共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The Neoarchaean Epoch nickel sulphide (NiS) deposit, discovered in 1970 and subsequently mined from 1972 to 1998, has been previously interpreted to be a magmatic ore system. However, on the basis of field, petrographic and analytical data obtained during the initial exploration and evaluation stages, integrated with limited new analytical data (SEM and ore microscopy), we propose that the Epoch NiS may be of hydrothermal origin. Key features that have prompted a re-appraisal of the genesis of the Epoch mineralisation, include: a) ore lenses are irregularly distributed along foliation fabrics of the host talc-carbonate rocks and as such no relationship to basal ultramafic/mafic units; b) the thickness of the ore lenses are highly variable from tens of centimetres to several metres; c) ore mineralogy is characterised by dominant millerite–pyrite–chalcopyrite assemblages; and d) high Pd/Pt ratios. Although our hydrothermal model is somewhat speculative, we suggest that on present evidence there is little doubt that the Epoch NiS lacks the features of typical magmatic sulphide deposits. More geochemical and isotopic data are needed to test our model. 相似文献
4.
Two distinct zircon populations, 1,827 ± 17 and 169 ± 2 Ma in age, have been found in the Rubiku granite dyke in the Middle Jurassic Mirdita ophiolite in central Albania. The old inherited zircons represent a homogeneous population formed during a discrete Palaeoproterozoic, likely magmatic, zircon crystallization event. These older zircons were likely incorporated, in large part, into the granite magma that crystallized broadly at the time of the ophiolite emplacement (around 169 Ma). The limited data available do not allow for the construction of an unequivocal petrogenetic model, though several palaeotectonic scenarios are discussed as possible settings for the granite formation. The models refer to recent findings of old inherited zircons in rocks at recent mid-ocean ridge settings, but also consider likely contributions of crustal materials to primary basic ophiolitic magmas within supra-subduction settings and subsequent accretion/collision circumstances. The presence of old zircons in much younger rocks within ophiolite successions runs counter to geodynamic models of interaction between the oceanic lithosphere and continental crust, but constraining their genesis would require further systematic studies on these old inherited zircons, both in mafic (if present) and in felsic rocks of the ophiolites. 相似文献
5.
《International Geology Review》2012,54(2):134-158
Geochemical and petrological studies of the well-preserved greywacke horizon of the ‘Middle Aravalli Group’ were carried out to constrain the early evolution of the Aravalli basin. Petrological and geochemical attributes of Middle Aravalli greywackes (MAGs) such as very poor sorting, high angularity of framework grains, presence of fresh plagioclase and K-feldspars, variable Chemical Index of Alteration (CIA) index (46.7–74.5, avg. 61), and high Index of Compositional Variability (ICV) value (~1.05) suggest rapid physical erosion accompanying an active tectonic regime. The sediments record post-depositional K-metasomatism and extraneous addition of 0–25% (avg. ~10%) K is indicated. Assuming close system behaviour of immobile elements during sedimentation, various diagnostic element ratios such as Th/Sc, La/Sc, Zr/Sc, and Co/Th, Eu anomaly and rare earth element patterns of MAG suggest that the Archaean Banded Gneissic Complex (BGC) basement was not the major source of sediments. In conjunction with the dominant 1.8–1.6 Ga detrital zircon age peaks of Middle Aravalli clastic rocks, these data rather indicate that the sediments were derived from a young differentiated continental margin-type arc of andesite–dacite–rhyodacite composition. A highly fractionated mid-oceanic-ridge-basalt-normalized trace element pattern of MAGs, with characteristic enrichment of large-ion lithophile elements (LILEs), depletion of heavy rare earth elements, negative Nb-Ta, Ti and P anomalies, positive Pb anomaly, and distinctive Nb/Ta, Zr/Sm, Th/Yb, and Ta/Yb, Ce/Pb ratios envelop the composition of modern continental arc magmas (andesite–dacite) of the Andes, suggesting a subduction zone tectonic setting for precursor magma. High magnitude of LILE enrichment and high Th/Yb ratios in these sediments indicate that thick continental crust (~70 km) underlay the ‘Middle Aravalli’ continental arc, similar to the Central Volcanic Zone of the modern Andes. We propose that eastward subduction of Delwara oceanic crust beneath the BGC continent led to the formation of a continental volcanic arc, which supplied detritus to the forearc basin situated to the west. This model also explains the opening of linear ensialic basins in the Bhilwara terrain, such as in Rajpura–Dariba and Rampura–Agucha in a classical back-arc extension regime, similar to the Andean continental margin of the Mesozoic. On the basis of the recent 207Pb/206Pb detrital zircon age of Middle Aravalli sediment, a time frame between 1772 and 1586 Ma can be assigned for Middle Aravalli continental arc magmatism. 相似文献
6.
Early Miocene (ca.?21–18 Ma) volcanism in the Karacada? area comprises three groups of volcanic rocks: (1) calcalkaline suite (andesitic to rhyolitic lavas and their pyroclastics), (2) mildly-alkaline suite (alkali basalt, hawaiite, mugearite, benmoreite and trachydacite), and (3) a single trachyandesitic flow unit. Field observations, 40Ar/39Ar ages and geochemical data show that there was a progressive temporal transition from group 1 to 3 in a post-collisional tectonic setting. The calcalkaline suite rocks with medium-K in composition resemble those of subduction-related lavas, whereas the mildly-alkaline suite rocks having a sodic tendency (Na2O/K2O=1.5–3.2) resemble those of within-plate lavas. Incompatible element and Sr-Nd isotopic characteristics of the suites suggest that the lithospheric mantle beneath the Karacada? area was heterogeneously enriched by two processes before collision: (1) enrichment by subduction-related processes, which is important in the genesis of the calcalkaline volcanism, (2) enrichment by small degree melts from the astenosphere, which dominates the mildly alkaline volcanism. Perturbation of the enriched lithosphere by either delamination following collision and uplift or removal of the subducted slab following subduction and collision (i.e., slab breakoff) is the likely mechanism for the initiation of the post-collision volcanism. 相似文献
7.
The occurrence,mineralogy and geochemistry of eclogites in the Mt.Dabie area show that they were subjected to a high-pressure metamorphism together with the country rocks,but their petrochemistry and REE geochemistry show some difference from those of the country rocks.The geochemical characteristics of the eclogites are similar to those of bot continental tholeiitic basalt and oceanic tholeiitic basalt.The rocks probably subducted to the upper mantle with the Dabie metamorphic complex.When elevated to the surface,they were subjected to different staes of retrogressive metamorphism. 相似文献
8.
Purnajit Bhattacharjee Sukanta Goswami Sangeeta Bhagat M B Verma 《Journal of Earth System Science》2018,127(8):114
The Cuddapah basin consists of generally well-preserved Palaeoproterozoic–Neoproterozoic sedimentary and associated volcanic rocks. The detailed lithological studies of sedimentary rocks of Vempalle Formation from the narrow linear belt of 15 km, in the southern margin, show the occurrence of layered gypsum in the cherty dolostone–shale intercalated facies, red shale and phosphatic dolostone facies of the Vempalle Formation. The petromineralogical studies reveal that gypsum is in close association with anhydrites. Microscopically, three different types of gypsum and anhydrite are identified, viz., lath-shaped, equant-shaped and anhedral-shaped grains. The equant variety corresponds to a granular gypsum, whereas the anhedral grains of gypsum exist as the granular and fibrous variety as seen in the hand specimen. The presence of gypsum/anhydrite has been confirmed by the petromineralogical, X-ray diffraction and chemical analytical data. The phosphatic dolostone is the host rock for stratabound type of uranium deposit at Tummalapalle, Cuddapah district, Andhra Pradesh, which is one of the most unique types of uranium mineralisation in the world. Abundant pseudomorphs of gypsum and anhydrite relicts and discontinuous gypsum layers within these dolostones, nodules of chert and gypsum indicate the interrelationship between the diagenesis and genesis of uranium mineralisation which indicates the carbonate precipitation in the sulphate-rich hypersaline environments. 相似文献
9.
Summary Dykes of Cenozoic age (37.5±2.3Ma) crop out in the Tchircotché area (Garoua rift, north Cameroon). They consist of a lamprophyric (monchiquite) series with diopside, subsilicic kaersutite and apatite phenocrysts, Ba–Ti-rich biotite microphenocrysts and Cr-diopside xenocrysts scattered in a matrix of analcitic composition containing oligoclase, albite and sanidine microlites and carbonate ocelli.Major and trace element distributions are interpreted in terms of crystal fractionation of olivine, clinopyroxene, amphibole and Fe–Ti oxides. The Tchircotché monchiquites show a relatively restricted range of initial 87Sr/86Sr ratio (0.70366–0.70387), of Nd values (+2.5 to +2.7), and rare earth element patterns similar to those of the least differentiated basalts of the Cameroon Line. This supports a common magma source region. This mantle source is infra-lithospheric and is strongly enriched in incompatible elements (light REE, Zr, Sr, Ba) probably transported by volatile- and halogen-rich fluids. The monchiquites appear to be derived by low degrees of partial melting as attested by steep REE patterns and high contents of other incompatible elements, suggesting the presence of residual garnet in the source. Several lines of evidence support the occurrence of phlogopite in the source region of Tchircotché lamprophyre magma. 相似文献
10.
The Paleoproterozoic Kauhajärvi gabbro is one of several Fe-, Ti-, and P-rich mafic intrusions associated with granitoids in the Fennoscandian shield in western Finland. The gabbro is cut by the late-orogenic Lauhanvuori granite (ca.1870?Ma), whereas the surrounding area is composed of synorogenic, collision-related granitoids and calc-alkaline volcanic rocks (ca. 1890?Ma) belonging to the Mid Finland Granitoid Complex. The mafic intrusions were probably emplaced into a Svecofennian rift zone. They are characterized by a high phosphorus content; the common occurrence of ilmenite as separate grains; and the coeval crystallization of apatite, Fe-Ti oxides, and Fe-Mg silicates. The Kauhajärvi gabbro is composed of two geochemically and structurally distinct zones. The basal zone is composed of poorly-layered, fine- to medium-grained gabbro, which represents an early intrusion of tholeiitic magma, and has rather high concentrations of chromium, magnesium and silica. Typically, the concentrations of iron, titanium and phosphorus are low, except for the top that is enriched in apatite and ilmenite. During most of the crystal-liquid fractionation of the basal zone magma, low f O2 limited the crystallization of Fe-Ti-oxides. Instead, titanium became enriched in the uppermost layer of the basal zone. The main zone represents a later injection of more evolved tholeiitic magma and makes up 80 to 90%of the total intrusion volume. Peridotite is common, along with gabbro and gabbronorite, in the lower and middle parts of the main zone, and anorthosite is common near the top of the main zone. The Mg:Fe ratio in mafic minerals and vanadium concentrations in magnetite decrease upwards. The variation within the main zone can be explained by crystal-liquid fractionation of a single batch of a parental magma under conditions of relatively high f O2. Titanium is not progressively enriched. The ratio of titanium to iron (TiO2/Fe2O3 = 0.16 to 0.20; Fe total as Fe2O3) is constant in the main zone and normal for mafic intrusions. Titanium is sited in separate ilmenite grains and in lamella within ilmenomagnetite (Ti-bearing magnetite). The high phosphorus content in the main zone is interpreted to result in crystallization of ilmenite and ilmenomagnetite instead of Ti-rich magnetite under relatively high f O2 conditions. High concentrations of titanium, iron and phosphorus in rocks of the main zone can be explained by pre-emplacement crystal-melt fractionation in a deep magma reservoir and/or contamination of mantle-derived mafic magmas by granitic magmas from partial melting of crustal rocks. A low-grade Fe-Ti-P resource at Kauhajärvi consists of layers with as much as 20 wt. % combined ilmenite (usually 8 to 11 wt. %), apatite (1 to 8 wt. %) and magnetite (1 to 9 wt. %). Mineralized layers are of variable thickness (2?m to 30?m) and occur in variable host rocks (peridotite or gabbro). The Fe-Ti oxides are most abundant in peridotite and pyroxene- or olivine-rich gabbronorite within the main zone. The contact between mineralized rocks (4%TiO2) and non- or slightly-mineralized rocks is gradual. The deposit as a whole consists of three to five mineralized layers with maximum combined thickness of 70?m. Apatite is most abundant in the oxide-rich layers, but is locally also concentrated in anorthosite with low Fe-Ti oxide contents. The weight ratio of ilmenite to magnetite is 3:2. The ratio of total Ti-Fe-oxides to apatite averages 4.0, with the range of 1.5 to >15. 相似文献
11.
T.V. Donskaya D.P. Gladkochub A.M. Mazukabzov S. Denyszyn S.A. Pisarevsky Z.L. Motova E.I. Demonterova 《Russian Geology and Geophysics》2018,59(12):1548-1559
Geological, geochronological, and isotope-geochemical studies of the metadolerites of the Angaul complex, widespread in the Urik-Iya graben of the southern Siberian craton, were carried out. The metadolerites forming separate conformal bodies (sills) among the metasandstones of the Ingash Formation were studied in detail. U-Pb zircon (SHRIMP) dating of metadolerites yielded an age of 1913 ± 24 Ma, and U-Pb baddeleyite (ID-TIMS) dating of these rocks yielded an age of 1914.0 ± 1.7 Ma. Thus, the date of 1914 ± 2 Ma can be taken as the most precise age estimate for the studied rocks. The metadolerites of the Angaul complex correspond in chemical composition to the normal-alkaline tholeiitic basalts. Metadolerites are differentiated rocks with mg# of 36 to 58. They show fractionated REE patterns: (La/Yb)n = 1.2-3.5. All metadolerites, independently of their mg# value, have low contents of Nb (1.6-10.2 ppm) and show well-pronounced negative Nb-Ta anomalies in multielement patterns (Nb/Nb* = 0.19-0.54). The metadolerites are characterized by positive εNd(T) values ranging from 0.4 to 5.2, which correlate well with their SiO2 content and mg# value. The isotope-geochemical parameters of the metadolerites of the Angaul complex indicate that fractional crystallization, along with the assimilation of the host rocks (AFC), might have been the main process during the formation of the most differentiated metadolerites. The geochemical characteristics of metadolerites with the maximum mg# values of 57-58 and εNd(T) = 5.2 suggest that the parental mantle source of the metadolerites resulted from mixing of predominant depleted mantle material with the subcontinental-lithosphere material. Intrusion of the dolerites of the Angaul complex, as well as the deposition of the sedimentary strata of the Ingash Group, took place at the Paleoproterozoic stage of intracontinental extension caused by the collapse of the orogen resulted from the collision of the Biryusa block with the Tunguska superterrane in the southern Siberian craton. 相似文献
12.
The Lawn Hill circular structure in northwest Queensland contains unambiguous evidence of an extraterrestrial impact, including planar deformation features in quartz, impact diamonds, widespread shatter cone formation and impact melt breccia in the Mesoproterozoic basement. The question of its relevance to ore genesis is investigated because the world-class Century Zn – Pb deposit is situated at the conjunction of the 100+ km Termite Range Fault and the previously defined margin of the impact structure. The impact structure is considered to be a 19.5 km wide feature, this constrained in part by the outer margin of an annulus of brecciated and highly contorted limestone. New evidence is presented indicating impact into this Cambrian limestone, including: (i) ‘dykes’ of brecciated Cambrian limestone extending hundreds of metres into the Mesoproterozoic basement; (ii) highly contorted bedding in the limestone annulus compared with essentially undeformed limestone away from the impact site; as well as (iii) a 1 Mt megaclast of Mesoproterozoic Century-like ore suspended in the limestone. Through aerial photograph analysis, large-scale convoluted flow structures within the limestone are identified, and these are interpreted to indicate that parts of the Cambrian sequence may have been soft or only semi-consolidated at the time of impact. This highly contorted limestone bedding is suggested to represent slump-filling of an annular trough in response to impact-induced partial liquefaction of a sediment veneer. The age of impact is therefore considered to be concurrent with limestone formation during the Ordian to early Templetonian, at 520 – 510 Ma. Formation of the Century deposit is found to be unrelated to impact-generated hydrothermal activity, although some minor hydrothermal remobilisation of metals occurred. However, there was macro-scale remobilisation of gigantic ore fragments driven by impact-induced lateral and vertical injection of limestone into the Proterozoic sediments. The limestone-filled annular trough surrounds a 7.8 km diameter central uplift, consistent with formation of a complex crater morphology. 相似文献
13.
《International Geology Review》2012,54(14):1783-1791
The Chibaisong magmatic Cu–Ni sulphide deposit is located in Tonghua City, Jilin Province, in the eastern part of the northern margin of the North China Craton. The geological characteristics of the deposit have been investigated, and pyrrhotite Re–Os isotope dating has been utilized to constrain the age. Five pyrrhotite samples separated from the Chibaisong Cu–Ni sulphide deposit yielded a Re–Os isotopic isochron age of 2237 ± 62 Ma (mean squared weighted deviation = 1.13, n = 5), indicating that the only Palaeoproterozoic magmatic Cu–Ni sulphide deposit in China is the Chibaisong Cu–Ni sulphide deposit. The geodynamic setting during ore formation was related to the Liaoning–Jilin Palaeoproterozoic rift split. The Re–Os isotope analyses showed an initial 187Os/188Os ratio of 0.778 ± 0.033, and (187Os/188Os)i and γOs(t) values ranged from 0.7531 to 0.8013 (average 0.7734) and from 574 to 617 (average 592), respectively, indicating that abundant crustal material (5–10%) was mixed with the Cu–Ni sulphide ore system during magma ascent and ore formation. 相似文献
14.
I. A. Tararin Z. G. Badredinov S. I. Dril’ V. M. Chubarov N. S. Gerasimov G. P. Sandimirova N. N. Il’ina 《Petrology》2014,22(6):588-616
The problem of the geochemical classification of granitoid magmatism in the zone of interaction of oceanic and continental plates is considered in this paper by the example of Mesozoic granitoids of the Krutogorova and Kol’ intrusive complexes of the Sredinny Range, Kamchatka. Based on new geological, petrological, and geochemical data (including the Sr, Nd, and Pb isotope systematics of rocks), it was shown that the protoliths of the granitoids were volcanic-terrigenous sequences accumulated within a Cretaceous marginal basin in the eastern Asian continent. The granitoids crystallized at ~80 Ma (SHRIMP U-Pb age) under the conditions of the andalusite-sillimanite depth facies corresponding to a pressure of approximately 2 kbar and induced contact metamorphism in the host sequences, which are made up of sediments with sheetlike bodies of mafic and ultramafic volcanics (Kikhchik Group and its metamorphic analogues of the Kolpakova, Kamchatka, and Malki groups). The lower age boundary of sedimentation of the host sequences and the time of basic volcanism coincide with the beginning of the formation of the Okhotsk-Chukotka volcanic belt. Such a correlation is not accidental and reflects a genetic connection between the processes of magmatic activation in the continental-margin sedimentary basin and the formation of the continental margin volcanic belt in eastern Asia. The development of basic volcanism in the sedimentary basin accompanied by the ascent of deep fluids resulted in the entrainment of crustal materials into magmatic processes and the formation of crustal magma chambers, the activity of which was manifested by the eruption of intermediate and silicic lavas and emplacement of shallow granitoid intrusions of considerable areal extent. These intrusions induced contact metamorphism in the enclosing volcanosedimentary complexes. The subsequent Eocene (60-50 Ma) collision processes related to the obduction of the oceanic segment of the crust of the transitional zone onto the Asian continental margin resulted in the tectonic piling of the rocks of Central Kamchatka and strong crustal thickening, which was favorable for its metamorphic alteration reaching the kyanite-sillimanite depth level of the amphibolite facies under the influence of a thermal front and deep fluids affecting lower crustal zones. The Eocene regional metamorphism caused not only metamorphic transformations, migmatization, and granitization in the sequences of the Sredinny Range, which underwent only contact hornfels formation during the first stage, but also metamorphism, migmatization, and extensive foliation in the igneous rocks of the Kol’ and Krutogorova complexes, which were transformed into gneissic metagranites. 相似文献
15.
The West Jordan nickel deposit, in the northern Agnew–Wiluna greenstone belt of Western Australia, is a newly-discovered Type 2 dunite-hosted, low-grade, large tonnage, disseminated sulphide system. Located in the core of a large dunite body, mineralisation is dominated by intercumulus sulphide blebs (20 μm to 6 mm across) in assemblages containing pentlandite, pyrrhotite, heazlewoodite and locally, native nickel, sphalerite and chalcocite. Mineralisation grades between 0.2 and 2 wt.% Ni, with the majority of samples in the 0.35–0.7% Ni range, were consistent with most komatiitic Type 2 systems. Hypogene alteration of the ultramafic host rock is interpreted to have been effected by retrograde metamorphic fluids, and has resulted in extensive serpentinisation and localised, structurally-controlled, talc-magnesite alteration. This gangue alteration has resulted in modification of original magmatic sulphide assemblages, and localised remobilisation of the minor Cu and Zn components of the magmatic sulphides. The deposit is deeply weathered, and all samples utilised in this study were obtained from a series of 12 diamond drill holes which were comprehensively assayed. An igneous stratigraphy is presented which is interpreted to be west-younging, consistent with along-strike deposits to the south, such as the Mount Keith and Yakabindie Type 2 nickel deposits. 相似文献
16.
Jaloul Bejaoui Salah Bouhlel Ahmed Sellami Ahmed Braham 《Arabian Journal of Geosciences》2014,7(6):2483-2497
The Oued Jebs Pb–Zn–Sr deposit is situated on the south edge of the Mourra Triassic diapir, in the Diapir Zone of the Tunisian Atlas. Tow orebody-type are recognized: (1) lens-chapped orebodies hosted in the Dolomitic cap rock that marks the transition zone between the Triassic gypsum cap rock and the overlaying Late Cretaceous series. Mineralization is composed of epigenetic celestite and minor Pb–Zn sulfides. (2) Vein-type and massive-type orebodies crosscutting the Late Cenomanian and Turonian limestone. Mineralization is composed of high-grade ore ranging from 10 to 25 % combined Pb–Zn. Fluid inclusion data for celestite indicate that deposition took place between 70 and 100 °C, or more cooler conditions as indicated by the presence of single-phase inclusions, from mixed NaCl–CaCl2-bearing brines (12–19 wt% NaCl equiv). For the vein-type and massive-type fluid inclusion, data recorded in sphalerite indicate that sulfide deposition took place between 125 and 130 °C mixed NaCl–CaCl2-bearing brines (10–15 wt% NaCl equiv). At least three dilution and cooling trends are also observed that indicate the involvement of more than one fluid in the Oued Jebs hydrothermal system. The epigenetic character of the ores, the host rock nature and the fluid inclusion together permitted to include the Oued Jebs deposit in the large class of MVT deposits and preciously in the sub-class of MVTs associated with salt diapirs environment. The new discovered Oued Jebs deposit is similar in many aspects to the economic Bou Grine deposit. This may point to significant other potential for economic Pb–Zn concentrations that may be located at depth alongside or above many other unexplored Triassic diapirs in the Diapirs zone of the Tunisian Atlas. 相似文献
17.
J. Maximino T.M. Ferron Artur C. Bastos Neto Evandro F. Lima Lauro V.S. Nardi Hilton T. Costi Ronaldo Pierosan Maurício Prado 《Journal of South American Earth Sciences》2010,29(2):483-497
This paper presents geochemical, petrographic, and geochronological data on the Uatumã magmatism in the Pitinga Province, where it is represented by volcanic rocks from the Iricoumé Group and granitic rocks from the Mapuera Suite. The Iricoumé Group (1.89–1.88 Ga) is constituted of the Divisor Formation (intermediate volcanic rocks), Ouro Preto Formation (acid effusive rocks), and Paraiso Formation (acid crystal-rich ignimbrites, surge deposits, and basic rocks). The volcanic sequence is intruded by granitoids from the Mapuera Suite (1.88 Ga), mainly represented by monzogranites and syenogranites. Structural and field relations suggest that caldera complex collapse controlled the emplacement of volcanics and granitoids of the Mapuera Suite. Subsequent structure reactivations allowed the younger Madeira Suite (1.82–1.81 Ga) to be emplaced in the central portion of the caldera complex. The felsic Iricoumé magmatism is mainly composed of rhyolites, trachydacites and latites, with SiO2 contents between 64 wt% and 80 wt%. The plutonic rocks from the Mapuera Suite present SiO2 between 65 wt% and 77 wt%. Volcanic and granitic rocks present identical geochemical characteristics and that is attributed to their co-magmatic character. The felsic volcanic rocks and granites are metaluminous to slightly peraluminous and show affinity with silica-saturated alkaline series or with A-type magmas. They have Na2O + K2O between 6.6% and 10.4%, FeOt/(FeOt + MgO) varying between 0.76 and 0.99, Ga/Al ratios between 1.5 and 4.9, like typical A-type rocks; and plot in the within-plate or post-collisional fields in the (Nb + Y) vs. Rb diagram. The Nb/Y ratios indicate that these rocks are comparable to A2-type granites. This magmatism can be related to the (i) potassic alkaline series, with low Sr content in the felsic rocks explained by plagioclase fractionation at low pressure and high temperature or, alternatively, (ii) a bimodal association where magma had high crustal influence. The similarity of the Iricoumé felsic magmatism with A2-type granitoids and their high ETRL/Nb ratios suggest its relation with mantle sources previously modified by subduction, probably in a post-collision environment. Alternatively, this can be interpreted as bimodal within-plate magmatism with contamination by crustal melts. In this context, the extreme F, Nb and Zr enrichment of Madeira Suite could be explained by the presence of a thin crust which favored the presence and continuity of convective systems in the upper mantle. 相似文献
18.
《International Geology Review》2012,54(4):501-524
The alkaline El Chichón and calc-alkaline Tacaná volcanoes, located in southern Mexico, form parts of the Chiapanecan Volcanic Belt and Central American Volcanic Arc, respectively. El Chichón has emitted potassium-, sulphur-, and phosphorus-rich trachyandesites and trachybasalts (as mafic enclaves), whereas Tacaná has erupted basalts to dacites with moderate potassium contents, and minor high-Ti magmas (1.5–1.8 wt.% TiO2). The magmatic evolution in the two volcanoes has involved similar fractionating assemblages: Fe-Ti oxides, olivine, plagioclase, pyroxenes, amphibole, and apatite. K2O/P2O5 ratios and isotopic signatures indicate that magmas from both El Chichón and Tacaná have undergone significant crustal contamination. The volcanism at both Tacaná and El Chichón was previously related to northeastward subduction of the Cocos Plate, representing the main arc and the backarc, respectively. Although such an origin is in accord with Tacaná occurring 100 km above the Cocos Benioff Zone, it is inconsistent with: (a) the absence of a calc-alkaline belt between El Chichón and the Middle America Trench; and (b) truncation of the subducted Cocos Plate by the southwesterly dipping Yucatan slab near the Middle America Trench (i.e. the Cocos Plate does not presently underlie El Chichón). On the other hand, El Chichón and the Chiapanecan Volcanic Belt are located on the sinistral Veracruz fault zone that forms the northern boundary of the Southern Mexico block, which has been migrating relatively to the east since ca. 5 Ma. In this context, the anomalous high potassium, sulphur, and phosphorus levels in the El Chichón magmas are explicable in terms of rifting in a pull-apart system with the weak subduction fingerprint inherited from the Yucatan slab. 相似文献
19.
PU Chuanjie QIN Dexian NIAN Hong ZHANG Xueshu Franco PIRAJNO FAN Zhuguo 《中国地球化学学报》2007,26(4):374-383
The sulphide ores of the Baimazhai deposit, although typically orthomagmatic, locally exhibit peculiar textural features and are intimately associated with hydrothermal minerals, such as biotite, amphibole and chlorite. This association suggests that the magmatic sulphide ores were subjected to hydrothermal alteration and subsequent redistribution, resulting in the observed textural features. Geochemically, the Baimazhai sulphide ores are enriched in Cu, Pd and Au, which,according to previous studies, reflects the action of hydrothermal fluids. Interestingly, Ar-Ar dating yielded the plateau ages of about 160–170 Ma, which are at odds with the established Permian age of the Emeishan large igneous province. We interpreted these younger ages as due to thermal resetting during post-Permian tectonothermal events. We have proposed a model in which tectonic movements and hydrothermal fluids related to these events modified the pre-existing magmatic sulphides. Given the degree of overprint, we suggested two possible scenarios: 1) the sulphide disseminations that surround the massive magmatic ores are the result of deformation and hydrothermal alteration; and 2) there were both magmatic massive and disseminated sulphides, in which case the scale and relocation of remobilization would have been smaller, but still detectable. 相似文献
20.
Paul Duuring Wouter Bleeker Steve W. Beresford Nicholas Hayward 《Mineralium Deposita》2010,45(3):281-311
Perseverance is a world-class, komatiite-hosted nickel sulphide deposit situated in the well-endowed Leinster nickel camp
of the Agnew–Wiluna greenstone belt, Western Australia. The mine stratigraphy at Perseverance trends north-northwest (NNW),
dips steeply to the west, and is overturned. Stratigraphic footwall units lie along the western margin of the Perseverance
Ultramafic Complex (PUC). The PUC comprises a basal nickel sulphide-bearing orthocumulate- to mesocumulate-textured komatiite
that is overlain by a thicker, nickel sulphide-poor, dunite lens. Hanging wall rocks include rhyodacite that is texturally
and compositionally similar to footwall volcanic rocks. These rocks separate the PUC from a second sequence of nickeliferous,
E-facing, spinifex-textured komatiite units (i.e. the East Perseverance komatiite). Past workers argue for a conformable stratigraphic
contact between the PUC and the East Perseverance komatiite and conclude that the PUC is extrusive. This study, however, clearly
demonstrates that these komatiite sequences are discordant, implying that the PUC may have intruded rhyodacite country rock
as a sill with subsequent structural juxtaposition against the East Perseverance komatiite. Early N–S shortening associated
with the regional DI deformation event (corresponding to the local DP1 to DP3 events at Perseverance) resulted in the heterogeneous partitioning of strain along the margins of the competent dunite. A
mylonite developed in the more ductile footwall rocks along the footwall margin of the PUC, while isoclinal F3 folds, such as the Hanging wall limb and Felsic Nose folds, formed in low-mean stress domains along the fringes of the elongated
dunite lens. Strata-bound massive and disseminated nickel sulphides were passively fold thickened in hinge areas of isoclinal
folds, whereas basal massive sulphides lubricated fold limbs and promoted thrust movement along shallowly dipping lithological
contacts. Massive sulphides were physically remobilised up to 20 m from their primary footwall position into deposit-scale
fold hinges to form the 1A and Felsic Nose orebodies. First-order controls on the geometry of the Perseverance deposit include
the thermomechanical erosion of footwall rocks and the channelling of the mineralised komatiitic magma. Second- or third-order
controls are several postvolcanic deformation events, which resulted in the progressive folding and shearing of the footwall
contact, as well as the passive fold thickening of massive and disseminated sulphide orebodies. Massive sulphides were physically
remobilised into multiple generations of fold hinges and shear zones. Important implications for near-mine exploration in
the Leinster camp include identifying nickeliferous komatiite units, defining their three-dimensional geometry, and targeting
fold hinge areas. Fold plunge directions and stretching lineations are indicators of potential plunge directions of massive
sulphide orebodies. 相似文献