首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Air masses are characterized by physical (temperature, humidity) and chemical (transported gases and aerosols) properties, being associated their arrival to different meteorological scenarios. The knowledge of the air masses over a region is fundamental as complementary information in several atmospheric studies, being the calculation of back-trajectory the most widely used tool whenever air masses are analyzed. A study of air masses has been carried out in southwestern Iberian Peninsula using 5-day kinematic back trajectories computed by the HYSPLIT model at three heights (500, 1,500 and 3,000 m) from 1997 to 2007. The main aims have been to characterize their vertical behaviour and their thermal and humidity properties. Thirteen trajectory clusters have been defined, showing the northerly and westerly clusters a high coupling degree. Seasonal daily variation of potential temperature and specific humidity has been analyzed, obtaining higher differences among clusters in the cold season.  相似文献   

2.
3.
Model precipitation can be produced implicitly through convective parameterization schemes or explicitly through cloud microphysics schemes. These two precipitation production schemes control the spatial and temporal distribution of precipitation and consequently can yield distinct vertical profiles of heating and moistening in the atmosphere. The partition between implicit and explicit precipitation can be different as the model changes resolutions. Within the range of mesoscale resolutions (about 20 km) and cumulus scale, hybrid solutions are suggested, in which cumulus convection parameterization is acting together with the explicit form of representation. In this work, it is proposed that, as resolution increases, the convective scheme should convert less condensed water into precipitation. Part of the condensed water is made available to the cloud microphysics scheme and another part evaporates. At grid sizes smaller than 3 km, the convective scheme is still active in removing convective instability, but precipitation is produced by cloud microphysics. The Eta model version using KF cumulus parameterization was applied in this study. To evaluate the quantitative precipitation forecast, the Eta model with the KF scheme was used to simulate precipitation associated with the South Atlantic Convergence Zone (SACZ) and Cold Front (CF) events. Integrations with increasing horizontal resolutions were carried out for up to 5 days for the SACZ cases and up to 2 days for the CF cases. The precipitation partition showed that most of precipitation was generated by the implicit scheme. As the grid size decreased, the implicit precipitation increased and the explicit decreased. However, as model horizontal resolution increases, it is expected that precipitation be represented more explicitly. In the KF scheme, the fraction of liquid water or ice, generated by the scheme, which is converted into rain or snow is controlled by a parameter S 1. An additional parameter was introduced into KF scheme and the parameter acts to evaporate a fraction of liquid water or ice left in the model grid by S 1 and return moisture to the resolved scale. An F parameter was introduced to combine the effects of S 1 and S 2 parameters. The F parameter gives a measure of the conversion of cloud liquid water or ice to convective precipitation. A function dependent on the horizontal resolution was introduced into the KF scheme to influence the implicit and explicit precipitation partition. The explicit precipitation increased with model resolution. This function reduced the positive precipitation bias at all thresholds and for the studied weather systems. With increased horizontal resolution, the maximum precipitation area was better positioned and the total precipitation became closer to observations. Skill scores for all events at different forecast ranges showed precipitation forecast improvement with the inclusion of the function F.  相似文献   

4.
The majority of natural hazards that affect Canadian territory are the result of extreme climate and weather conditions. Among these weather hazards, some can be calculated from the application of thresholds for minimum and maximum temperatures at a daily or monthly timescale. These thermal indices allowed the prediction of extreme conditions that may have an impact on the human population by affecting, for example, health, agriculture, and water resources. In this article, we discuss the methods used (RHtestsV4, SPLIDHOM, ClimPACT) then describe the steps followed to calculate the indices, including how we dealt with the problem of missing data and the necessity to identify a common methodology to analyze the time series. We also present possible solutions for ensuring the quality of meteorological data. We then present an overview of the results, namely the main trends and variability of extreme temperature for seven stations located in the Gaspé Peninsula from 1974 to 2013. Our results indicate some break points in time series and positive trends for most indices related to the rise of the temperatures but indicate a negative trend for the indices related to low temperatures for most stations during the study period.  相似文献   

5.
Theoretical and Applied Climatology - The civil war, harsh climate, tough topography, and lack of accurate meteorological stations have limited observed data across Afghanistan. To fulfill the gap,...  相似文献   

6.
Understanding the chemical links between ozone (O3) and its two main precursors, nitrogen oxides (NOx) and volatile organic compounds (VOC), is important for designing effective photochemical smog reduction strategies. This chemical relationship will determine which precursor (NOx or VOC) emission reduction will be more effective for decreasing the ozone formation. Under certain conditions, ozone levels decrease as a result of a reduction in NOx emissions but do not respond significantly to changes in VOC emissions (NOx-sensitive condition), while under other conditions ozone concentrations decrease in response to reductions in VOCs and may even increase when NOx emissions are reduced (VOC-sensitive conditions). Indicator species can be used to assess the sensitivity of ozone to changes in the emissions of its precursors. These indicators are species or species ratios involved in ozone photochemistry which reflect the primary chemical process through which the ozone was formed. In this work we use the MM5-CAMx model system to explore the behaviour of various indicator species during two meteorological situations featuring different atmospheric conditions in a complex terrain area. The results show that indicators based on nitrogen compounds (i.e,. NOy and NOz) are suitable for defining the transition range from VOC- to NOx-sensitive chemistry, and that despite the uncertainties associated with the use of chemical indicators, the ratios O3/NOy and O3/NOz may provide a simple and useful way to summarize the response of ozone to changes in NOx and VOC emissions in Southwestern Spain.  相似文献   

7.
8.
The evolution of sea surface temperature (SST) and thermocline (represented by 20 °C isotherm depth, D20) in the east equatorial Indian Ocean (EIO) associated with the Indian Ocean Dipole (IOD) years is studied for the period of 50 years from 1958 to 2007. A new IOD index based on combined anomalies of surface winds, D20 and SST over the equatorial Indian Ocean is defined to identify strong and weak IOD events. It is found that the evolution of strong IOD events is driven by ocean dynamics in the form of thermocline–SST coupling and is strongly interactive with the atmosphere, whereas the weak IOD events are mere response to surface winds without such dynamical coupling. The easterly wind anomalies extend up to the western equatorial Indian Ocean (WIO) during strong IOD years and support enhanced EIO air–sea interactions. On the other hand, the evolution of zonal wind anomalies is weak during the weak IOD years. Thermocline–SST coupling is robust in both EIO and WIO during strong IOD years, which is primarily responsible for the enhanced SST gradient, strong enough to establish anomalous Walker circulation within the Indian Ocean. The strong convection over the WIO associated with the Indian Ocean Walker cell triggers a secondary cell with subsidence over the African landmass. This double cell structure over the equatorial Indian Ocean is not reported before. Such double cell structure is not evident in weak IOD years and instead the convection over WIO extends up to African landmass. These are well supported by the spatial pattern of anomalous precipitable water during strong and weak IOD years. Strengthening of monsoon flow and local Hadley cell associated with strong IOD events enhances precipitation over the Indian subcontinent, whereas weak IOD years have less impact on the Indian summer monsoon circulation and rainfall. Analysis reveals that the EIO thermocline index and combined index could be potential predictors for the central Indian rainfall during summer.  相似文献   

9.
S. Dahech  G. Beltrando 《Climatic change》2012,114(3-4):689-706
This paper studies temperature evolution in the city of Sfax (Middle Eastern Tunisia, with more than 600 000 people) from 1950 to 2007. Daily maximum and minimum temperatures recorded at Sfax observatory from 1950 to 2007 are analysed by studying their homogeneity, possible trends and their statistical significance. Linear regression, Student and Mann–Kendall trend test were applied to annual mean minimum and maximum temperature data to determine the existence and significance of trends. Using a number of statistical tests, it is found that the data measured at the surface station represent a non homogenous time-series. Furthermore, mean annual and monthly temperatures are evaluated and a statistically significant trend starting from year 1950 was found. Important increase of the surface temperature in the City of Sfax was found after 1984. The increase in the surface temperature in the city of Sfax is further associated with global, regional (e.g. Mediterranean area) and meso-scale temperature increase. In addition, the spatial pattern of surface temperature in the city of Sfax from 1982 to 2007 shows that the overall land surface temperature increased with the expansion of Urban Heat Island (UHI) from urban areas to suburban districts.  相似文献   

10.
An evolution of the anomalous tropical storm is considered developed on April 29–May 4, 2008 over the Bay of Bengal. After the origination, it spread eastward through the Andaman Sea and reached the Myanmar coast. The analysis of formation and development of the tropical storm over the water area of the Bay of Bengal demonstrated that the sea level pressure at the center of this storm was rather high. Nevertheless, catastrophically large precipitation amount fell in Myanmar.  相似文献   

11.
12.
The contribution of deforestation in Russia to the anthropogenic emission of carbon dioxide (CO2) in 1990–2013 is estimated using the methods of computational monitoring. It is found that since 1990 the area of deforestation and forest conversion to other land-use categories is equal to 628.4 x 103 ha. The respective CO2 emissions from deforestation in Russia for the whole analyzed period are estimated at 142200 kt CO2 with the average annual value of 5900 + 2270 kt CO2/year. The largest contribution to the total losses is made by the changes in soil carbon stock (41.6%) and biomass carbon losses (28.8%). CO2 emissions from deforestation make an insignificant contribution to the total anthropogenic CO2 emission in the country (0.2%). Among the CO2 sources in the land use, land-use change, and forestry sector (LULUCF), the emission from deforestation is the lowest with the average for 1990–2013 contribution of about 0.6%.  相似文献   

13.
14.
15.
16.
Amount and time distributions, X and Y, of daily rain amounts in Europe along the second half of 20th century have been studied from 267 rain gauge records. Different geographical features, such as latitude, vicinity to Mediterranean Sea or the Atlantic Ocean or altitude above sea level, cause the averages of daily rain and annual number of rainy days to vary within a wide range. The largest daily percentiles of amount and time distributions are reached at latitudes south of 50°N and in southwestern Norway. The amount of distribution, X, is well-modelled by the exponential function, with parameters derived from probability graphs. Time distributions, Y, are well-fitted by Pearson type III (Gamma) and Weibull models, their parameters being estimated by L-moments. Normalised rainfall curves (NRC) have been modelled by the analytical function $ X = Y \cdot \exp \left\{ { - b{{\left( {1 - Y} \right)}^c}} \right\} $ , with b and c parameters depicting spatial variability. Alternatively, the beta distribution also describes quite well the empirical NRCs, with parameters estimated by statistical moments. The coordinates of the average daily amount (X r , Y r ) and the values of X * and Y * , which are defined as the fraction of rain amount for a half of rainy days and the fraction of number of rainy days accounting for a half of total rain amount, respectively, depict very similar spatial distribution throughout Europe. In fact, X r and X * keep a linear relationship, as well as Y r and Y * , the four coordinates depending on the coefficient of variation of daily rain amounts. A similar linear relationship is found for the pair (X * , Y * ). Finally, the Average Linkage algorithm applied to the coordinates X r , Y r , X * and Y * characterising every one of the 267 NRCs permits to group the rain gauges into several spatial clusters, each of them related to a different normalised daily pluviometric regime.  相似文献   

17.
From joint wavelet analysis of long-wavelength baroclinic Rossby waves and SST anomalies in the 5–10?yr band in the North and tropical Atlantic, and Reduced Rainfall Height (RRH) in Western Europe and Eastern North America, some key mechanisms involved in the interannual rainfall variability are highlighted. Systematic work has been undertaken to highlight the resonance of long planetary waves in the tropical oceans. Quasi-stationary Waves (QSWs) are produced resulting from the combination of gravitational forces and trade wind stress or ENSO events to compensate for energy lost in the resonator and, above all, to produce a strong modulated output current at the open end, contributing to the western boundary currents. Gravitational forces are resulting from the topography of the surface of the ocean at the antinodes, the dimension of the basin and the wavelength of planetary waves involved in the resonance being of the same order of magnitude. Remote resonances occur at critical latitudes, nearly 40°N and 40°S, forming QSWs the role of which is crucial in the functioning of sub-tropical gyres. In the North Atlantic subtropical gyre, an 8-yr period QSW appears to have a decisive role in the interannual rainfall variability. The pattern of SST anomalies depends on buoyancy of the advected layer associated with this QSW, which is controlled by the amplitude and the phase of long-period sub-harmonics. Rainfall oscillation in Western Europe has occurred for some decades and extended as the dipole formed by SST anomalies on both antinodes became unbalanced, due to the emergence of the advected layer further north. Since then cyclonic or anticyclonic conditions are prevailing at midlatitudes, depending on the polarity. Strengthening of RRH anomalies in Eastern North America is attributed to the buoyancy of the advected layer that re-circulates along the sub-tropical gyre, which evidences the excitation of long-period sub-harmonics, too. Frequency of exceptional events increased in areas heavily exposed to RRH anomalies, subject to oceanic influences even during extreme events, as this occurs in the north of France. Changes in rainfall patterns is attributed to global warming, i.e. the resonance of long-period sub-harmonics associated with solar magnetic cycles whose amplitude has increased drastically at the end of the second millennium, not including the possible contribution of greenhouse gas emissions whose impact on climate is non-resonant.  相似文献   

18.
19.

Monthly, seasonal and annual sums of precipitation in Serbia were analysed in this paper for the period 1961–2010. Latitude, longitude and altitude of 421 precipitation stations and terrain features in their close environment (slope and aspect of terrain within a radius of 10 km around the station) were used to develop a regression model on which spatial distribution of precipitation was calculated. The spatial distribution of annual, June (maximum values for almost all of the stations) and February (minimum values for almost all of the stations) precipitation is presented. Annual precipitation amounts ranged from 500 to 600 mm to over 1100 mm. June precipitation ranged from 60 to 140 mm and February precipitation from 30 to 100 mm. The validation results expressed as root mean square error (RMSE) for monthly sums ranged from 3.9 mm in October (7.5% of the average precipitation for this month) to 6.2 mm in April (10.4%). For seasonal sums, RMSE ranged from 10.4 mm during autumn (6.1% of the average precipitation for this season) to 20.5 mm during winter (13.4%). On the annual scale, RMSE was 68 mm (9.5% of the average amount of precipitation). We further analysed precipitation trends using Sen’s estimation, while the Mann-Kendall test was used for testing the statistical significance of the trends. For most parts of Serbia, the mean annual precipitation trends fell between −5 and +5 and +5 and +15 mm/decade. June precipitation trends were mainly between −8 and +8 mm/decade. February precipitation trends generally ranged from −3 to +3 mm/decade.

  相似文献   

20.

In this study we present the seasonal chemical characteristics and potential sources of PM10 at an urban location of Delhi, India during 2010?2019. The concentrations of carbonaceous aerosols [organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC) and water insoluble organic carbon (WIOC)] and elements (Al, Fe, Ti, Cu, Zn, Mn, Pb, Cr, F, Cl, Br, P, S, K, As, Na, Mg, Ca, B, Ni, Mo, V, Sr, Zr and Rb) in PM10 were estimated to explore their possible sources. The annual average concentration (2010–2019) of PM10 was computed as 227?±?97 µg m?3 with a range of 34?734 µg m?3. The total carbonaceous aerosols in PM10 was accounted for 22.5% of PM10 mass concentration, whereas elements contribution to PM10 was estimated to be 17% of PM10. The statistical analysis of OC vs. EC and OC vs. WSOC of PM10 reveals their common sources (biomass burning and/or fossil fuel combustion) during all the seasons. Enrichment factors (EFs) of the elements and the relationship of Al with other crustal metals (Fe, Ca, Mg and Ti) of PM10 indicates the abundance of mineral dust over Delhi. Principal component analysis (PCA) extracted the five major sources [industrial emission (IE), biomass burning?+?fossil fuel combustion (BB?+?FFC), soil dust, vehicular emissions (VE) and sodium and magnesium salts (SMS)] of PM10 in Delhi, India. Back trajectory and cluster analysis of airmass parcel indicate that the pollutants approaching to Delhi are mainly from Pakistan, IGP region, Arabian Sea and Bay of Bengal.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号