts within     .
Thirdly, we apply our model for the lensing magnification to a class of sources following the luminosity evolution typical for a unified scheme of QSO formation. As a result of the peculiar steepness of their intrinsic number counts, we find that the lensed source counts at a fiducial wave length of 850 μm can exceed the unlensed counts by several orders of magnitude at flux densities ≳100 mJy, even with a conservative choice of the maximum magnification.  相似文献   

17.
18.
Using high-resolution cosmological N -body simulations, we investigate the survival of dark matter satellites falling into larger haloes. Satellites preserve their identity for some time after merging. We compute their loss of mass, energy and angular momentum as they are dissolved by dynamical friction, tidal forces and collisions with other satellites. We also analyse the evolution of their internal structure. Satellites with less than a few per cent of the mass of the main halo may survive for several billion years, whereas larger satellites rapidly sink into the centre of the main halo potential well and lose their identity. Penetrating encounters between satellites are frequent and may lead to significant mass loss and disruption. Only a minor fraction of cluster mass (10–15 per cent on average) is bound to substructure at most redshifts of interest. We discuss the application of these results to the survival and extent of dark matter haloes associated with galaxies in clusters, and to their interactions. We find that a minor fraction of galaxy-size dark matter haloes are disrupted by redshift z  = 0. The fraction of satellites undergoing close encounters is similar to the observed fraction of interacting or merging galaxies in clusters at moderate redshift.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号