首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Grey tuffs of late Pleistocene age form broad fans radiating from the Laacher See basin. They were derived from phreatomagmatic outbursts, and transported in turbulent pyroclastic flows, in contrast with the underlying white pumice tuffs of air fall origin. Flow origin of the grey tuffs is inferred from the well-bedded plane parallel to cross-bedded tephra characteristic of base surge deposits, and a variety of other sedimentary structures, as well as grain size distributions. We recognize a tentative sequence of five main kinds of dune structures or cross-bedded strata. With some reservations these may be compared with the high flow-regime alluvial bedforms produced experimentally in flumes. Most of the cross-bedded structures in the Laacher See deposits resemble antidunes, with steep stoss sides and very low-dipping lee sides. Upcurrent migration of antidune crests is dominant close to the source, but changes to downcurrent migration at greater distances, presumably because of decay in flow energy. The most spectacular cross-bedding is somewhat similar to chute and pool structures formed under experimental condition in alluvial flumes, but not recognized in ancient sedimentary rocks. We suggest that these structures of the Laacher See tuffs formed during deposition from phreatic pyroclastic flows of very high flow energy and high sediment concentration. The antidunes apparently formed at lesser flow velocity than chute and pool structures, although interpretation of velocity conditions by examination of the deposits is difficult because of other factors such as the cohesiveness of wet material erupted by explosive phreatic volcanic activity. The large wave lengths of the dune-like structures, however, suggest unusually high velocities. The Laacher See magmas were of phonolitic to tephritic composition, and may have erupted with greater explosive energy and in greater volume than comparable basaltic eruptions.  相似文献   

2.
The Burdekin River is an example of a class of tropical streams which experience two to four orders of magnitude variation in discharge, in response to seasonal but erratic monsoonal rainfall. Floods of the Burdekin rise abruptly, reaching peak discharges of up to 40,000 m3 s-1 in less than 24 h; maintain peak flow for up to a few days, and recede exponentially. The geomorphology and deposits of these rivers reflect the extreme discharge fluctuations, and have not previously been described. A stretch of the upper Burdekin River comprising four bends and one straight reach was examined near the town of Charters Towers. The river bed is largely exposed for most of any year, with a small, misfit perennial channel carrying low stage flow. Major geomorphic elements of bends include point bars with ridge-and-swale topography, three distinct types of chute channels, avalanche slipfaces up to 5 m or more high around the downstream edges of bars, and on the outer part of one point bar an elevated, vegetated ridge. Straight reaches are flat or gently inclined, sand- and gravel-covered surfaces. Much of the river bed is covered by well sorted, in places gravelly, coarse to very coarse-grained sand with local accumulations of pebble to boulder gravel. Lower parts of the river bed are periodically draped by mud which is desiccated on exposure. Dunes and plane beds are the most commonly occurring bedforms, with local development of gravelly antidunes. Most bank tops and upper, vegetated bars are covered by silt and fine-grained sand. The river bed also hosts a low-diversity but locally high-abundance, flood-tolerant flora dominated by the paperbark tree Melaleuca argentea, which plays an important role in controlling the distribution of sediment. The gross geomorphology of the river bed and most of the sedimentary features are interpreted as having formed during major (bankfull or near bankfull) flows, which have a recurrence of about 18 years (based on 65 years hydrographic data). The initial rapid drop in discharge following flood peaks appears to preserve flood peak features on upper bars more or less intact, whereas lower areas are subjected to variable degrees of modification during falling stage and by more frequent, non-bankfull discharge events.  相似文献   

3.
Large symmetric and asymmetric dunes occur in the Fraser River, Canada. Symmetric dunes have stoss and lee sides of similar length, stoss and lee slope angles <8°, and rounded crests. Asymmetric dunes have superimposed small dunes on stoss sides, sharp crests, stoss sides longer than lee sides, stoss side slopes <3° and straight lee side slopes up to 19°. There is no evidence for lee side flow separation, although intermittent separated flow is possible, especially over asymmetric dunes. Dune symmetry and crest rounding of symmetric dunes are associated with high sediment transport rates. High near-bed velocity and bed load transport near dune crests result in crest rounding. Long, low-angle lee sides are produced by deposition of suspended sediment in dune troughs. Asymmetric dunes appear to be transitional features between large symmetric dunes and smaller dunes adjusted to lower flow velocity and sediment transport conditions. Small dunes on stoss sides reduce near-bed flow velocity and bed load transport, causing a sharper dune crest. Reduced deposition of suspended sediment in troughs results in a short, steep lee slope. Dunes in the Fraser River fall into upper plane bed or antidune stability fields on flume-based bedform phase diagrams. These diagrams are probably not applicable to large dunes in deep natural flows and care must be taken in modelling procedures that use phase diagram relations to predict bed configuration in such flows.  相似文献   

4.
The wavelength of stationary water‐surface waves and their associated antidune bedforms are related to the mean velocity and depth of formative flow. In past published sand‐bed flume experiments, it was found that lens structures were preserved during antidune growth and change, and the dimension of the lenses was empirically related to antidune wavelength, and thus could be used to estimate flow velocity and depth. This study is the first to compare observations of formative flow conditions and resulting sedimentary structures in a natural setting, testing the previously published relationship at a field‐scale. Trains of stationary and upstream migrating water‐surface waves were prevalent during the flash flood in October 2012 in the Belham Valley, Montserrat, West Indies. Wave positions and wavelengths were assessed at 900 sec intervals through the daylight hours of the event within a monitored reach. The wave data indicate flow depths up to 1·3 m and velocity up to 3·6 m sec?1. Sedimentary structures formed by antidune growth and change were preserved in the event deposit. These structures include lenses of clast‐supported gravel and massive sand, with varying internal architecture. The lenses and associated low‐angle strata are comparable to sand‐bed structures formed from stationary and upstream migrating waves in flume experiments, confirming the diagnostic value of these structures. Using mean lens length in the event deposit underestimated peak flow conditions during the flood and implied that the lenses were preserved during waning flow.  相似文献   

5.
A consideration of the dune:antidune transition in fine gravel   总被引:1,自引:0,他引:1  
Hydraulic data defining the dune:antidune transition in fine gravel are compared with potential flow theory, and information is drawn from published experiments and field‐based studies. Attention is given to both transitional bedforms and the development of downstream‐migrating antidunes. In the latter case, most data pertain to sand beds and not to gravel. Empirical data provide some weak support for the theoretical notion that the transition occurs at progressively lower Froude numbers at greater relative depths. Although a critical Froude number of 0·84 may reasonably be applied for the beginning of the dune to antidune transformation, lag effects (and a possible depth limitation) ensure that transitional bedforms may persist across a broad range of Froude numbers from 0·5 to 1·8. This latter observation has great relevance for palaeohydraulic estimates derived from outcrop data. Whereas the application of theoretical bedform existence fields, based upon potential flow theory, to fine gravel was previously purely speculative, the addition of experimental and field data to these plots provides a degree of confidence in applying stability theory to practical geological problems. For the first time, laboratory data pertaining to downstream‐migrating gravel antidunes are compared with theory. These bedforms have been reported from certain experimental near‐critical flows above sand or gravel beds, but have been observed infrequently in natural streams. However, there are no detailed studies from natural rivers and only a few contentious identifications from outcrops. Nevertheless, the limited hydraulic data conform to theoretical expectations.  相似文献   

6.
Pyroclastic currents are catastrophic flows of gas and particles triggered by explosive volcanic eruptions. For much of their dynamics, they behave as particulate density currents and share similarities with turbidity currents. Pyroclastic currents occasionally deposit dune bedforms with peculiar lamination patterns, from what is thought to represent the dilute low concentration and fluid‐turbulence supported end member of the pyroclastic currents. This article presents a high resolution dataset of sediment plates (lacquer peels) with several closely spaced lateral profiles representing sections through single pyroclastic bedforms from the August 2006 eruption of Tungurahua (Ecuador). Most of the sedimentary features contain backset bedding and preferential stoss‐face deposition. From the ripple scale (a few centimetres) to the largest dune bedform scale (several metres in length), similar patterns of erosive‐based backset beds are evidenced. Recurrent trains of sub‐vertical truncations on the stoss side of structures reshape and steepen the bedforms. In contrast, sporadic coarse‐grained lenses and lensoidal layers flatten bedforms by filling troughs. The coarsest (clasts up to 10 cm), least sorted and massive structures still exhibit lineation patterns that follow the general backset bedding trend. The stratal architecture exhibits strong lateral variations within tens of centimetres, with very local truncations both in flow‐perpendicular and flow‐parallel directions. This study infers that the sedimentary patterns of bedforms result from four formation mechanisms: (i) differential draping; (ii) slope‐influenced saltation; (iii) truncative bursts; and (iv) granular‐based events. Whereas most of the literature makes a straightforward link between backset bedding and Froude‐supercritical flows, this interpretation is reconsidered here. Indeed, features that would be diagnostic of subcritical dunes, antidunes and ‘chute and pools’ can be found on the same horizon and in a single bedform, only laterally separated by short distances (tens of centimetres). These data stress the influence of the pulsating and highly turbulent nature of the currents and the possible role of coherent flow structures such as Görtler vortices. Backset bedding is interpreted here as a consequence of a very high sedimentation environment of weak and waning currents that interact with the pre‐existing morphology. Quantification of near‐bed flow velocities is made via comparison with wind tunnel experiments. It is estimated that shear velocities of ca 0·30 m.s?1 (equivalent to pure wind velocity of 6 to 8 m.s?1 at 10 cm above the bed) could emplace the constructive bedsets, whereas the truncative phases would result from bursts with impacting wind velocities of at least 30 to 40 m.s?1.  相似文献   

7.
Morris  Kenyon  Limonov  Alexander 《Sedimentology》1998,45(2):365-377
Side-scan sonar, seismic and core data are used to identify mega-flutes, transverse and ‘V’ shaped bedforms in turbidites around the Valencia channel mouth, north-west Mediterranean. Long-range side-scan sonar data reveal a broad, curved, asymmetric, channel, that widens and terminates downfan. The western channel bank near the channel mouth has been partly eroded by turbidity currents that spilled out of the channel. Transverse bedforms on the east of the channel floor are interpreted as antidunes and, if this interpretation is correct, they indicate that the flow was probably supercritical at least locally within the channel. Trains of mega-flutes, are incised into coarse-grained sediments of the channel floor near the channel mouth. The association of mega-flutes and antidunes is thought to be diagnostic of channel–lobe transitions on deep-sea fans. The mega-flutes pass downfan into an area of streaks that diverge at up to 45° and indicates flow expansion from the channel mouth. About 75 km downfan from the channel mouth, deep-towed side-scan data record transverse bedforms (interpreted as antidunes) passing downfan into an area covered by ‘V’ shaped bedforms with upflow pointing apices (named chevrons here). The chevrons are commonly c. 200 m from limb to limb and c. 2 m in amplitude with flow-parallel wavelengths of c. 400 m. We propose that chevrons were formed by a strong, probably supercritical (or near critical) turbidity current spreading from the channel mouth and flowing towards the Balearic Abyssal Plain. Thinning of the turbidity current, resulting from flow spreading would allow the Froude number to remain high up to 100 km from the channel mouth and could explain the observed reduction in antidune wavelength.  相似文献   

8.
9.
Open‐framework gravel (OFG) in river deposits is important because of its exceptionally high permeability, resulting from the lack of sediment in the pore spaces between the gravel grains. Fluvial OFG occurs as planar strata and cross strata of varying scale, and is interbedded with sand and sandy gravel. The origin of OFG has been related to: (1) proportion of sand available relative to gravel; (2) separation of sand from gravel during a specific flow stage and sediment transport rate (either high, falling or low); (3) separation of sand from gravel in bedforms superimposed on the backs of larger bedforms; (4) flow separation in the lee of dunes or unit bars. Laboratory flume experiments were undertaken to test and develop these theories for the origin of OFG. Bed sediment size distribution (sandy gravel with a mean diameter of 1·5 mm) was kept constant, but flow depth, flow velocity and aggradation rate were varied. Bedforms produced under these flow conditions were bedload sheets, dunes and unit bars. The fundamental cause of OFG is the sorting of sand from gravel associated with flow separation at the crest of bedforms, and further segregation of grain sizes during avalanching on the steep lee side. Sand in transport near the bed is deposited in the trough of the bedform, whereas bed‐load gravel avalanches down the leeside and overruns the sand in the trough. The effectiveness of this sorting mechanism increases as the height of the bedform increases. Infiltration of sand into the gravel framework is of minor importance in these experiments, and occurs mainly in bedform troughs. The geometry and proportion of OFG in fluvial deposits are influenced by variation in height of bedforms as they migrate, superposition of small bedforms on the backs of larger bedforms, aggradation rate, and changes in sediment supply. If the height of a bedform increases as it migrates downstream, so does the amount of OFG. Changes in the character of OFG on the lee‐side of unit bars depend on grain‐size sorting in the superimposed bedforms (dunes and bedload sheets). Thick deposits of cross‐stratified OFG require high bedforms (dunes, unit bars) and large amounts of aggradation. These conditions might be expected to occur during high falling stages in the deeper parts of river channels adjacent to compound‐bar tails and downstream of confluence scours. Increase in the amount of sand supplied relative to gravel reduces the development of OFG. Such increases in sand supply may be related to falling flow stage and/or upstream erosion of sandy deposits.  相似文献   

10.
The parautochthonous Cloridorme Formation is a syn-orogenic flysch succession that was deposited in an elongate foredeep basin as mainly lower middle-fan, outer-fan, and basin-floor deposits. The basin-floor deposits (about 1.5 km thick) are confined to members β1, β2 and γ1, and are characterized by graded, thick (1–10 m) mud-rich calcareous greywacke beds previously interpreted as deposits of concentrated, muddy, unidirectional turbidity currents that locally generated backset (antidune) lamination in internally stratified flows. The dominant flow directions were from east to west, but west to east transport also occurred, as seen in the orientation of ripples, climbing ripples, flutes, consistently overturned flames, and grain imbrication. We believe that the flows that deposited these thick calcareous greywacke beds reversed by roughly 180° one or more times during deposition of the lower sandy part of the beds. Flow reversals are consistent with the sharp grain-size breaks and mud partings within sandy divisions. Measurement of grain fabric relative to stratification in the most celebrated ‘antidune’ bedforms indicates flow from west to east; thus, the bedforms were produced by west-to-east migration of megaripples, not by the upcurrent migration of antidunes. The thick muddy beds were deposited by large-volume, muddy flows that were deflected and reflected from the side slopes and internal topographic highs of a confined basin floor, much like the ‘Contessa’ and similar beds of the Italian Apennines. Large quantities of suspended mud were ponded above the irregular basin floor and settled to produce the thick silty mudstone caps seen on each bed. Because of their mode of emplacement, we propose that these beds be called contained turbidites.  相似文献   

11.
An active oolitic sand wave was monitored for a period of 37 days in order to address the relationship between the direction and strength of tidal currents and the resultant geometry, and amount and direction of migration of bedforms in carbonate sands. The study area is situated in a tidal channel near Lee Stocking Island (Exumas, Bahamas) containing an estimated 5.5 to 6 × 105 m3 of mobile oolitic sand. Tidal ranges within the inlet are microtidal and the maximum current velocity at the studied site is 0.6 m s?1. At least 300–400 m3 of mostly oolitic sand are formed within, or brought into, the channel area every year. The tidal inlet is subdivided into an ocean-orientated segment, in which sand waves are shaped by both flood and ebb tides, and a platform-orientated segment, where sand waves are mainly shaped by flood tides. The studied sand wave lies on the platformward flood-tide dominated segment in a water depth of 3.5.4.5 m. During the 37 days of observation, the oolitic and bioclastic sand wave migrated 4 m in the direction of the dominant flood current. The increments of migration were directly related to the strength of the tide. During each tidal cycle, bedforms formed depending on the strength of the tidal current, tidal range and their location on the sand wave. During flood tides, a steep lee and a gentle stoss side formed and current ripples and small dunes developed on the crest of the sand wave, while the trough developed only ripples. The average lee slope of the sand wave is 24.2°, and therefore steeper than typical siliciclastic sand waves. During ebb tides, portions of the crest are eroded creating a convex upward ebb stoss side, covered with climbing cuspate and linguoid ripples and composite dunes. The area between the ebb-lee side and the trough is covered with fan systems, sinuous ripples and dunes. The migration of all bedforms deviated to a variable degree from the main current direction, reflecting complex flow patterns in the tidal inlet. Small bedforms displayed the largest deviation, migrating at an angle of up to 90° and more to the dominant current direction during spring tides.  相似文献   

12.
Bedforms and associated sedimentary structures, formed under supercritical water flow over an aggrading sand bed, were studied in a laboratory flume. Although the geometry and hydraulic characteristics of these bedforms (antidunes, chutes-and-pools) are well known, their internal structures are not. The objectives of the study were to: (1) describe the three-dimensional geometry of the sedimentary structures and examine their mode of origin; (2) develop a relationship between the geometries of the sedimentary structures and the formative bedforms and; (3) identify criteria that distinguish these sedimentary structures from similar types, such as hummocky and swaley cross-strata. Sedimentary structures associated with antidunes are primarily lenticular laminasets with concave-upward erosional bases (troughs) in which laminae generally dip upstream or fill the troughs symmetrically. These laminasets are associated with growth and upstream migration of water-surface waves and antidunes, and with surface-wave breaking and filling of antidune troughs respectively. In addition, sets of downstream-dipping laminae are produced by rapid migration of asymmetrical bedwaves immediately after wave breaking. Rare convex-upward laminae define the shape of antidunes that developed under stationary water-surface waves. The laminasets and internal laminae extend across the width of the flume, but vary in thickness and inclination, indicating that the antidunes have some degree of three dimensionality. The length and maximum thickness of the lenticular laminasets are approximately half of the length and height of formative antidunes, providing a potentially useful tool for palaeohydraulic reconstructions. The sets of downstream-dipping laminae formed under antidunes are distinctive and do not occur in hummocky and swaley cross-strata. Sedimentary structures associated with chutes-and-pools are sets of upstream-dipping laminae and structureless sand.  相似文献   

13.
Preservation of cyclic steps contrasts markedly with that of subcritical‐flow bedforms, because cyclic steps migrate upslope eroding their lee face and preserving their stoss side. Such bedforms have not been described from turbidite outcrops and cores as yet. A conceptual block diagram for recognition of cyclic steps in outcrop has been constructed and is tested by outcrop studies of deep water submarine fan deposits of the Tabernas Basin in south‐eastern Spain. Experimental data indicate that depositional processes on the stoss side of a cyclic step are controlled by a hydraulic jump, which decelerates the flow and by subsequent waxing of the flow up to supercritical conditions once more. The hydraulic jump produces a large scour with soft‐sediment deformation (flames) preserved in coarse‐tail normal‐graded structureless deposits (Bouma Ta), while near‐horizontal, massive to stratified top‐cut‐out turbidite beds are found further down the stoss side of the bedform. The architecture of cyclic steps can best be described as large, up to hundreds of metres, lens‐shaped bodies that are truncated by erosive surfaces representing the set boundaries and that consist of nearly horizontal lying stacks of top‐cut‐out turbidite beds. The facies that characterize these bedforms have traditionally been described as turbidite units in idealized vertical sequences of high‐density turbidity currents, but have not yet been interpreted to represent bedforms produced by supercritical flow. Their large size, which is in the order of 20 m for gravelly and up to hundreds of metres for sandy steps, is likely to have hindered their recognition in outcrop so far.  相似文献   

14.
The 2004 Indian Ocean tsunami deposited a sheet of sand with surficial bedforms at the Andaman coast of Thailand. Here we show the recognition of bedforms and the key internal sedimentary structures as criteria of the tsunami supercritical flow condition. The presence of well‐preserved capping bedforms implied a dominant tsunami inflow. Sets of internal sedimentary structures including parallel lamination, seaward and landward inclined‐laminations, and downstream dipping laminae indicated antidune structures that were generated by a supercritical flow current in a depositional stage during the inflow. A set of seaward dipping cross‐laminations containing sand with mud drape on the surface of one depositional layer are a unique indication of an outflow structure. A majority of deposits show normal grading, but in some areas, localized reverse grading was also observed. The recognition of these capping bedforms and determination of the internal sedimentary structures provides new key criteria to help derive a better understanding of tsunami flow conditions.  相似文献   

15.
The 1918 eruption of the glacially capped Katla volcano, southern Iceland, generated a violent jökulhlaup, or glacial outburst flood, inundating a large area of Mýrdalssandur, the proglacial outwash plain, where it deposited ca 1 km3 of volcaniclastic sediment. The character of the 1918 jökulhlaup is contentious, having been variously categorized as a turbulent water flow, a hyperconcentrated flow or as a debris flow, based on localized outcrop analysis. In this study, outcrop‐based architectural analyses of the 1918 deposits reveal the presence of lenticular and tabular bedsets associated with deposition from quasi‐stationary antidunes and down‐current migrating antidunes, and from regular based bedsets, associated with transient chute‐and‐pool bedforms, all of which are associated with turbulent, transcritical to supercritical water flow conditions. Antidune wavelengths range from 24 to 96 m, corresponding to flow velocities of 6 to 12 m sec?1 and average flow depths of 5 to 19 m. This range of calculated flow velocities is in good agreement with estimates made from eyewitness accounts. Architectural analysis of the 1918 jökulhlaup deposits has led to an improved estimation of flow parameters and flow hydraulics associated with the 1918 jökulhlaup that could not have been achieved through localized outcrop analysis. The observations presented here provide additional sedimentological and architectural criteria for the recognition of deposits associated with transcritical and supercritical water flow conditions. The physical scale of sedimentary architectures associated with the migration of bedforms is largely dependent on the magnitude of the formative flow events or processes; sedimentary analyses must therefore be undertaken at the appropriate physical scale if reliable interpretations, regarding modes of deposition and formative flow hydraulics, are to be made.  相似文献   

16.
Turbidity current and coastal storm deposits are commonly characterized by a basal sandy massive (structureless) unit overlying an erosional surface and underlying a parallel or cross-laminated unit. Similar sequences have been recently identified in fluvial settings as well. Notwithstanding field, laboratory and numerical studies, the mechanisms for emplacement of these massive basal units are still under debate. It is well accepted that the sequence considered here can be deposited by waning-energy flows, and that the parallel-laminated units are deposited under transport conditions corresponding to upper plane bed at the dune–antidune transition. Thus, transport conditions that are more intense than those at the dune–antidune transition should deposit massive units. This study presents experimental, open-channel flow results showing that sandy massive units can be the result of gradual deposition from a thick bedload layer of colliding grains called sheet flow layer. When this layer forms with relatively coarse sand, the non-dimensional bed shear stress associated with skin friction, the Shields number, is larger than a threshold value approximately equal to 0·4. For values of the Shields number smaller than 0·4 the sheet flow layer disappeared, sediment was transported by a standard bedload layer one or two grain diameters thick, and the bed configuration was characterized by downstream migrating antidunes and washed out dunes. Parallel laminae were found in deposits emplaced with standard bedload transport demonstrating that the same dilute flow can gradually deposit the basal and the parallel-laminated unit in presence of traction at the depositional boundary. Further, the experiments suggested that two different types of upper plane bed conditions can be defined, one associated with standard bedload transport at the dune–antidune transition, and the other associated with bedload transport in sheet flow mode at the transition between upstream and downstream migrating antidunes.  相似文献   

17.
Discharge event frequency, magnitude and duration all control river channel morphology and sedimentary architecture. Uncertainty persists as to whether alluvial deposits in the rock record are a time-averaged amalgam from all discharge events, or a biased record of larger events. This paper investigates the controls on channel deposit character and subsurface stratigraphic architecture in a river with seasonal discharge and very high inter-annual variability, the Burdekin River of north-east Australia. In such rivers, most sediment movement is restricted to a few days each year and at other times little sediment moves. However, the maximum discharge magnitude does not directly correlate with the amount of morphological change and some big events do not produce large deposits. The Burdekin channel deposits consist of five main depositional elements: (i) unit bars; (ii) vegetation-generated bars; (iii) gravel sheets and lags; (iv) antidune trains; and (v) sand sheets. The proportions of each depositional element preserved in the deposits depend on the history of successive large discharge events, their duration and the rate at which they wane. Events with similar peak magnitude but different rate of decline preserve different event deposits. The high intra-annual and inter-annual discharge variability and rapid rate of stage change make it likely that small to moderate-scale bed morphology will be in disequilibrium with flow conditions most of the time. Consequently, dune and unit bar size and cross-bed set thickness are not good indicators of event or channel size. Antidunes may be more useful as indicators of flow conditions at the time they formed. Rivers with very high coefficient of variance of maximum discharge, such as the Burdekin, form distinctive channel sediment bodies. However, the component parts are such that, if they are examined in isolation, they could lead to misleading interpretation of the nature of the depositional environment if conventional interpretations are used.  相似文献   

18.
The Bosphorus Strait accommodates two‐way flow between the Aegean and Black Seas. The Aegean (Mediterranean) inflow has speeds of 5 to 15 cm sec?1 in the strait and a salinity contrast of ~12‰ to 16‰ with the Black Sea surface waters on the shelf. An anastomosed channel network crosses the shelf and in water deeper than 70 m is characterized by first‐order channels 5 to 10 m deep, local lateral accretion bedding, muddy in‐channel barforms, and a variety of sediment waves both on channel floors and bar crests, crevasse channels entering the overbank area and levée/overbank deposits which are radiocarbon‐dated in cores to be younger than ~7·5 to 8·0 ka. This channel network accommodates the saline density current formed by the Mediterranean inflow. The density contrast between the density underflow and the ambient water mass is ~0·01 g cm?3, similar to the density contrast ascribed to low‐concentration turbidity currents in the deep sea. Channel‐floor deposits are sandy to gravelly with local shell concentrations. Low‐relief bedforms on the channel floor have relatively straight crests, upflow‐dipping cross‐stratification, heights 1 to 1·5 m and wavelengths 85 to 155 m. Bankfull flows are subcritical, so these probably are not antidunes. Bar tops are ornamented locally with mudwaves having heights 1 to 2 m and wavelengths ~20 to 100 m; these are potentially antidunes formed under shallow overbank flows. Towards the shelf edge, the degree of channel bifurcation increases dramatically and bar tops are dissected locally by secondary channels, some of which terminate in hanging valleys. Conical mounds on the shelf (possibly mud volcanoes or sites of fluid seepage) interact with the channel network by promoting accretion of muddy streamlined macroforms in their lee. This channel network may be one of the largest and most accessible natural laboratories on Earth for the study of continuously flowing density currents. Although the driver is salinity contrast, the underflow transports sufficient sediment to form levée wedges and large streamlined barforms, and presumably transports sediment into deep water.  相似文献   

19.
Coarse-gravel bedforms which resulted from Pleistocene glacial outburst floods are identified as subaqueous dunes. Comparison of the morphology of these ‘fossil’ structures with modern dunes shows that the form of two-dimensional (2-D) transverse dunes and 3-D cuspate and lunate dunes developed in coarse gravels is comparable with sand-dune morphology within lesser-scale geophysical flows. The similarity of the steepest gravel dunes with equilibrium dunes in sand indicates that grain size is not a major factor in constraining primary duneform. Internal structure indicates that flow over 2-D dunes was relatively uniform but over 3-D bedforms flow was locally variable. Flow separation and complex streaming of flow occurred over the steepest 3-D dunes. Cross-beds are thin and few approach the angle of repose; consequently most dunes did not migrate primarily by avalanching but by stoss-entrained gravel transported over the crests rolling-down and depositing on the lee slopes. Lee-side sediments are often finer than the stoss-slope sediments, which indicates the lee formed when flood power was waning. Some dunes were slightly planed-down during falling stage because lee-side cross-beds tend to be steeper than the angle of the preserved lee slope. However, silt-rich caps indicate that any height reduction was contemporary with the final deposition of foresets. Post-flood modification has been negligible although the modern topography is subdued by loess deposits within the dune troughs.  相似文献   

20.
The development of mudwaves on the levees of the modern Toyama deep‐sea channel has been studied using gravity core samples combined with 3·5‐kHz echosounder data and airgun seismic reflection profiles. The mudwaves have developed on the overbank flanks of a clockwise bend of the channel in the Yamato Basin, Japan Sea, and the mudwave field covers an area of 4000 km2. Mudwave lengths range from 0·2 to 3·6 km and heights vary from 2 to 44 m, and the pattern of mudwave aggradation indicates an upslope migration direction. Sediment cores show that the mudwaves consist of an alternation of fine‐grained turbidites and hemipelagites whereas contourites are absent. Core samples demonstrate that the sedimentation rate ranged from 10 to 14 cm ka?1 on the lee sides to 17–40 cm ka?1 on the stoss sides. A layer‐by‐layer correlation of the deposits across the mudwaves shows that the individual turbidite beds are up to 20 times thicker on the stoss side than on the lee side, whereas hemipelagite thicknesses are uniform. This differential accretion of turbidites is thought to have resulted in the pattern of upcurrent climbing mudwave crests, which supports the notion that the mudwaves have been formed by spillover turbidity currents. The mudwaves are interpreted to have been instigated by pre‐existing large sand dunes that are up to 30 m thick and were created by high‐velocity (10°ms?1), thick (c. 500 m) turbidity currents spilling over the channel banks at the time of the maximum uplift of the Northern Japan Alps during the latest Pliocene to Early Pleistocene. Draping of the dunes by the subsequent, lower‐velocity (10?1ms?1), mud‐laden turbidity currents is thought to have resulted in the formation of the accretionary mudwaves and the pattern of upflow climbing. The dune stoss slopes are argued to have acted as obstacles to the flow, causing localized loss of flow strength and leading to differential draping by the muddy turbidites, with greater accretion occurring on the stoss side than on the lee slope. The two overbank flanks of the clockwise channel bend show some interesting differences in mudwave development. The mudwaves have a mean height of 9·8 m on the outer‐bank levee and 6·2 m on the inner bank. The turbidites accreted on the stoss sides of the mudwaves are 4–6 times thicker on the outer‐bank levee than their counterparts on the inner‐bank levee. These differences are attributed to the greater flow volume (thickness) and sediment flux of the outer‐bank spillover flow due to the more intense stripping of the turbidity currents at the outer bank of the channel bend. Differential development of mudwave fields may therefore be a useful indicator in the reconstruction of deep‐sea channels and their flow hydraulics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号