首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Azores archipelago (Portugal) is located on an oceanic plateau, in a geodynamic environment prone to intense seismic and volcanic activity. In order to investigate the crustal structure in this region, we have conducted a local earthquake tomography study in the area of the islands of Faial, Pico and S. Jorge using data recorded in July 1998. The July 9th 1998 earthquake, near Faial Island, triggered an aftershock sequence of thousands of events that lasted for several months and were recorded by a total of 14 stations located on the three islands surrounding the epicentral area. In the upper crustal layers, consistency is seen between the tomographic results and the islands' surface volcanic units. Beneath the Faial central volcano a low Vp (< 6.0 km/s) anomaly roughly located at 3–7 km depth, suggests a connection to the plumbing system, possibly the presence of a magma chamber. In NE Faial, a high Vp (> 6.3 km/s) body was found located at mid-lower crust, most likely an intrusion of gabbroic composition, that is bordered by the registered seismic activity; its shape suggesting a tectonic controlled mechanism. The relocated hypocenters, together with the overall analysis of the Tomographic model, suggest a tectonic segmentation of Faial Island. The crustal thickness under the islands volcanic buildings of the Faial–Pico area was estimated at around 14 km.  相似文献   

2.
We studied the 3D velocity structure of the crust and uppermost mantle beneath the Baikal region using tomographic inversion of ∼25,000 P and S arrivals from more than 1200 events recorded by 86 stations of three local seismological networks. Simultaneous iterative inversion with a new source location algorithm yielded 3D images of P and S velocity anomalies in the crust and upper mantle, a 2D model of Moho depths, and corrections to source coordinates and origin times. The resolving power of the algorithm, its stability against variations in the starting model, and the reliability of the final results were checked in several tests. The 3D velocity structure shows a well-pronounced low-velocity zone in the crust and uppermost mantle beneath the southwestern flank of the Baikal rift which matches the area of Cenozoic volcanism and a high velocity zone beneath the Siberian craton. The Moho depth pattern fits the surface tectonic elements with thinner crust along Lake Baikal and under the Busiyngol and Tunka basins and thicker crust beneath the East Sayan and Transbaikalian mountains and under the Primorsky ridge on the southern craton border.  相似文献   

3.
In estimating the likelihood of an earthquake hazard for a seismically active region, information on the geometry of the potential source is important in quantifying the seismic hazard. The damage from an earthquake varies spatially and is governed by the fault geometry and lithology. As earthquake damage is amplified by guided seismic waves along fault zones, it is important to delineate the disposition of the fault zones by precisely determined hypocentral parameters. We used the double difference (DD) algorithm to relocate earthquakes in the Koyna-Warna seismic zone (KWSZ) region, with the P- and S-wave catalog data from relative arrival time pairs constituting the input. A significant improvement in the hypocentral estimates was achieved, with the epicentral errors <30 m and focal depth errors <75 m i.e. errors have been significantly reduced by an order of magnitude from the parameters determined by HYPO71. The earthquake activity defines three different fault segments. The seismogenic volume is shallower in the south by 3 km, with seismicity in the north extending to a depth of 11 km while in the south the deepest seismicity observed is at a depth of 8 km. By resolving the structure of seismicity in greater detail, we address the salient issues related to the seismotectonics of this region.  相似文献   

4.
本研究使用山西测震台网记录的2010年1月~2019年12月地震观测数据,使用TomoDD方法,反演得到了山西断陷带南部(110°~114°E,34.5°~38.5°N)分辨率为0.2°的三维P波速度结构以及该区域地震重定位结果。反演结果显示:研究区的地壳速度结构与该区域的地表地质构造和沉积作用有关,5~10 km太原盆地、临汾盆地显示明显Vp低速分布,灵石隆起是以沉积作用为主导的地质活动,存在较大范围的沉积物,在5~10 km同样显示低速分布;峨眉山地台、吕梁山脉、太行山山区显示高速分布。而吕梁山脉在10 km以上为低速分布,可能与大同火山的上地幔岩浆构造活动有关;太原盆地自15 km深度不再延续5~10 km的低速分布而显示高速分布,说明太原盆地不受大同火山区上地幔构造活动影响,受青藏高原的推挤作用形成的可能性更大。重定位结果显示:地震丛集在断陷带内分布,震源深度集中在0~30 km。太原盆地内地震丛集事件发生在太原盆地北部,深度集中在20~25 km之间,速度剖面显示位于低速向高速转换区域内;交城断裂的应力集中以及介质结构的高低速变换是太原北部地震从集的主要原因。运城盆地内地震分布除盐湖序列外没有明显的丛集性。2016年3月12日发生的ML4.8盐湖序列,主震发生在低速向高速过度区域内,其余震震源深度较主震浅,且基本发生在下方存在高速分布的低速区域内。盐湖序列ML4.8主震的震源机制解与附近中条山北麓断裂的高角度正断层性质一致,说明主震受中条山北麓断裂活动影响。余震震源类型复杂,其中,逆断和逆断兼走滑机制与该地区区域背景应力场不符。综合机制解和速度结构的结果认为盐湖序列的发生机理较复杂,可能受该区域介质结构、隐伏断裂分布等综合作用,还需进一步研究。  相似文献   

5.
6.
We present the P-wave seismic tomography image of the mantle to a depth of 1200 km beneath the Indonesian region. The inversion method is applied to a dataset of 118,203 P-wave travel times of local and teleseismic events taken from ISC bulletins. Although the resolution is sufficient for detailed discussion in only a limited part of the study region, the results clarify the general tectonic framework in this region and indicate a possible remnant seismic slab in the lower mantle.

Structures beneath the Philippine Islands and the Molucca Sea region are well resolved and high-velocity zones corresponding to the slabs of the Molucca Sea and Philippine Sea plates are well delineated. Seismic zones beneath the Manila, Negros and Cotabato trenches are characterized by high-velocity anomalies, although shallow structures were not resolved. The Molucca Sea collision zone and volcanic zones of the Sangihe and Philippine arcs are dominated by low-velocity anomalies. The Philippine Sea slab subducts beneath the Philippine Islands at least to a depth of 200 km and may reach depths of 450 km. The southern end of the slab extends at least to about 6°N near southern Mindanao. In the south, the two opposing subducting slabs of the Molucca Sea plate are clearly defined by the two opposing high-velocity zones. The eastward dipping slab can be traced about 400 km beneath the Halmahera arc and may extend as far north as about 5°N. Unfortunately, resolution is not sufficient to reveal detailed structures at the boundary region between the Halmahera and Philippine Sea slabs. The westward dipping slab may subduct to the lower mantle although its extent at depth is not well resolved. This slab trends N-S from about 10°N in the Philippine Islands to northern Sulawesi. A NE-SW-trending high-velocity zone is found in the lower mantle beneath the Molucca Sea region. This high-velocity zone may represent a remnant of the former subduction zone which formed the Sulawesi arc during the Miocene.

The blocks along the Sunda and Banda arcs are less well resolved than those in the Philippine Islands and the Molucca Sea region. Nevertheless, overall structures can be inferred. The bowl-shaped distribution of the seismicity of the Banda arc is clearly defined by a horseshoe-shaped high-velocity zone. The tomographic image shows that the Indian oceanic slab subducts to a depth deeper than 300 km i.e., deeper than its seismicity, beneath Andaman Islands and Sumatra and may be discontinuous in northern Sumatra. Along southern Sumatra, Java and the islands to the east, the slab appears to be continuous and can be traced down to at least a depth of the deepest seismicity, where it appears to penetrate into the lower mantle.  相似文献   


7.
Upper-mantle velocity structure of the lower Great Lakes region   总被引:1,自引:0,他引:1  
The lithospheric root beneath North America contains a prominent indentation beneath the lower Great Lakes region that is approximately aligned with the track of the New England seamounts. By combining data from the recently installed POLARIS network in southern Ontario, Canada with data acquired in 1996 during the Abitibi–Grenville teleseismic experiment, we have performed a tomographic inversion using 4543 P-wave traveltimes from 213 events (5.0 ≤ mb ≤ 6.6), and 1860 S-wave traveltimes from 98 events (5.0 ≤ mb ≤ 6.6), to obtain high-resolution images of the upper mantle beneath the lower Great Lakes. Two salient features of the 3-D models are: 1) a patchy, NNW-trending low-velocity region, and 2) a linear, NE-striking high-velocity anomaly. S-wave images show that the low-velocity anomaly changes from an arcuate feature at 400-km depth, to a NW-striking linear feature at 100-km depth beneath the Neoproterozoic Ottawa–Bonnechere graben. The linear high-velocity anomaly extends to at least 300-km depth and strikes parallel to surface geological belts and the Laurentian continental margin. We interpret the high-velocity anomaly as a possible relict slab associated with ca. 1.35–1.3 Ga subduction beneath the Composite Arc Belt, whereas the low-velocity anomaly is interpreted as a zone of alteration and metasomatism associated with the ascent of magmas that produced the Late Cretaceous Monteregian plutons. Our data support an interpretation of these plutons as melts generated by the passage of North America across a mantle plume, rather than a far-field response to opening of the North Atlantic.  相似文献   

8.
B. Schurr  A. Rietbrock  G. Asch  R. Kind  O. Oncken   《Tectonophysics》2006,415(1-4):203-223
Data from three temporary seismic networks were merged for tomographic inversion. Although the deployments did not coincide in time, spatial overlap was achieved by re-occupying existing sites. Travel times and t operators of about 1600 earthquakes were inverted for 3D models of νp, νp/νs and P-wave attenuation (Qp− 1). All three attributes provide a consistent image of the entire subduction zone on a lithospheric scale. The tomographic images reveal low velocities and high attenuation in the crust and mantle underlying the Western Cordillera and most of the Puna plateau, indicative of weak rheology and mostly asthenospheric mantle. In contrast, forearc and eastern foreland are characterized by high Qp values, corresponding to cold temperatures in accordance with thermal models. In the backarc, between 23°S and 24°S, a high velocity, high Qp structure beneath the Eastern Cordillera and eastern Puna is interpreted as detaching continental lithosphere that has been thickened in the orogenic process. South of this structure, the mantle is characterized by low velocities, high νp/νs ratios, and low Qp values. Here it is believed that lithosphere originally underlying Andean crust has already been removed. This is supported by new estimates of crustal thickness and volcanic activity.  相似文献   

9.
Koyna-Warna region of western India is an active seismic zone due to the Reservoir Triggered Seismicity (RTS). Earthquake precursor studies are carried out monitoring hydrochemical and stable isotope signatures in the groundwater from 15 bore wells since January 2005, for more than 12 years (January 2005 to February 2017). Depth of these boreholes ranges from 100 to 250 m. Cyclic or temporal variation in hydrochemistry is observed in few sensitive wells in Koyna region. The Govare well in Koyna is found to be most sensitive and the observed hydrochemical cycle is closely associated with local earthquakes of M > 5. The earthquakes M <5 occurring either in Warna cluster or close to the observation wells, did not generate hydrochemical precursory changes. The increase in hydrochemistry is hypothesized as mixing of two aquifer waters with different hydrochemistry. It is noted that a precursory hydrochemical cycle is observed during first quarter of 2015, but no earthquake M > 5.0 occurred till date. The cyclic changes in hydrochemistry, however, indicate on-going earthquake processes and an impending earthquake of M > 5 in the region.  相似文献   

10.
Resolution and reliability estimates of results obtained by seismic tomography strongly depend on the reference model. Inadequate initial reference models may severely distort tomographic images or introduce artefacts that lead to misinterpretations of the results. Reference models are usually obtained by means of a priori near-surface geological information or by geophysical information derived by controlled-source seismology.
Starting from the idea that a reference model must approximate the weighted average of data selected for the three-dimensional (3D) inversion, one-dimensional (1D) model for Northwestern Italy is derived that is able to minimize mean of RMS of a set of well-locatable earthquakes, by computing a solution of the coupled hypocentre 1D velocity problem.
Such a model, termed the Minimum 1D model, can be used both as an initial reference model for 3D inversion and as a reference velocity model for high-quality routine earthquake location.  相似文献   

11.
Koyna-Warna Region (KWR) is one of the known sites for reservoir triggered seismicity. The continued triggered seismicity over the five decades is restricted to a region of about 600–700 sq. km, which provides a unique opportunity to monitor geophysical anomalies likely to be associated with seismicity of the region. Present study confers temporal gravity changes recorded by gPhone and GRACE satellite and interprets observed changes in conjunction with seismological, geodetic (cGPS) observations and groundwater level measurements. GRACE data suggest that seasonal vertical deformation due to hydrological loading is ~ 2 cm, which corroborates with continuous GPS observations. Seasonal hydrological loading of the region, which is in a phase of reservoir loading, might be influencing the critically stressed KWR leading to the seasonal seismicity of the region. The gPhone gravity data distinctly show co-seismic gravity signals for eight earthquakes of Mw > 2 and gravity anomalies show positive correlation on a logarithmic scale with earthquake released energy. To investigate the cause of gravity changes, an estimate is made for 14th April 2012 earthquake for Mw 4.8 using fault dislocation model. The recorded gravity changes of 189 μGal by gPhone located at a distance of 28 km from the hypocentre is much more than the estimate of ~0.1 μGal calculated for Mw 4.8 Koyna earthquake. Therefore, it is inferred that co-seismic gravity signals for eight earthquakes are primarily caused due to redistribution of mass at shallow depth.  相似文献   

12.
秦岭造山带是华北板块和扬子板块南北两个大陆边缘长期演化的产物,各部分性质和时代不同,是一个复杂的构造混杂体。由于其所处位置的重要性,演化时间上的长期性、多旋回性,空间上的多样性、变异性,一直是地质和地球物理学研究的热点。为了沟通该区复杂的浅表地质现象与深部结构成像,获取更精细的上地壳结构成为厘定秦岭造山带不同块体之间接触关系,揭示其地球动力学演化过程的关键。本文对一条长450 km、南北向跨越鄂尔多斯地块南缘、渭河地堑、秦岭造山带、大巴山逆冲推覆带和四川盆地北缘的宽角反射与折射地震剖面采集的15个大炮数据进行了层析成像研究。本研究对690个初至走时拾取数据使用有限差分算法,采用变网格尺度及平滑参数的迭代策略,经20次迭代反演,走时均方根误差降至0.105 s,收敛良好。成像结果精细刻画了渭河地堑的低速沉积特征,系一个南深北浅的断陷盆地,最深处可达7 km,其发育主要受秦岭北缘断裂、乾县—富平断裂及渭河断裂控制。秦岭北缘断裂与安康—竹山断裂之间的秦岭造山带上地壳呈高速特征,横向变化剧烈,仅残余若干较浅的山间盆地。与南部四川盆地稳定沉积相比,大巴山逆冲推覆带下方沉积层速度结构不统一,反映了逆冲推覆作用的改造,但整体仍保留了3~6 km的沉积厚度。本文分析认为剖面中部的秦岭地区是古生代—早中生代南北板块汇聚的核心地带,之后造山带两翼的南、北陆缘分别于燕山期和新生代转入逆冲推覆和伸展两种迥异的构造环境,而现今研究区的上地壳构造格局是三次事件叠加的结果。  相似文献   

13.
The problem of seismic tomography, in its linearized statement, is characterized by models consisting of many parameters for velocity structures and hypocenters. The standard approach solves this problem by simultaneously finding both seismic parameters. In the present communication, we present evidence that the velocity structure can be determined at fixed values of the earthquake hypocenter parameters. Instead of the standard approach, we use differential one, which allows us to built inversion solutions stable in relation to significant noise, including errors in the hypocenter parameters as well. We conclude that the greater the number of hypocenters involved in inversion, the better the tomography result. This conclusion is proved by testing the Tjornes fault zone in the northeast of Iceland.  相似文献   

14.
苏鲁大别及其周围地区深部P波速度结构特征的初步分析   总被引:1,自引:0,他引:1  
赵志新  徐纪人 《岩石学报》2005,21(2):525-532
本分析了苏鲁大别及其周围地区200km深的地震波速度结构。对上地幔50至200km不同深度的水平切面的速度结构特征进行了详细研究。结果表明,位于大别山地区下的西南侧存在着一个呈西北一东南延展的带状高速区;在苏鲁东海地区的下方,及东北方面也有高速度区域存在。这两个高速度区不相连。在大别山区东北端区与苏鲁超高压变质带的南端地区深部的两个高速区之间,即郯庐断裂的中部存在一个西北-东南延展的低速度区。大别山区下方深部呈现明显的速度梯度变化带。大别山区东端边界也是速度梯度变化带。郯庐断裂的北段,即与苏鲁超高压变质带为邻的部分下方,似乎是一个速度分界带或速度不连续带。郯庐断裂的北段下方的速度结构与其两侧地区的速度结构明显不同。该段的两侧速度结构常常存在着明显差异。  相似文献   

15.
We applied a seismic tomography technique to arrival time data generated by local crustal earthquakes in central Anatolia in order to study the three-dimensional velocity and Vp/Vs structures and their relation with the complex tectonic processes and seismic activity occurring in the study region. The relatively equal and large number of both P- and S-wave arrival times comprising a total of 51,650 arrivals and the relatively uniform distribution of the recording stations imply that the obtained velocity anomalies are reliable features down to a depth of 40 km. This is also evident from the results of the checkerboard resolution test, hit count, and the ray-path coverage. The inversion results indicate the existence of strong lateral heterogeneities in the crust and uppermost mantle beneath central Anatolia. Prominent low-velocity anomalies are clearly imaged at all layers especially beneath existing volcanoes and the active fault segments. Higher-than-average Vp/Vs ratios are widely distributed, indicating the possible existence of over-pressurized fluids that may be responsible for the triggering of the large crustal earthquakes along the north and east Anatolian fault zones. We noticed that the seismic activity occurs mainly at the low-velocity areas and to a lesser extent in some high-velocity zones, perhaps because of the complex tectonics and geological structures. These observations imply that all the zones with velocity anomalies—either low or high—are potential sites for strain energy accumulation and subsequent release. The obtained velocity and Vp/Vs models are consistent with previous geophysical measurements conducted beneath central Anatolia and give much deeper understanding of the current seismotectonic processes occurring in the region.  相似文献   

16.
Flow mapping and physical volcanology of 15 basaltic lavas exposed in three critical road pass sections (ghats) in the Koyna-Warna region of the western Deccan Traps is presented in this paper. Transitional lavas like rubbly pahoehoe are most common morpho-type exposed in these ghat sections. Sinking of rubbly breccia into flow interiors and formation of breccia-cored rosette are common in some lava flows. Few rubbly lavas exhibit slabby tendencies. The amount and nature of the associated rubble is variable and result from the mechanical fracturing and auto-brecciation of the upper vesicular crust in response to distinctive stages in the cooling, crystallization and emplacement history of individual lava flows. Occurrence of aa and pahoehoe morpho-types in the lava flow sequence is subordinate. Three prominent pahoehoe flows separated by red bole horizons are seen in the upper parts of the Kumbharli ghat. These are thick, P-type sheet pahoehoe. The pahoehoe lavas represent compound flow fields that grew by budding, endogenous lava transfer and inflation. Presence of pahoehoe lavas in the Koyna-Warna region hints at possible hitherto unrecorded southern extension of Bushe-like flow fields. This study reconfirms the existence of pahoehoe-slabby-rubbly-aa flow fields and transitions even in the upper echelons of the Deccan Trap stratigraphy. The study of morphology and internal structure of lava flows exposed at the ghat sections in the Koyna-Warna region could guide subsurface core-logging that is critical in deciphering the physical volcanology and emplacement dynamics of basaltic lava flows penetrated by drill holes sunk under the scientific deep drilling programme.  相似文献   

17.
The Sannio-Matese region is one of the most seismically active regions of Italy and has been struck by large historical earthquakes. At present, the area is characterized by low magnitude background seismicity and small seismic sequences following M4 main events. In this paper, we show Vp and Vp/Vs models and 3D locations for a complete set of earthquakes occurring in the period 1991–2001. We observe a significant crustal heterogeneity, with large scale east-verging high Vp fault-related-folds, stacked by the Pliocene compression. The relocated earthquakes cluster along a 70° east-dipping, NW-striking plane located at the border of the high Vp thrust units. Normal fault earthquakes related to the young and active extension occur within these high Vp zones, interpreted as high strength material. We expect large future earthquakes to occur within these high Vp zones actually characterized by low magnitude seismicity at their borders.  相似文献   

18.
Reassessment of travel time data from an exceptionally dense, amphibious, temporary seismic network on- and offshore Central and Eastern Java (MERAMEX) confirms the accretionary nature of the crust in this segment of the Sunda subduction zone (109.5–111.5E). Traveltime data of P- and S-waves of 244 local earthquakes were tomographically inverted, following a staggered inversion approach. The resolution of the inversion was inspected by utilizing synthetic recovery tests and analyzing the model resolution matrix. The resulting images show a highly asymmetrical crustal structure. The images can be interpreted to show a continental fragment of presumably Gondwana origin in the coastal area (east of 110E), which has been accreted to the Sundaland margin. An interlaced anomaly of high seismic velocities indicating mafic material can be interpreted to be the mantle part of the continental fragment, or part of obducted oceanic lithosphere. Lower than average crustal velocities of the Java crust are likely to reflect ophiolitic and metamorphic rocks of a subduction melange.  相似文献   

19.
Analysis of teleseismic records obtained in two broadband seismic stations of three components located on the Andean region of Colombia is presented in this work. The two stations are located at the Western Cordillera (WC), station BOL, and at the Central Cordillera (CC), station PBLA. The analysis of seismograms was performed by inversion of the receiver functions (RF) in order to obtain the crustal velocity structure beneath the receivers. The receiver function is a spectral ratio obtained from teleseismic earthquakes recorded by broadband seismic stations, which allows the calculation of the velocity structure beneath the receiver by removing source effects in the horizontal components of the seismic traces. Data stacking was performed in order to improve signal to noise ratio and then the data was inverted by using two optimization algorithms: a genetic algorithm (GA), and a simulated annealing algorithm (SA). The present work calculates the receiver functions using teleseismic earthquakes at epicentral distances (Δ) ranging between 30° and 90° and recorded at the two stations within the years 2007 and 2009.Delay times between P and PS waves converted at the Moho boundary were used to constrain the velocity structure. The receiver functions at the stations were generated from seismic events within a broad range of back azimuth. Data from gravity and magnetism were also used during the geophysical survey. The depth of the Moho boundary was found to be at 40 km in the WC beneath station BOL and at 43 km in the CC beneath station PBLA. The upper crust, with a thickness of 5 km, is characterized by a shear wave velocity of about 3.0 km s−1; the shallower layers, at approximately 1.0 km, have shear wave velocities between 2.2 and 2.6 km s−1, which corresponds to sediments overlying the upper crust. These observations support the hypothesis of a thickness of the crust at the root of the mountain range to be between 32 and 50 km. The calculated receiver functions were compared with artificial ones generated from the inversion of 48000 models of horizontal layers for each station using a GA and an SA that allowed a satisfactory coverage of all the sample space in order to avoid non-unique solutions. Beneath station BOL a moderate low-velocity zone (LVZ) was found, which was caused by accretionary processes of the ophiolite complex in the WC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号