首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The simulation of precipitation in a general circulation model relying on relaxed mass flux cumulus parameterization scheme is sensitive to cloud adjustment time scale (CATS). In this study, the frequency of the dominant intra-seasonal mode and interannual variability of Indian summer monsoon rainfall (ISMR) simulated by an atmospheric general circulation model is shown to be sensitive to the CATS. It has been shown that a longer CATS of about 5 h simulates the spatial distribution of the ISMR better. El Niño Southern Oscillation–ISMR relationship is also sensitive to CATS. The equatorial Indian Ocean rainfall and ISMR coupling is sensitive to CATS. Our study suggests that a careful choice of CATS is necessary for adequate simulation of spatial pattern as well as interannual variation of Indian summer monsoon precipitation.  相似文献   

2.
National Centers for Environmental Prediction (NCEP) Coupled Forecast System (CFS) is selected to play a lead role for monsoon research (seasonal prediction, extended range prediction, climate prediction, etc.) in the ambitious Monsoon Mission project of Government of India. Thus, as a prerequisite, a detail analysis for the performance of NCEP CFS vis-a-vis IPCC AR4 models for the simulation of Indian summer monsoon (ISM) is attempted. It is found that the mean monsoon simulations by CFS in its long run are at par with the IPCC models. The spatial distribution of rainfall in the realm of Indian subcontinent augurs the better results for CFS as compared with the IPCC models. The major drawback of CFS is the bifurcation of rain types; it shows almost 80–90 % rain as convective, contrary to the observation where it is only 50–65 %; however, the same lacuna creeps in other models of IPCC as well. The only respite is that it realistically simulates the proper ratio of convective and stratiform rain over central and southern part of India. In case of local air–sea interaction, it outperforms other models. However, for monsoon teleconnections, it competes with the better models of the IPCC. This study gives us the confidence that CFS can be very well utilized for monsoon studies and can be safely used for the future development for reliable prediction system of ISM.  相似文献   

3.
El Ni?o-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and Indian Summer Monsoon rainfall features are explored statistically and dynamically using National Centers for Environment Prediction (NCEP) Climate Forecast System (CFSv1) freerun in relation to observations. The 100?years of freerun provides a sufficiently long homogeneous data set to find out the mean state, periodicity, coherence among these climatic events and also the influence of ENSO and IOD on the Indian monsoon. Differences in the occurrence of seasonal precipitation between the observations and CFS freerun are examined as a coupled ocean–atmosphere system. CFS simulated ENSO and IOD patterns and their associated tropical Walker and regional Hadley circulation in pure ENSO (PEN), pure IOD (PIO) and coexisting ENSO-IOD (PEI) events have some similarity to the observations. PEN composites are much closer to the observation as compared to PIO and PEI composites, which suggest a better ENSO prediction and its associated teleconnections as compared to IOD and combined phenomenon. Similar to the observation, the model simulation also show that the decrease in the Indian summer monsoon rainfall during ENSO phases is associated with a descending motion of anomalous Walker circulation and the increase in the Indian summer monsoon rainfall during IOD phase is associated with the ascending branch of anomalous regional Hadley circulation. During co-existing ENSO and IOD years, however, the fate of Indian summer monsoon is dictated by the combined influence of both of them. The shift in the anomalous descending and ascending branches of the Walker and Hadley circulation may be somewhat attributed to the cold (warm) bias over eastern (western) equatorial Indian Ocean basin, respectively in the model. This study will be useful for identifying some of the limitations of the CFS model and consequently it will be helpful in improving the model to unravel the realistic coupled ocean–atmosphere interactions for the better prediction of Indian Summer Monsoon.  相似文献   

4.
This study investigates the El Niño Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) and their relationship with the Indian summer monsoon in the coupled general circulation model climate forecast system (CFS). The model shows good skill in simulating the impact of El Niño over the Indian Oceanic rim during its decay phase (the summer following peak phase of El Niño). Summer surface circulation patterns during the developing phase of El Niño are more influenced by local Sea Surface Temperature (SST) anomalies in the model unlike in observations. Eastern TIO cooling similar to that of Indian Ocean Dipole (IOD) is a dominant model feature in summer. This anomalous SST pattern therefore is attributed to the tendency of the model to simulate more frequent IOD events. On the other hand, in the model baroclinic response to the diabatic heating anomalies induced by the El Niño related warm SSTs is weak, resulting in reduced zonal extension of the Rossby wave response. This is mostly due to weak eastern Pacific summer time SST anomalies in the model during the developing phase of El Niño as compared to observations. Both eastern TIO cooling and weak SST warming in El Niño region combined together undermine the ENSO teleconnections to the TIO and south Asia regions. The model is able to capture the spatial patterns of SST, circulation and precipitation well during the decay phase of El Niño over the Indo-western Pacific including the typical spring asymmetric mode and summer basin-wide warming in TIO. The model simulated El Niño decay one or two seasons later, resulting long persistent warm SST and circulation anomalies mainly over the southwest TIO. In response to the late decay of El Niño, Ekman pumping shows two maxima over the southern TIO. In conjunction with this unrealistic Ekman pumping, westward propagating Rossby waves display two peaks, which play key role in the long-persistence of the TIO warming in the model (for more than a season after summer). This study strongly supports the need of simulating the correct onset and decay phases of El Niño/La Niña for capturing the realistic ENSO teleconnections. These results have strong implications for the forecasting of Indian summer monsoon as this model is currently being adopted as an operational model in India.  相似文献   

5.
The Northwest Pacific (NWP) circulation (subtropical high) is an important component of the East Asian summer monsoon system. During summer (June–August), anomalous lower tropospheric anticyclonic (cyclonic) circulation appears over NWP in some years, which is an indicative of stronger (weaker) than normal subtropical high. The anomalous NWP cyclonic (anticyclonic) circulation years are associated with negative (positive) precipitation anomalies over most of Indian summer monsoon rainfall (ISMR) region. This indicates concurrent relationship between NWP circulation and convection over the ISMR region. Dry wind advection from subtropical land regions and moisture divergence over the southern peninsular India during the NWP cyclonic circulation years are mainly responsible for the negative rainfall anomalies over the ISMR region. In contrast, during anticyclonic years, warm north Indian Ocean and moisture divergence over the head Bay of Bengal-Gangetic Plain region support moisture instability and convergence in the southern flank of ridge region, which favors positive rainfall over most of the ISMR region. The interaction between NWP circulation (anticyclonic or cyclonic) and ISMR and their predictability during these anomalous years are examined in the present study. Seven coupled ocean–atmosphere general circulation models from the Asia-Pacific Economic Cooperation Climate Center and their multimodel ensemble mean skills in predicting the seasonal rainfall and circulation anomalies over the ISMR region and NWP for the period 1982–2004 are assessed. Analysis reveals that three (two) out of seven models are unable to predict negative (positive) precipitation anomalies over the Indian subcontinent during the NWP cyclonic (anticyclonic) circulation years at 1-month lead (model is initialized on 1 May). The limited westward extension of the NWP circulation and misrepresentation of SST anomalies over the north Indian Ocean are found to be the main reasons for the poor skill (of some models) in rainfall prediction over the Indian subcontinent. This study demonstrates the importance of the NWP circulation variability in predicting summer monsoon precipitation over South Asia. Considering the predictability of the NWP circulation, the current study provides an insight into the predictability of ISMR. Long lead prediction of the ISMR associated with anomalous NWP circulation is also discussed.  相似文献   

6.
Influence of Eurasian snow on Indian summer monsoon in NCEP CFSv2 freerun   总被引:2,自引:0,他引:2  
The latest version of the state-of-the-art global land–atmosphere–ocean coupled climate forecast system of NCEP has shown considerable improvement in various aspects of the Indian summer monsoon. However, climatological mean dry bias over the Indian sub-continent is further increased as compared to the previous version. Here we have attempted to link this dry bias with climatological mean bias in the Eurasian winter/spring snow, which is one of the important predictors of the Indian summer monsoon rainfall (ISMR). Simulation of interannual variability of the Eurasian snow and its teleconnection with the ISMR are quite reasonable in the model. Using composite analysis it is shown that a positive snow anomaly, which is comparable to the systematic bias in the model, results into significant decrease in the summer monsoon rainfall over the central India and part of the Equatorial Indian Ocean. Decrease in the summer monsoon rainfall is also found to be linked with weaker northward propagation of intraseasonal oscillation (ISO). A barotropic stationary wave triggered by positive snow anomaly over west Eurasia weakens the upper level monsoon circulation, which in turn reduces the zonal wind shear and hence, weakens the northward propagation of summer monsoon ISOs. A sensitivity experiment by reducing snow fall over Eurasian region causes decrease in winter and spring snow depth, which in turn leads to decrease in Indian summer monsoon rainfall. Results from the sensitivity experiment corroborate with those of composite analysis based on long free run. This study suggests that further improvements in the snow parametrization schemes as well as Arctic sea ice are needed to reduce the Eurasian snow bias during winter/spring, which may reduce the dry bias over Indian sub-continent and hence predictability aspect of the model.  相似文献   

7.
This study has investigated the possible relation between the Indian summer monsoon and the Pacific Decadal Oscillation (PDO) observed in the sea surface temperature (SST) of the North Pacific Ocean. Using long records of observations and coupled model (NCAR CCSM4) simulation, this study has found that the warm (cold) phase of the PDO is associated with deficit (excess) rainfall over India. The PDO extends its influence to the tropical Pacific and modifies the relation between the monsoon rainfall and El Niño-Southern Oscillation (ENSO). During the warm PDO period, the impact of El Niño (La Niña) on the monsoon rainfall is enhanced (reduced). A hypothesis put forward for the mechanism by which PDO affects the monsoon starts with the seasonal footprinting of SST from the North Pacific to the subtropical Pacific. This condition affects the trade winds, and either strengthens or weakens the Walker circulation over the Pacific and Indian Oceans depending on the phase of the PDO. The associated Hadley circulation in the monsoon region determines the impact of PDO on the monsoon rainfall. We suggest that knowing the phase of PDO may lead to better long-term prediction of the seasonal monsoon rainfall and the impact of ENSO on monsoon.  相似文献   

8.
The prediction of Indian summer monsoon rainfall (ISMR) on a seasonal time scales has been attempted by various research groups using different techniques including artificial neural networks. The prediction of ISMR on monthly and seasonal time scales is not only scientifically challenging but is also important for planning and devising agricultural strategies. This article describes the artificial neural network (ANN) technique with error- back-propagation algorithm to provide prediction (hindcast) of ISMR on monthly and seasonal time scales. The ANN technique is applied to the five time series of June, July, August, September monthly means and seasonal mean (June + July + August + September) rainfall from 1871 to 1994 based on Parthasarathy data set. The previous five years values from all the five time-series were used to train the ANN to predict for the next year. The details of the models used are discussed. Various statistics are calculated to examine the performance of the models and it is found that the models could be used as a forecasting tool on seasonal and monthly time scales. It is observed by various researchers that with the passage of time the relationships between various predictors and Indian monsoon are changing, leading to changes in monsoon predictability. This issue is discussed and it is found that the monsoon system inherently has a decadal scale variation in predictability. Received: 13 March 1999 / Accepted: 31 August 1999  相似文献   

9.
Summary Observational data are used to explore the relationship between surface air temperature anomaly gradients and Indian summer monsoon rainfall (ISMR). The meridional temperature anomaly gradient across Eurasia during January directed towards equator (pole) is a very good precursor of subsequent excess (deficient) Indian summer monsoon rainfall (ISMR). This gradient directed towards equator (pole) indicates below (above) normal blocking activity over Eurasia, which leads to less (more) than normal southward penetration of dry and cold mid latitude westerlies over the Indian monsoon region, which ultimately strengthens (weakens) the normal monsoon circulation. These findings suggest a mechanism for the weakening of relationship between El Niño and ISMR.Though there is a strong fundamental association between El Niño (warm ENSO) and deficient Indian summer monsoon rainfall (ISMR), this relationship was weak during the period 1921–1940 and the recent decade (1991–1998). During the El Niño years of 1921–1940 and 1901–1998, the meridional temperature anomaly gradient across Eurasia (Eurasian forcing) during January was directed towards equator. On the other hand, during the El Niño years of 1901–1920 and 1941–1990 this gradient was directed towards pole. Thus during 1921–1940 and 1991–1998, the adverse impact of El Niño on Indian monsoon was reduced by the favorable Eurasian forcing resulting in the weak association between El Niño and ISMR. This finding disagrees with the hypothesis of winter warming over the Eurasian continent as the reason for the observed weakening of this relationship during recent decade.  相似文献   

10.
Performance of seven fully coupled models in simulating Indian summer monsoon climatology as well as the inter-annual variability was assessed using multi member 1 month lead hindcasts made by several European climate groups as part of the program called Development of a European multi-model ensemble system for seasonal-to-inter-annual prediction (DEMETER). Dependency of the model simulated Indian summer monsoon rainfall and global sea surface temperatures on model formulation and initial conditions have been studied in detail using the nine ensemble member simulations of the seven different coupled ocean–atmosphere models participated in the DEMETER program. It was found that the skills of the monsoon predictions in these hindcasts are generally positive though they are very modest. Model simulations of India summer monsoon rainfall for the earlier period (1959–1979) are closer to the ‘perfect model’ (attainable) score but, large differences are observed between ‘actual’ skill and ‘perfect model’ skill in the recent period (1980–2001). Spread among the ensemble members are found to be large in simulations of India summer monsoon rainfall (ISMR) and Indian ocean dipole mode (IODM), indicating strong dependency of model simulated Indian summer monsoon on initial conditions. Multi-model ensemble performs better than the individual models in simulating ENSO indices, but does not perform better than the individual models in simulating ISMR and IODM. Decreased skill of multi-model ensemble over the region indicates amplification of errors due to existence of similar errors in the individual models. It appears that large biases in predicted SSTs over Indian Ocean region and the not so perfect ENSO-monsoon (IODM-monsoon) tele-connections are some of the possible reasons for such lower than expected skills in the recent period. The low skill of multi-model ensemble, large spread among the ensemble members of individual models and the not so perfect monsoon tele-connection with global SSTs points towards the importance of improving individual models for better simulation of the Indian monsoon.  相似文献   

11.
Weakening of Indian summer monsoon rainfall in warming environment   总被引:1,自引:1,他引:0  
Though over a century long period (1871–2010) the Indian summer monsoon rainfall (ISMR) series is stable, it does depict the decreasing tendency during the last three decades of the 20th century. Around mid-1970s, there was a major climate shift over the globe. The average all-India surface air temperature also shows consistent rise after 1975. This unequivocal warming may have some impact on the weakening of ISMR. The reduction in seasonal rainfall is mainly contributed by the deficit rainfall over core monsoon zone which happens to be the major contributor to seasonal rainfall amount. During the period 1976–2004, the deficit (excess) monsoons have become more (less) frequent. The monsoon circulation is observed to be weakened. The mid-tropospheric gradient responsible for the maintenance of monsoon circulation has been observed to be weakened significantly as compared to 1901–1975. The warming over western equatorial Indian Ocean as well as equatorial Pacific is more pronounced after mid-70s and the co-occurrence of positive Indian Ocean Dipole Mode events and El Nino events might have reinforced the large deficit anomalies of Indian summer monsoon rainfall during 1976–2004. All these factors may contribute to the weakening of ISMR.  相似文献   

12.
Mixed layer heat budget of the El Niño in NCEP climate forecast system   总被引:2,自引:2,他引:0  
The mechanisms controlling the El Niño have been studied by analyzing mixed layer heat budget of daily outputs from a free coupled simulation with the Climate Forecast System (CFS). The CFS is operational at National Centers for Environmental Prediction, and is used by Climate Prediction Center for seasonal-to-interannual prediction, particularly for the prediction of the El Niño and Southern Oscillation (ENSO) in the tropical Pacific. Our analysis shows that the development and decay of El Niño can be attributed to ocean advection in which all three components contribute. Temperature advection associated with anomalous zonal current and mean vertical upwelling contributes to the El Niño during its entire evolutionary cycle in accordance with many observational, theoretical, and modeling studies. The impact of anomalous vertical current is found to be comparable to that of mean upwelling. Temperature advection associated with mean (anomalous) meridional current in the CFS also contributes to the El Niño cycle due to strong meridional gradient of anomalous (mean) temperature. The surface heat flux, non-linearity of temperature advection, and eddies associated with tropical instabilities waves (TIW) have the tendency to damp the El Niño. Possible degradation in the analysis and closure of the heat budget based on the monthly mean (instead of daily) data is also quantified.  相似文献   

13.
The year 2019 experienced an excess monsoon season over the Indian region, with the seasonal rainfall being 110 % of the long period average (LPA). Several zones across the country suffered multiple extreme rainfall events and flood situations resulting in a massive loss of life and property. The first half of 2019 experienced a moderate El Niño Modoki event that lasted till mid-summer. Another important feature of 2019 was the strongest recorded positive Indian Ocean Dipole (IOD) that lasted approximately seven months from May to November. This study has examined the reasons for the intra-seasonal variability of rainfall over India during the 2019 monsoon using available remote sensing and reanalysis data. Our analysis has shown that the presence of El Niño and the formation of a very severe cyclonic storm (VSCS) in the Arabian Sea were unfavorable for the monsoon onset and its northward advancement during June. However, the Walker circulation associated with El Niño helped strengthen the IOD developed early in the Indian Ocean, much before the monsoon onset. The anomalously strong IOD strengthened the monsoon circulation during July-September and resulted in excess rainfall over India.  相似文献   

14.
The present study investigates the relationship between extreme north-east (NE) monsoon rainfall (NEMR) over the Indian peninsula region and El Niño forcing. This turns out to be a critical science issue especially after the 2015 Chennai flood. The puzzle being while most El Niños favour good NE monsoon, some don’t. In fact some El Niño years witnessed deficit NE monsoon. Therefore two different cases (or classes) of El Niños are considered for analysis based on standardized NEMR index and Niño 3.4 index with case-1 being both Niño-3.4 and NEMR indices greater than +1 and case-2 being Niño-3.4 index greater than +1 and NEMR index less than −1. Composite analysis suggests that SST anomalies in the central and eastern Pacific are strong in both cases but large differences are noted in the spatial distribution of SST over the Indo-western Pacific region. This questions our understanding of NEMR as mirror image of El Niño conditions in the Pacific. It is noted that the favourable excess NEMR in case-1 is due to anomalous moisture transport from Bay of Bengal and equatorial Indian Ocean to southern peninsular India. Strong SST gradient between warm western Indian Ocean (and Bay of Bengal) and cool western Pacific induced strong easterly wind anomalies during NE monsoon season favour moisture transport towards the core NE monsoon region. Further anomalous moisture convergence and convection over the core NE monsoon region supported positive rainfall anomalies in case-1. While in case-2, weak SST gradients over the Indo-western Pacific and absence of local low level convergence over NE monsoon region are mainly responsible for deficit rainfall. The ocean dynamics in the Indian Ocean displayed large differences during case-1 and case-2, suggesting the key role of Rossby wave dynamics in the Indian Ocean on NE monsoon extremes. Apart from the large scale circulation differences the number of cyclonic systems land fall for case-1 and case-2 have also contributed for variations in NE monsoon rainfall extremes during El Niño years. This study indicates that despite having strong warming in the central and eastern Pacific, NE monsoon rainfall variations over the southern peninsular India is mostly determined by SST gradient over the Indo-western Pacific region and number of systems formation in the Bay of Bengal and their land fall. The paper concludes that though the favourable large scale circulation induced by Pacific is important in modulating the NE monsoon rainfall the local air sea interaction plays a key role in modulating or driving rainfall extremes associated with El Niño.  相似文献   

15.
The performance of the new multi-model seasonal prediction system developed in the frame work of the ENSEMBLES EU project for the seasonal forecasts of India summer monsoon variability is compared with the results from the previous EU project, DEMETER. We have considered the results of six participating ocean-atmosphere coupled models with 9 ensemble members each for the common period of 1960–2005 with May initial conditions. The ENSEMBLES multi-model ensemble (MME) results show systematic biases in the representation of mean monsoon seasonal rainfall over the Indian region, which are similar to that of DEMETER. The ENSEMBLES coupled models are characterized by an excessive oceanic forcing on the atmosphere over the equatorial Indian Ocean. The skill of the seasonal forecasts of Indian summer monsoon rainfall by the ENSEMBLES MME has however improved significantly compared to the DEMETER MME. Its performance in the drought years like 1972, 1974, 1982 and the excess year of 1961 was in particular better than the DEMETER MME. The ENSEMBLES MME could not capture the recent weakening of the ENSO-Indian monsoon relationship resulting in a decrease in the prediction skill compared to the “perfect model” skill during the recent years. The ENSEMBLES MME however correctly captures the north Atlantic-Indian monsoon teleconnections, which are independent of ENSO.  相似文献   

16.
The real-time forecasting of monsoon activity over India on extended range time scale (about 3 weeks) is analyzed for the monsoon season of 2012 during June to September (JJAS) by using the outputs from latest (CFSv2 [Climate Forecast System version 2]) and previous version (CFSv1 [Climate Forecast System version 1]) of NCEP coupled modeling system. The skill of monsoon rainfall forecast is found to be much better in CFSv2 than CFSv1. For the country as a whole the correlation coefficient (CC) between weekly observed and forecast rainfall departure was found to be statistically significant (99 % level) at least for 2 weeks (up to 18 days) and also having positive CC during week 3 (days 19–25) in CFSv2. The other skill scores like the mean absolute error (MAE) and the root mean square error (RMSE) also had better performance in CFSv2 compared to that of CFSv1. Over the four homogeneous regions of India the forecast skill is found to be better in CFSv2 with almost all four regions with CC significant at 95 % level up to 2 weeks, whereas the CFSv1 forecast had significant CC only over northwest India during week 1 (days 5–11) forecast. The improvement in CFSv2 was very prominent over central India and northwest India compared to other two regions. On the meteorological subdivision level (India is divided into 36 meteorological subdivisions) the percentage of correct category forecast was found to be much higher than the climatology normal forecast in CFSv2 as well as in CFSv1, with CFSv2 being 8–10 % higher in the category of correct to partially correct (one category out) forecast compared to that in CFSv1. Thus, it is concluded that the latest version of CFS coupled model has higher skill in predicting Indian monsoon rainfall on extended range time scale up to about 25 days.  相似文献   

17.
A large spread exists in both Indian and Australian average monsoon rainfall and in their interannual variations diagnosed from various observational and reanalysis products. While the multi model mean monsoon rainfall from 59 models taking part in the Coupled Model Intercomparison Project (CMIP3 and CMIP5) fall within the observational uncertainty, considerable model spread exists. Rainfall seasonality is consistent across observations and reanalyses, but most CMIP models produce either a too peaked or a too flat seasonal cycle, with CMIP5 models generally performing better than CMIP3. Considering all North-Australia rainfall, most models reproduce the observed Australian monsoon-El Niño Southern Oscillation (ENSO) teleconnection, with the strength of the relationship dependent on the strength of the simulated ENSO. However, over the Maritime Continent, the simulated monsoon-ENSO connection is generally weaker than observed, depending on the ability of each model to realistically reproduce the ENSO signature in the Warm Pool region. A large part of this bias comes from the contribution of Papua, where moisture convergence seems to be particularly affected by this SST bias. The Indian summer monsoon-ENSO relationship is affected by overly persistent ENSO events in many CMIP models. Despite significant wind anomalies in the Indian Ocean related to Indian Ocean Dipole (IOD) events, the monsoon-IOD relationship remains relatively weak both in the observations and in the CMIP models. Based on model fidelity in reproducing realistic monsoon characteristics and ENSO teleconnections, we objectively select 12 “best” models to analyze projections in the rcp8.5 scenario. Eleven of these models are from the CMIP5 ensemble. In India and Australia, most of these models produce 5–20 % more monsoon rainfall over the second half of the twentieth century than during the late nineteenth century. By contrast, there is no clear model consensus over the Maritime Continent.  相似文献   

18.
Vasubandhu Misra  H. Li 《Climate Dynamics》2014,42(9-10):2491-2507
An extensive set of boreal summer seasonal hindcasts from a two tier system is compared with corresponding seasonal hindcasts from two other coupled ocean–atmosphere models for their seasonal prediction skill (for precipitation and surface temperature) of the Asian summer monsoon. The unique aspect of the two-tier system is that it is at relatively high resolution and the SST forcing is uniquely bias corrected from the multi-model averaged forecasted SST from the two coupled ocean–atmosphere models. Our analysis reveals: (a) The two-tier forecast system has seasonal prediction skill for precipitation that is comparable (over the Southeast Asian monsoon) or even higher (over the South Asian monsoon) than the coupled ocean–atmosphere. For seasonal anomalies of the surface temperature the results are more comparable across models, with all of them showing higher skill than that for precipitation. (b) Despite the improvement from the uncoupled AGCM all models in this study display a deterministic skill for seasonal precipitation anomalies over the Asian summer monsoon region to be weak. But there is useful probabilistic skill for tercile anomalies of precipitation and surface temperature that could be harvested from both the coupled and the uncoupled climate models. (c) Seasonal predictability of the South Asian summer monsoon (rainfall and temperature) does seem to stem from the remote ENSO forcing especially over the Indian monsoon region and the relatively weaker seasonal predictability in the Southeast Asian summer monsoon could be related to the comparatively weaker teleconnection with ENSO. The uncoupled AGCM with the bias corrected SST is able to leverage this teleconnection for improved seasonal prediction skill of the South Asian monsoon relative to the coupled models which display large systematic errors of the tropical SST’s.  相似文献   

19.
The present study investigates the Caribbean Sea rainfall variability during the early and late rainy seasons and its association with sea surface temperature (SST) and air?Csea interaction based on observational estimates, the NCEP Climate Forecast System (CFS) and Global Forecast System (GFS) simulations, and the CFS retrospective forecasts. Analysis of the observational estimates indicates that air?Csea interaction is important over the Caribbean Sea, whereas the atmospheric forcing of SST dominates over the Gulf of Mexico. The CFS simulation captures the basic elements of this observed air?Csea relationship. The GFS simulation produces spurious SST forcing of the atmosphere over the Gulf of Mexico largely due to prescribing SST. The CFS forecasts capture the air?Csea relationship in the late rainy season (August?COctober), but cannot reproduce the SST forcing of atmosphere over the Caribbean Sea in the early rainy season (May?CJuly). An empirical orthogonal function (EOF) analysis indicates that the leading modes of percent anomalies of the rainy season precipitation have the largest loading in the southern Caribbean Sea in observations. The model simulations and forecasts skillfully reproduce the spatial pattern, but not the temporal evolution. The Caribbean Sea rainfall variability in the early rainy season is mainly due to the tropical North Atlantic (TNA) SST anomalies in observations, is contributed by both the TNA and eastern equatorial Pacific (EEP) SST anomalies in the CFS simulation, and has an overly large impact from the EEP SST anomalies in the GFS simulation and the CFS forecasts. The observed Caribbean Sea rainfall variability in the late rainy season has a leading impact from the EEP SST anomalies, with a secondary contribution from the TNA SST anomalies. In comparison, the model simulations and forecasts overestimate the impacts of the EEP SST anomalies due to an earlier development and longer duration of the El Ni?o-Southern Oscillation in the CFS compared to observations.  相似文献   

20.
In this study, we examine the characteristics of the boreal summer monsoon intraseasonal oscillation (BSISO) using the second version of the Climate Forecast System (CFSv2) and revisit the role of air–sea coupling in BSISO simulations. In particular, simulations of the BSISO in two carefully designed model experiments are compared: a fully coupled run and an uncoupled atmospheric general circulation model (AGCM) run with prescribed sea surface temperatures (SSTs). In these experiments an identical AGCM is used, and the daily mean SSTs from the coupled run are prescribed as a boundary condition in the AGCM run. Comparisons indicate that air–sea coupling plays an important role in realistically simulating the BSISO in CFSv2. Compared with the AGCM run, the coupled run not only simulates the spatial distributions of intraseasonal rainfall variations better but also shows more realistic spectral peaks and northward and eastward propagation features of the BSISO over India and the western Pacific. This study indicates that including an air–sea feedback mechanism may have the potential to improve the realism of the mean flow and intraseasonal variability in the Indian and western Pacific monsoon region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号